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Abstract. Post-reionisation 21cm intensity mapping experiments target the spectral line of
neutral hydrogen (HI) resident in dark matter haloes. According to the halo model, these
discrete haloes trace the continuous dark matter density field down to a certain scale, which is
dependent on the halo physical size. The halo physical size defines an exclusion region which
leaves imprints on the statistical properties of HI. We show how the effect of exclusion due to
the finite halo size impacts the HI power spectrum, with the physical boundary of the host
halo given by the splashback radius. Most importantly, we show that the white noise-like
feature that appears in the zero-momentum limit of the power spectrum is exactly cancelled
when the finite halo size is taken into consideration. This cancellation in fact applies to
all tracers of dark matter density field, including galaxies. Furthermore, we show that the
exclusion due to finite halo size leads to a sub-Poissonian noise signature on large scales,
consistent with the results from N-body simulations.
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1 Introduction

Cosmological information contained in the statistics of observed discrete sources (such as
galaxies) is obtained by comparing the observations to a suitable theoretical model. There
are several ways of building a theoretical model for each of the discrete sources; the widely
used option involves treating these discrete sources as tracers of the stochastic non-linear
dark matter density field. As may be expected, this process of mapping discrete sources to
dark matter involves a range of assumptions about the source in question. For example, in
the case of neutral hydrogen (HI) or 21cm intensity maps, the HI-bearing systems are treated
as residents of dark matter haloes, which, in turn, are treated as tracers of the stochastic
non-linear dark matter density field [1, 2]. In this framework, the dark matter haloes are
extended virialized or gravitationally bound regions of space with density in excess of the
cosmic mean density [3, 4]. Haloes come in different sizes and masses, and a specific range
of halo masses are physically connected to HI-bearing systems [2]. This halo mass range can
very naturally be formulated in terms of circular velocity of the haloes [5], which also relates
the HI content to the virial temperature and photoionization that suppresses the formation
of dwarf galaxies [6, 7]. Modelling the statistics of HI as residents of dark matter haloes
usually neglects how the finite size of the halo may impact the derived correlation function.
We investigate this issue in detail in the present paper.

It is well-understood in the context of halo statistics that due to the finite size of dark
matter haloes, one must decide which structures are parent haloes and which are sub-haloes
of larger haloes. This choice is known as the ‘halo exclusion criterion’ [8–12]. Halo exclusion
effects leave an imprint on the number density of haloes, their correlation functions and halo
bias parameters [12]. It was pointed out during the early development phase of the halo model
of structure formation that halo exclusion must be taken into account for a more realistic
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halo model to emerge [13]. Recent studies within the halo model [10, 14] have discussed
several proposals on how to incorporate the halo exclusion effects in the modelling of halo
correlation functions. A proposal on how to incorporate halo exclusion effects into standard
perturbation theory was given in [11]. We build on the formalism discussed in [11] and apply
it to the clustering of the HI brightness temperature.

We show how to model HI host haloes of a given physical size or circular velocity. The
physical size is given by the splashback radius of the host halo [15, 16]. We argue that the
splashback radius provides a physical smoothing scale below which the model of HI brightness
temperature will need to take into account the effects of stellar streams and other baryonic
physics at play within the halo [17]. Furthermore, we argue that the splashback radius
as a physical length scale fits perfectly within the hierarchical cold dark matter structure
formation picture. The splashback radius is defined dynamically by the infall matter/particles
on their first orbit [18], and it corresponds to the position of sharpest drop in the slope of
the dark matter density field [15, 19].

Our analysis shows that the emergent white noise-like features that appear in the HI
brightness temperature power spectrum in the limit of zero momentum (see [20–22]) are
exactly cancelled when the finite size of the host halo is taken into consideration. The white
noise-like feature also arises in the galaxy power spectrum (see [23–25]) and our argument
applies in this as well. In addition, we show that there are sub-Poissonian noise signatures
whose impact on the discrete HI power spectrum is naturally connected to the mass-weighting
of haloes introduced in [26].

The paper is organised as follows: in section 2, we review the statistics of discrete sources
and describe the connection between the power spectrum of discrete sources and that of the
continuous density field. In section 3, we describe how the HI brightness temperature may
be modelled as a tracer of the dark matter density field within the halo framework. We
compute and discuss the continuous power spectrum and show how the white noise-like term
is cancelled exactly for tracers of finite size in section 4. A summary and conclusions are
given in 5. We provide basic tools for the halo model in section A.

Cosmology. We adopt the following values for the cosmological parameters of the standard
model [27]: the dimensionless Hubble parameter, h = 0.674, baryon density parameter,
Ωb = 0.0493, dark matter density parameter, Ωcdm = 0.264, matter density parameter, Ωm =
Ωcdm + Ωb, spectral index, ns = 0.9608, and the amplitude of the primordial perturbation,
As = 2.198× 10−9.

2 Statistics of discrete sources

2.1 Probability of finding sources within a given volume
The probability of finding two discrete tracers of type X, in small volumes δV1 and δV2, and
separated by a distance x12, is given by (omitting redshift dependence for brevity)

δP12(x12) = n̄2
X [1 + ξX(x12)] δV1δV2 , (2.1)

where n̄X is the average number density and ξX(x12) is the two-point correlation function
(2PCF) that describes the excess probability, compared to random, of finding sources sep-
arated by x12. In the isotropic limit, ξ(x12) = ξ(|x12|) is independent of direction and
orientation of the pair. ξX is subject to the following conditions due to the physical meaning
of probability:
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1. ξX(x12) ≥ −1, since probability must be non-negative; saturation of the bound, i.e.
zero probability, corresponds to the exclusion limit [13].

2. ξX(x12) → 0 as |x12| → 0 is required for n̄X to correspond to an observable mean
number density.

In practice, the 2PCF is estimated by counting the number of source pairs within
volumes in a given catalogue, and comparing it to the number that would be expected on the
basis of a Poisson distributed catalogue with the same total population. These catalogues
are generated with some level of arbitrariness, for example:

• Halo catalogue: every halo catalogue depends on the halo exclusion length scale. This
is a selection effect associated with the criteria adopted for assigning structures as parent
haloes and sub-haloes of the larger halo. For instance, two structures with masses M1
andM2, are considered to correspond to the same parent halo if the separation between
them, x12, satisfies [12]

x12 ≡ |x1 − x2| ≤ R(M1,M2) , (2.2)

where R is a characteristic scale, whose choice has an impact on the halo statistics [12].
There are several choices for R, but the key point is that x12 is finite for massive
haloes. Various criteria were considered in [12], which found that each choice leaves
its corresponding imprint on halo statistics such as the halo mass function, correlation
function and clustering bias.

• Galaxy catalogues: although we focus on the consequences of the host halo finite
size on the correlation functions of the HI brightness temperature, we note that the
same technique can also be applied to galaxy correlation functions; the difference is in
the treatment of number-weighted halo occupations for galaxies, in contrast to mass-
weighted ones in the case of intensity mapping. Most mock galaxy catalogues start
from dark matter haloes produced from a given N -body dark matter simulation [28],
which serve as the locations to place galaxies. The specific ingredients used to populate
the dark matter haloes differ from model to model.

• HI intensity map catalogues: catalogues of HI intensity maps are produced by
populating the halo catalogue with recipes that describe the distribution of HI atoms
within the halo. This distribution is determined by the HI-halo mass relation,

MHI(Rc) =
∫ Rc

0
4πr2%HI(r) dr , (2.3)

where %HI is the HI radial profile (assuming spherical symmetry) and Rc specifies the
boundary of the HI-bearing dark matter halo in the limit of spherical symmetry. In
this way, we relate the exclusion region to the HI brightness temperature.

Considering the astrophysics of the HI brightness temperature, we see that Rc is related
to the circular velocity of the host halo as

R2
c = GM

v2
c

, (2.4)
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where M is the mass of the dark matter halo that can host HI. The fitting function
that describes the dependence of MHI on vc and M is given by [5, 29]

MHI(vc0,M) = φ?(M)
(
M

M?

)β
exp

[
−
(

vc0
vc(M)

)3
]
, (2.5)

where M? = 1011 h−1M�, φ?(M) = αfH,cM , and vc0 = 36 km/s. The term vc0 is
interpreted as the minimum circular velocity a halo requires to be able to host HI.
The remaining parameters are: α = 0.09; the average HI fraction relative to the cosmic
fraction fH,c = (1−Yp)Ωb/Ωm, where Yp = 0.24 is the cosmological helium fraction [30];
and β = −0.58, the logarithmic slope of the HI-halo mass relation. The circular velocity
as function of M is given by [31]

vc(M) = 96.6 km/s
(

∆cΩmh
2

24.4

)1/6 (
M

1011M�

)1/3 (1 + z

3.3

)1/2
, (2.6)

where ∆c = 18π2 + 82x − 39x2 [32], with x = Ωm(1 + z)3/[Ωm(1 + z)3 + ΩΛ] − 1.
In this case, one could infer that the exclusion scale is determined by the minimum
circular velocity of haloes that support HI. We explore this connection in more detail
in section 3.1.

2.2 Connection between discrete sources and continuous field

The standard practice in cosmology is to treat sourcedensity contrasts as peaks, a population
of objects described by the density field of a point process. In this limit, the density contrast
of a population of discrete sources X is given by [4, 33]

δ
(d)
X (x) ≡ nX(x)

n̄X
− 1 = 1

n̄X

∑
i

δ(D)(x− xi)− 1 , (2.7)

where nX is the comoving number density, n̄X is defined in equation 2.1 and δ(D) is the Dirac
delta function. The 2PCF of the source density contrast then is defined as

ξ
(d)
X (x1,x2) ≡

〈
δ

(d)
X (x1) δ(d)

X (x2)
〉

= 1
n̄2
X

〈nX(x1)nX(x2)〉 − 1 , (2.8)

with angle brackets denoting ensemble averages.
From equation 2.7, 〈nX(x1)nX(x2)〉 can be decomposed into two parts: the part de-

scribing correlation when the two points are the same, and the part describing correlation
when the points are different, i.e.

〈nX(x1)nX(x2)〉 =
〈∑

i

δ(D)(x1 − xi) δ(D)(x2 − xi)
〉

+
∑
ij

〈
δ(D)(x1 − xi) δ(D)(x2 − xj)

〉
.

(2.9)
Using equation 2.9, the discrete 2PCF becomes

ξ
(d)
X (x1,x2) = ξ

(c)
X (x1 − x2) + 1

n̄X
δ(D)(x1 − x2) . (2.10)
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The discrete 2PCF is made up of a continuous 2PCF ξ
(c)
X and the shot noise due to a Poisson

process, which is given exclusively by the mean number density of the tracer X. The relevant
Fourier transforms are given by

ξX(x1 − x2) =
∫ d3k

(2π)3 eik·(x1−x2)PX(k) , (2.11)

δ(D)(x1 − x2) =
∫ d3k

(2π)3 eik·(x1−x2) , (2.12)

where PX is the power spectrum. Using equation 2.11 and equation 2.12, equation 2.10
becomes [34]

P
(d)
X (k) ≡ P (c)

X (k) + 1
n̄X

. (2.13)

In deriving equation 2.13, we have assumed through the use of equation 2.7, equa-
tion 2.11 and equation 2.12 that the discrete sources are correlated in all regions of space.
This is not strictly true when one considers the geometry of the discrete tracers. Discrete
sources have well-known and discernible boundaries [14]. To model the geometry of sources
we observe closely enough, we decompose the continuous 2PCF in equation 2.10 further:

ξ
(c)
X (|x1 − x2|) = ξ

(c)
X (|x1 − x2| < R) + ξ

(c)
X (|x1 − x2| ≥ R) , (2.14)

where we have imposed isotropy and R is the comoving length scale which is associated with
the size of the halo in the case of HI brightness temperature. Shortly, we shall describe
how it is related to Rc introduced in equation 2.3. We assume that the physics responsible
for tracer clustering on scales x12 > R is uncorrelated with the physics responsible for the
dynamics on scales x12 ≤ R. In the effective field theory language, we integrate out modes
with wavelength less than R. This implies that ξ(c)

X (|x1−x2| < R) = −1, where |x1−x2| < R
is known as the exclusion region [13].

Hence, the full decomposition of ξ(d)
X becomes

ξ
(d)
X (|x1 − x2|)=


n̄−1
X for |x1 − x2| = 0 ,
−1 for 0 < |x1 − x2| < R ,

ξ
(c)
X (|x1 − x2|) for |x1 − x2| ≥ R .

(2.15)

The last term is the part of the 2PCF which can be modelled as a continuous field on
scales |x1 − x2| ≥ R. Taking the inverse Fourier transform of ξ(d)

X (|x1 − x2|), but this time
accounting for the condition given in equation 2.15, leads to

P
(d)
X (k) = 1

n̄X
−
∫
x12<R

d3x12 e−ik·x12 +
∫
x12≥R

d3x12 ξ
(c)
X (x12) e−ik·x12 . (2.16)

The second term gives the standard Fourier transform of a top-hat window:∫
x12<R

d3x12 e−ik·x12 = 4π
∫ R

0
dr r2 j0(kr) = VRWR(k) , (2.17)

where

VR = 4π
3 R3 , (2.18)

WR(k) = 3
[sin(kR)− kR cos(kR)

(kR)3

]
= 3 j1(kR)

kR
. (2.19)
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Here, j1 is a spherical Bessel function of order one and VR is the excluded volume modulated
by the window function WR(k). Then we have

P
(d)
X (k) = 1

n̄X
−VRWR(k)−

∫
x12<R

d3x12 ξ
(c)
X (x12) e−ik·x12 +

∫
d3x12 ξ

(c)
X (x12) e−ik·x12 . (2.20)

Performing the inverse Fourier transform for the remaining terms, we find that

P
(d)
X (k) = 1

n̄X
− VRWR(k)−

[
WR ? P

(c)
X

]
(k) + P

(c)
X (k) , (2.21)

whereWR?P
(c)
X is a convolution of the exclusion window and the continuous power spectrum.

We show how to perform the convolution integral exactly in section 4.1.

3 Clustering of HI brightness temperature in perturbation theory

HI intensity mapping is an observational technique for mapping the large-scale structure
of the Universe in three dimensions using the integrated 21cm emission from gas clouds,
without the requirement to resolve individual galaxies. The 21cm emission line arises from
the spin-flip transition in hydrogen atoms, and is a unique probe of the hydrogen density at
a particular frequency, allowing intensity mapping surveys to answer fundamental questions
on the origin and evolution of large-scale cosmic structures.

In the Rayleigh limit, the HI intensity is related to its brightness temperature

THI(z, n̂) = 3hc3A10
32πkBν2

21

(1 + z)2

H(z) nHI(z, n̂) = CHI(z)n̄HI(z) [1 + δHI(z, n̂)] , (3.1)

where z is the redshift and n̂ is the line of sight direction of the source. The number density
of HI atoms is expanded perturbatively as nHI = n̄HI(1 + δHI), introducing the mean HI
number density, n̄HI, and fractional perturbation, δHI. CHI is an amplitude depending on
physical constants and background cosmology parameters [35]:

CHI(z) = 3hc3A10
32πkBν2

21

(1 + z)2

H(z) , (3.2)

where H is the Hubble rate, ν21 is the rest-frame frequency of emitted photons, and A10 =
2.869× 10−15 s−1 is the emission rate.

Our modelling of δHI relies on perturbation theory, since the evolution of structures
become highly non-linear and even non-perturbative on small scales. We go beyond linear
order, to account for the non-linear effects, by including the one-loop corrections to the power
spectrum [21]. On non-perturbative scales, HI can be ‘painted’ on to dark matter in N -
body simulations by using prescriptions such as the one in section 2.2 [36]. Hydrodynamical
simulations can also be used to model the distribution of HI [37].

3.1 Smoothing of high-frequency modes

The HI fluctuations δHI introduced in equation 3.1 are given by

δHI(z,x) ≡ nHI(z,x)− n̄HI(z)
n̄HI(z)

. (3.3)

– 6 –
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This implies that, by definition, the volume average of δHI vanishes, 〈δHI(z,x)〉 = 0, since the
mean number density is defined as n̄HI(z) ≡ 〈nHI(z,x)〉. However, this condition is violated
when a bias model is used to relate δHI to the underlying dark matter density field, with
fractional perturbation δm. For example, consider a simple Eulerian bias model, where δHI
is only a functional of the local matter density, i.e. δHI = F [δm] [20, 38]. In this case,

nHI(z,x) = n̄HI(z)
[
1 + b1(z)δm(z,x) + 1

2!b2(z)δ2
m(z,x) + 1

3!b3(z)δ3
m(z,x) +O(δ4

m)
]
, (3.4)

where bi are the ith-order HI bias parameters. (For simplicity, we neglect tidal and derivative
bias parameters.) Taking the spatial average of equation 3.4 leads to

〈nHI(z,x)〉 = n̄HI(z)
[
1 + 1

2!b2(z)
〈
δ2

m(z,x)
〉

+ 1
3!b3(z)

〈
δ3

m(z,x)
〉

+O(δ4
m)
]
, (3.5)

with
〈
δ2

m(z,x)
〉
being the variance of the dark matter density field, σ2

m, and
〈
δ3

m(z,x)
〉
is the

skewness, S3. The skewness vanishes in the Gaussian limit, which we henceforth focus on.
One way to ensure that the spatial average of δHI vanishes, is to subtract σ2

m(z) ≡〈
δ2

m(z,x)
〉
from both sides of equation 3.4, so that

δ2
m(z,x)→ δ2

m(z,x)− σ2
m(z) . (3.6)

As a consequence, the mean number density changes as n̄HI → n̄HI(1 + σ2
m/2). This process

has some issues because σ2
m does not behave well in the non-perturbative regime k � kNP,

calling into question the validity of the perturbative expansion. There are three ways that
this may be handled.

First, one could introduce an arbitrary hard ultraviolet cut-off [20, 21, 23, 24], but this
will mean that the re-defined mean number density, bias parameters, and other physical
quantities depend upon the arbitrary cut-off. A second option is to adopt the effective field
theory (EFT) approach and introduce an EFT scale, Λ, such that modes with k > 1/Λ are
integrated out [25, 38], and the bias parameters are consequently rewritten as ‘renormalised
bias parameters’ in order to suppress their dependence on the EFT scale. The third option is
to introduce a smooth physically motivated cut-off, which naturally describes the geometry
of the exclusion region. This is the option we adopt here. We connect it with evidence to
show that the smoothing scale is determined by the physical size of the host halo [39].

In Fourier space, we model the smooth cut-off with a window function WR(k), which
suppresses the contribution from k > 1/R:

δR(z,k) ≡δRm(z,k) = WR(k)δm(z,k) . (3.7)

Here R is not an arbitrary scale. This approach differs in principle from the model described
in [40], where R is the radius of an arbitrary averaging domain. In real space, equation 3.7
leads to a convolution

δR(z,x) =
∫

d3yWR(|x− y|)δm(z,y) , (3.8)

where WR specifies the physical boundary, and we use a top-hat filter, given the result in
equation 2.18. By convolving the dark matter density field with a top-hat filter function in
real space, equation 3.8 helps to parametrically filter out the high-frequency modes that we

– 7 –
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Figure 1. Re-defined HI bias parameters in equation 3.12 as a function of redshift (left), and re-
defined HI bias parameters at z = 1 as a function of R (right).

are not sensitive to in the dark matter density field in Fourier space [40, 41]. This removes
the bad ultraviolet behaviour in the dark matter variance:

σ2
R(z) =

〈
δ2
R(z,x)

〉
= 1

2π2

∫
dk k2W 2

R(k)Pm(z, k) , (3.9)

where Pm is the matter power spectrum.
In this case, the re-defined mean HI number density becomes

n̄RHI(z) = n̄HI(z)
[
1 + 1

2σ
2
R(z)

]
, (3.10)

so that the HI density fluctuation becomes1

δRHI(z,x) = bR1 (z)δR(z,x) + 1
2b

R
2 (z)

[
δ2
R(z,x)−

〈
δ2
R

〉
(z)
]

+ 1
3!b

R
3 (z)δ3

R(z,x) +O(δ4
R) , (3.11)

where we have re-defined the HI bias parameters as

bRi (z) = bi(z)
1 + σ2

R(z)/2 . (3.12)

The re-defined HI density fluctuation now averages to zero,
〈
δRHI(z,x)

〉
= 0, restoring the

consistency of perturbation theory. The renormalised bias parameters are shown in figure 1.

The validity of the perturbation theory expansion requires that we restrict attention
to scales where the standard deviation is less than unity. For the HI density contrast this
implies that |bR1 σR(z)| < 1. On small scales, R < 6 Mpc/h at z = 0, the standard deviation
of the dark matter density field is σR(z) > 1. However, as described in [40], the necessary
condition for convergence is that bRn+1/b

R
n is approximately constant at order n. The trade-off

is that one needs to go to higher order in perturbation theory to get a converged expression.
1Note that this bias relation holds provided that the wavelengths of the dark matter density modes are

larger than the size of the host halo.
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One last important feature to note is that n̄RHI, δRHI, and bRi are now dependent on the
size of the domain containing HI:

∂n̄RHI(z)
∂R

,
∂δRHI(z,x)

∂R
,
∂bRi (z)
∂R

6= 0 . (3.13)

This is in agreement with the findings from the analysis of N-body simulations, which shows
that these parameters are dependent on the exclusion scale which is determined by the halo
mass [12].

3.2 Dependence of HI statistics on splashback radius
We calculate the HI bias parameters defined equation 3.12 from the model of the local density
contrast (halo model) by weighting the halo bias parameters with the HI-halo mass relation:

bRi (z) = 1
ρ̄HI(z)

∫ ∞
Mmin(z)

dM bih(z,M)MHI(vc0,M)nh(z,M) , (3.14)

where M is the halo mass, nh is the halo mass function, bih are the ith-order halo bias
parameters,2 and ρ̄HI is the mean comoving density of HI, defined as the first moment of the
HI-halo mass function:

ρ̄HI(z) =
∫ ∞
Mmin(z)

dMMHI(vc0,M)nh(z,M) . (3.15)

Here, Mmin is the minimum mass a halo must have in order to host HI.
We need to describe the relationship between the mass enclosed by the comoving sphere

of radius R, and Mmin or vc0 introduced in equation 3.14. We start with the definition of
the halo mass introduced in equation 3.14. The halo mass M is defined with respect to
a spherical top-hat filter as mass contained within a region of space with density contrast
greater than the critical density of the universe by a factor ∆c [42]

M ≡ 4π
3 ρ̄c(z)∆c(z)R3

c(z) = Mc(z) , (3.16)

where ρ̄c is the critical density of the universe at redshift z.
The radius, Rc, does not correspond to the physical boundary of the halo because the

mass contained within Rc is subject to pseudo-evolution (i.e., evolution of the halo mass
due to the evolution of the density at the reference redshift [43]), which breaks mass conser-
vation [16]. In addition, recent studies have shown that sub-structures which form during
collapse involve processes that redistribute mass from small to large radii greater than Rc [44–
46]. For these reasons, in [16] a coordinate-independent definition of the halo boundary was
introduced, which includes all matter that orbits the main halo — known as the ‘splashback
radius’, Rsp.3 It is dynamically defined by particles that reach the apocentre of their first
orbit after infall [15, 18]. There is a pile up of particles at the apocentre due to their low
radial velocity, thereby creating a caustic that manifests as a sharp drop in the density profile

2The full expressions for nh and bh are given in appendix A, using the standard Sheth-Tormen halo mass
function [42].

3Note that the natural physical scale for HI in the present context is given by the halo virial velocity
cutoff [47] or the splashback radius scale that we use here, since HI here traces collapsed, virialized dark
matter haloes (rather than, for example, the Jeans length which describes HI clumps in the Lyman-alpha
forest [48], which are low column density systems outside collapsed structures).

– 9 –
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Figure 2. Navarro-Frenk-White halo density profile (top) and its slope (bottom) for a range of
redshifts. Splashback radius is shown by vertical lines (black at z = 4, red at z = 0).

in the halo outskirts , as shown in figure 2. It has been detected in the Sunyaev-Zel’dovich
signal of galaxy clusters [49, 50] and in 3000 optically selected galaxy clusters over a redshift
range 0.1 < z < 1.0 from the Hyper Suprime-Cam Subaru Strategic Program [51]. Improve-
ments of the theoretical modelling of clustering given the splashback radius are currently
being pursued [19, 44–46, 52, 53].4

To connect Rsp to Mmin, wel use the fitting function given in [16], which specifies the
relation between Rsp and Rc, then use equation 3.16 to relate Rsp to Mmin:

Rsp(z)
Rc(z)

= A(z) +B(z) eΓ(z)/C(z) , (3.17)

where Γ is the mass accretion rate and A, B, C are given in [16] as

A(z) = 0.54
[
1 + 0.53 Ωm(1 + z)3H2

0/H
2(z)

]
, (3.18)

B(z) = 1.36A(z) , (3.19)
C(z) = 3.04 . (3.20)

Although these fitting functions where obtained in [16] at fixed Γ, subsequent studies
have shown that they evolve with redshift [19]. This is most likely due to the physics of mass
accretion, which dominates mass growth at very high redshift [54–57]. Thus, we parametrise
Γ as Γ(z) = Γ1 + Γ2z. Using equation 3.17 and equation 3.16, we find that Mmin can be
expressed in terms of the splashback radius as

Mmin(z|θ) = 4π
3 ρ̄c(z)∆c(z)

[
Rsp(z)

A(z) +B(z) e−Γ/C(z)

]3
, (3.21)

4See http://www.benediktdiemer.com/research/splashback for an exhaustive list of related efforts.

– 10 –

http://www.benediktdiemer.com/research/splashback


J
C
A
P
0
6
(
2
0
2
1
)
0
2
7

Figure 3. HI brightness temperature equation 3.23 (left) and ΩHI(z) dependence on halo size at a
fixed accretion rate Γ1 = 2.3, Γ2 = −0.9 (right). The dark data points with error bars are observa-
tionally determined ΩHI(z), they were compiled in [47]. R is in Mpc/h.

where θ ≡ {R,Γ1,Γ2} are physical parameters. Note that Rsp is a physical (i.e. proper)
radius [52]. The corresponding comoving scale is related to Rsp according to Rsp = R/(1 + z).
We fix the parameter values by comparing our model of the HI density parameter (which
represents the comoving density fraction of HI), to the corresponding measurements of ΩHI
made at various redshifts [58]. Within the halo model, ΩHI is given by

ΩHI(z|θ) ≡
ρ̄HI(z|θ)
ρ̄c0

, (3.22)

where ρ̄c0 = 3H2
0/8πG. We show the best-fit values in figure 3. The corresponding mean HI

brightness temperature is given by [2].

T̄HI(z|θ) ≈ 189hH0(1 + z)2

H(z) ΩHI(z|θ) mK . (3.23)

With Mmin expressed in terms of θ, the dependence of the HI bias parameters on R is shown
in figure 1.

4 HI power spectrum at one-loop and stochasticity

We expand the smoothed HI density contrast given in equation 3.11 in Fourier space as

δRHI(k) = K(1)(k)δm(k)− 1
2b

R
2 σ

2
Rδ

(D)(k) (4.1)

+ 1
2

∫ d3k1
(2π)3

∫ d3k2
(2π)3K

(2)(k1,k2)δm(k1)δm(k2)(2π)3δ(D) (k − k1 − k2)

+ 1
3!

∫ d3k1
(2π)3

∫ d3k2
(2π)3

∫ d3k3
(2π)3K

(3)(k1,k2,k3)δm(k1)δm(k2)δm(k3)

× (2π)3δ(D) (k − k1 − k2 − k3) ,

– 11 –
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where we have introduced the following Fourier space kernels

K(1)(k) = bR1 WR(k) , (4.2)
K(2)(k1,k2) = WR(k1)WR(k2)bR2 +WR(k)bR1 F2(k1,k2) , (4.3)

K(3)(k1,k2,k3) = WR(k1)WR(k2)WR(k3)bR3 + bR1 WR(k)F3(k1,k2,k3) (4.4)
+ bR2 [WR(k3)WR(|k1 + k2|)F2(k1,k2) + 2WR(k1)WR(|k2 + k3|)F2(k2,k3)] .

Here, we made use of the Fourier space kernels for the dark matter density field in an Einstein
de Sitter universe [59]

F2(k1,k2) = 10
7 + k1 · k2

k1k2

(
k1
k2

+ k2
k1

)
+ 4

7

(
k1 · k2
k1k2

)2
, (4.5)

and F3 is given in [60]. These kernels are valid as well in the ΛCDM universe provided that
the ΛCDM cosmological parameters are used to evaluate the power spectrum [61, 62]. We
find that the auto-power spectrum of the HI density contrast is given by

P
(c)
HI (k,R) = P 11

HI(k,R) + P 22
HI(k,R) + P 13

HI(k,R) ,

=
[
K(1)(k)

]2
P 11

m (k) + 1
2

∫ d3k1
(2π)3

[
K(2)(k1, |k − k1|)

]2
P 11

m (k1)P 11
m (|k − k1|)

+ 1
3K

(1)(k)P 11
m (k)

∫ d3k1
(2π)3K

(3)(k1,−k1, k)P 11
m (k1) , (4.6)

where P 11
HI is the linear HI power spectrum, P 11

m is the linear matter power spectrum and
P 22

HI(k) + P 13
HI(k) constitutes the one-loop correction. In the long-wavelength limit, F2 in

P 22
HI vanishes. However, the non-linear bias term bR2 term (first term in equation 4.3) does

not vanish.

P 22
HI(k,R) k→0−−−→ 1

2
(
bR2

)2 ∫ d3k1
(2π)3W

4
R(k1)

(
P 11

m
)2(k1) ≡ Neff(R) . (4.7)

Here, Neff , denotes the non-vanishing part of P 22
HI in the limit of zero momentum. This term

is referred to as induced stochasticity [11], as white noise [23], or as the contact term [25]. It is
not clear whether this term has an observational consequence [20–22] and we revisit this issue
in section 4.1. Before we proceed, we note that the same non-linear bias parameter responsible
for the re-definition of the one-point statistics in equation 3.10 is also responsible for the
emergent white noise-like feature at the two-point correlation function level on large scales.

It is possible to analytically simplify the terms in the last line of equation 4.6 as

P 13
HI(k,R) = W 2

R(k)
{1

2
[
bR1 b

R
3 σ

2
R + bR1 b

R
2 σ

2
bR

1 b
R
2

(k,R)
]
P 11

m (k) + (bR1 )2
P 13

m (k)
}
, (4.8)

where σ2
bR

1 b
R
2

is defined below. P 13
m is the matter power spectrum equivalent of P 13

HI , the
full expression is given in [63]. P 13

HI is ultraviolet sensitive, in effective field theory of large
scale structure a counter-term is usually added to remove the divergence [64–66]. Here, the
problem is parametrically controlled by the window function, thereby eliminating the need
to run an N-body simulation to calibrate the counter-term. Putting all this together leads to

P
(c)
HI (k,R) = W 2

R(k)
[
(bR1 )2Pm(k) + 1

2
(
bR1 b

R
3 σ

2
R + bR1 b

R
2 σ

2
bR

1 b
R
2

(k,R)
)
P 11

m (k)
]

+ bR1 b
R
2 PbR

1 b
R
2

(k,R) +
(
bR2

)2
PbR

2 b
R
2

(k,R) +Neff(R) , (4.9)
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where Pm(k) is the matter power spectrum up to one-loop order and

PbR
1 b

R
2

(k,R) = 1
2

∫ d3k1
(2π)3

[
WR(k)WR(k1)WR(k2)F2(k1,k2)

]
P 11

m (k2)P 11
m (k1) , (4.10)

PbR
2 b

R
2

(k,R) = 1
2

∫ d3k1
(2π)3

[
W 2
R(k1)W 2

R(k2)P 11
m (k2)P 11

m (k1)−W 4
R(k1)

{
P 11

m (k1)
}2
]
, (4.11)

σbR
1 b

R
2

(k,R) = 2
∫ d3k1

(2π)3

[
WR(k1)WR(|k1 − k|)

WR(k) F2(−k1,k)
]
P 11

m (k1) . (4.12)

Essentially, we have decomposed P 22
HI term that appear in equation 4.6 into scale dependent

part (equation 4.11) and scale independent part (equation 4.7). In evaluating the integrals,
we defined µk = k1 · k/kk1, and use momentum conservation k2 = k − k1, to set k2 =
k
√
r2 − 2rµk − 1 = ky, where k1 = kr, y =

√
r2 − 2rµk + 1. The k-integrals in equation 4.10

to equation 4.12 can be performed optimally using the FFTLog formalism [67, 68].
Finally, the HI power spectrum in the continuous limit (equation 4.9) may be decom-

posed into two terms,
P

(c)
HI (k,R) = P

(s)
HI (k,R) +Neff(R) , (4.13)

where P (s)
HI is the HI power spectrum without the emergent non-linear white noise term Neff :

P
(s)
HI (k,R) = W 2

R(k)(bR1 )2Pm(k) + 1
2
[
bR1 b

R
3 σ

2
R + bR1 b

R
2 σ

2
bR

1 b
R
2

(k,R)
]
P 11

m (k)

+ bR1 b
R
2 PbR

1 b
R
2

(k,R) +
(
bR2

)2
PbR

2 b
R
2

(k,R) . (4.14)

We made use of the halo-fit in CAMB to compute Pm [69], and the standard linear order
Einstein-Boltzmann result from CAMB to compute P 11

m [70] . The results are shown in
figure 4.

4.1 Finite size resolves emergent large-scale white noise problem
Here we show that Neff is exactly cancelled in the full expression of the discrete HI power
spectrum when the size of haloes is taken into consideration.

Substituting equation 4.13 in equation 2.21 leads to

P
(d)
HI (k) = P shot

HI +Neff(R)− VRWR(k)−
[
WR ? P

(c)
HI
]
(k) + P

(s)
HI (k) . (4.15)

To appreciate the full structure of equation 4.15, we have to simplify the convolution term
WR ? P

(c)
HI further. Using equation 2.11 and equation 4.13, with x ≡ x12, we obtain[

WR ? P
(c)
HI
]
(k) =

∫
x<R

d3x ξ
(c)
HI (x) e−ik·x =

∫
x<R

d3x
[
ξ

(s)
HI (x) +Neff δ

(D)(x)
]
e−ik·x ,

=
∫ d3k1

(2π)3 P
(s)
HI (k1)

∫
x<R

d3x ei(k1−k)·x +Neff

∫
x<R

d3x δ(D)(x) e−ik·x ,

= 2VR
∫ ∞

0

dk1
π

k2
1 P

(s)
HI (k1)WR(k1, k) + sgn(R)Neff(R) . (4.16)

In the last line, we used Equation 2.17 to obtain the first term.∫ d3k1
(2π)3 P

(s)
HI (k1)

∫
x<R

d3x ei(k1−k)·x =
∫
x<R

d3x

(2π)2 e−ik·x
∫ ∞

0
dk1 k

2
1 P

(s)
HI (k1)

∫ 1

−1
dµ1 eik1xµ1

= 2VR
∫ ∞

0

dk1
π

k2
1 P

(s)
HI (k1)WR(k1, k) , (4.17)
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Figure 4. HI power spectrum at different redshifts at the best-fitting R, Γ1 and Γ2. The k1-integral
in equation 4.21 is UV sensitive, hence, we set kmax = 1/R for simplicity.

where

WR(k1, k) =


k[(k1/k) cos(k1R) sin(kR)−cos(kR) sin(k1R)]

(kR)3k1(1−k2
1/k

2) for k 6= k1 ,

[2kR−sin(2kR)]
4(kR)3 for k = k1 .

(4.18)

For the second term, we expand the delta function in spherical coordinates and perform the
resulting integral analytically∫

x<R
d3x12δ

(D)(x)e−ik·x =
∫ R

0
drδ(D)(r)j0(kr) = sgn(R) , (4.19)

where sgn(R) is a sigmoid function and for R ≥ 0, it is given by

sgn(R) :=
{

0 if R = 0
1 if R > 0.

(4.20)

Putting equation 4.16 back into equation 4.15 we obtain the final result:

P
(d)
HI (k,R) = P

(s)
HI (k,R) + P shot

HI +Neff(R) [1− sgn(R)] (4.21)

−VRWR(k)− 2VR
∫ ∞

0

dk1
π

k2
1 P

(s)
HI (k1)WR(k1, k) .

Equation 4.21 shows that for R > 0, i.e. if the finite size of haloes is taken into account,
then the Neff term drops out exactly. By contrast, in the peak approximation, i.e. the limit

– 14 –
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Figure 5. HI shot noise at the best-fit value of accretion rate(left). Difference between effective shot
noise and intrinsic shot noise at the best-fit value of accretion rate(right). For the effective shot noise
we set k = 0.001 h/Mpc.

where R → 0 and VR → 0, the Neff term does not drop out, so we recover the standard
result [20–25]

P
(d)
HI (k) = P

(s)
HI (k) + P shot

HI +Neff . (4.22)

Equation 4.21 is an important result. We have shown, for the first time, that the
emergent large-scale white noise is as a result of the breakdown of the peak approximation
for the tracer density field. This provides more clarity on how to handle Neff in standard
perturbation theory or in effective field theory approaches — avoiding the need to set Neff
to zero [25] by hand or absorbing it into the shot noise [23, 24] which does not work for
the HI brightness temperature [20–22] since the halo model predicts shot noise with smaller
amplitude when compared to the amplitude of Neff . We have now shown that this term
vanishes exactly as soon as the finite size of the source is taken into account.

Comparing equation 4.21 to equation 2.13, the second and third terms can be re-written
as part of the effective shot noise contribution

P eff
SN(k,R) = P shot

HI − VRWR(k)− 2VR
∫ ∞

0

dk1
π

k2
1 P

(s)
HI (k1)WR(k1, k) , (4.23)

≈ P shot
HI for R < 1 Mpc/h , (4.24)

where the Poisson shot noise, P shot
HI , is obtained by weighting the halo density field appropri-

ately with the HI-halo mass relation [1, 5], namely

P shot
HI (R) = 1

n̄RHI
= 1
ρ̄2

HI(z)

∫ ∞
Mmin

dMM2
HI(M)nh(z,M) . (4.25)

For R � 1 Mpc/h, the second term and the third term are negligible, see figure 5. For
massive halos, i.e R ≥ 1 Mpc/h, one would expect the amplitude of the effective shot noise
term to be substantially modulated by the size of the excluded region, as inthe right panel of
figure 5. In the right panel of figure 5, we plot the fractional difference between the effective
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shot noise and the intrinsic shot noise: ∆PSN(k,R) = P eff
SN(k,R) − P shot

HI . This shows that
for HI with R > 0.14 Mpc/h, the effect of the sub-Poissonian noise correction peaks at the
comoving boundary of the halo containing HI, it decreases away from the halo boundary. We
find that increasing R while keeping every other parameter fixed for the HI, the contribution
from the last term in equation 4.21 changes sign at R away from the comoving halo boundary.

5 Summary and outlook

5.1 Consequences of the exclusion region

The standard halo model framework and its various extensions [71, 72] split the mass distri-
bution in the Universe into distinct regions. The correlation function is split into correlations
between the distinct regions and correlations within each region. These are the well-known
one- and two-halo terms for the two-point correlation function. Standard perturbation the-
ory, on the other hand, does not make this distinction, it assumes that the perturbation
theory expansion is valid at all locations, even within highly dense dark matter haloes. This
assumption leads to the well-known ultraviolet problems at the loop level and non-linear
white noise in the infra-red due to contact terms [25].

We have argued that the physics of clustering imposes a physical scale which is related
to the dynamically defined splashback radius of haloes that allow treatment of structure
evolution in line with the halo model. There are few key points to highlight:

• Significance of the splashback radius: we have proposed a connection between the min-
imum halo mass that can host HI and the physical halo boundary. This connection
involves the mass accretion rate, which impacts, the growth of the physical halo bound-
ary. The accretion rate and halo boundary are physical parameters that future surveys
such as HI intensity mapping with HIRAX [73], MeerKAT [74], SKA [2] and others
could provide an opportunity to constrain.

• Cancellation of the induced white noise: any tracer power spectrum at one-loop within
the standard perturbation theory has a component which does not vanish in the limit
of zero momentum. This behaviour is also present in the standard halo model of the
matter power spectrum, in this case, the one-halo term leads to a non-zero contribution
in the limit of zero momentum [75]. The non-vanishing component is referred to as
induced stochasticity in [11], as white noise in [23], or as the contact term that leads
to a delta function in real space in [25]. It was observed in [20–22] that it could have
consequences for the bias parameters on large scales for the HI brightness temperature
if indeed it is physical. We have shown that this term vanishes exactly as soon as the
size of the discrete source is taken into account.

• Mass weighting of haloes: we have shown that it is possible to minimise P eff
SN(k,R) by

taking the finite halo size into consideration. Setting R to its corresponding physical
boundary value gives the minimum effective shot noise (see figure 5). A similar idea has
been explored in estimating the halo power spectrum from the N-body simulations but
in that context, it is known as mass weighting of haloes [26]. The connection between
mass weighting of haloes and halo exclusion criteria was made in [11]. Essentially,
choosing different mass bins(mass weighting) corresponds to choosing the most optimal
R that minimaxes P eff

SN(k,R) the most. This idea was used in [76, 77] to show how shot
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noise associated with the halo power spectrum could be significantly suppressed on
large scales thereby improving the signal to noise ratio.

• Sub-Poissonian process: We have shown that the noise associated with discrete tracers
is not entirely due to a Poisson process, i.e. P eff

SN(k,R) 6= 1/n̄HI, there would be a
sub-Poissonian contribution. This feature has already been observed both in cluster
auto-and cluster-galaxy cross-correlations of the Sloan Digital Sky Survey [78].

6 Conclusions

Our understanding of the universe through large scale structure has relied heavily on the halo
model [4]. Haloes in this context are not point sources, but rather virialized extended objects
with finite boundaries given by the splashback radius [15]. Luminous objects such as galaxies
and neutral hydrogen are situated inside haloes and held together by the self-gravitational
field of haloes [13]. However for the halo power spectrum in standard perturbation theory,
haloes are modelled as point sources on all scales [79]. We have shown how to take into
account the physical constraints due to the finite size of the halo in modelling the power
spectrum of the HI brightness temperature.

The standard practice is to model tracers as point sources, in this limit the power
spectrum is given as a sum of the continuous power spectrum and the Poisson shot noise (see
equation 2.13). The Poisson shot noise is given by the mean number density of the tracer.
In addition to the Poisson shot noise, there is also a non-linear white noise contribution from
the continuous power spectrum in the limit of zero momentum. This suggests a break down
of the mass-energy conservation for tracers [75]. We have shown that taking into account the
finite size of haloes introduces two additional terms to the power spectrum of discrete tracers
(see equation 2.21). The two extra terms describe the fact that information with wavelength
less than the size of haloes is uncorrelated and therefore defines the exclusion region. We have
shown that taking the exclusion region into account leads to an exact cancellation of the non-
linear white noise-like term that appears in the limit of zero momentum (see equation 4.21).
We showed that the effective shot noise contribution on large scales is sub-Poissonian and it
is dependent on the size of the exclusion region.

For the HI brightness temperature, we argued that the exclusion region is naturally
given by the splashback radius of the halo with the minimum mass required to host HI. We
describe how the HI brightness temperature within haloes of a given mass or size may be
modelled as a tracer of the dark matter density field. Finally, we argued that taking into
account the consequences of the finite size of haloes in modelling the power spectrum of any
tracer may explain why the concept of mass-weighting of haloes improves the signal-to-noise
ratio [76, 77].

Acknowledgments

We would like to thank Kazuya Koyama for discussions. OU is supported by the U.K.
Science & Technology Facilities Council (STFC) Consolidated Grants Grant ST/S000550/1.
RM is supported by the South African Radio Astronomy Observatory (SARAO) and the
National Research Foundation (Grant No. 75415), and by the U.K. STFC Consolidated Grant
ST/S000550/1. HP acknowledges support from the Swiss National Science Foundation under
Ambizione Grant PZ00P2_179934. SC also acknowledges the support from the Ministero

– 17 –



J
C
A
P
0
6
(
2
0
2
1
)
0
2
7

degli Affari Esteri della Cooperazione Internazionale - Direzione Generale per la Promozione
del Sistema Paese Progetto di Grande Rilevanza ZA18GR02. We made use of emcee [80] and
zeus-mcmc [81] for the statistical analysis and getdist [82] for visualisation. Also, we used
xPand [83] for perturbation theory expansion.

A Basic tools of the halo model

We calculate the bias parameters from the Sheth-Tormen halo mass function for a spherical
collapse model [42]:

nh(M) = νf(ν) ρ̄

M2
d ln ν
d lnM , (A.1)

where the peak height ν is related to the variance in dark matter density field, σ2
m, ν =

(δc/σm)2 and δc = 1.686 is the critical threshold for a spherical collapse at the current epoch
obtained from linear perturbation theory. A halo of mass M = ρ̄V is formed when the walk
first crosses a barrier f(ν):

νf(ν) = A(p)
(

1 + 1
(qν)p

)√
qν

2π exp
(
−qν2

)
, (A.2)

where q = 0.707 and p = 0.3 are obtained from a fit to numerical simulations. The halo bias
parameters up to third order are given by [4]

bh1 = 1 + (qν − 1)
δc

+ 2p
δc (1 + (qν)p) , (A.3)

bh2 = 8
21 (b1 − 1) + 4

(
p2 + νpq

)
− (qν − 1) (1 + (qν)p)− 2p
δ2
c (1 + (qν)p) + 1

δ2
c

(
(qν)2 − 2qν − 1

)
(A.4)

bh3 = −236
189 (b1 − 1)− 13

7

(
b2 −

8
21 (b1 − 1)

)
−
(
3 + 3νq + 3ν2q2 − ν3q3)

δ3
c

(A.5)

+
(
8p3 + 12p2 (1 + νq) + p

(
6ν2q2 − 2

))
δ3
c (1 + 1 + (νq)p) + 6

(
1 + 2νq − ν2q2)

δ3
c

− 24
(
p2 + νpq

)
δ3
c (1 + (νq)p)

− 4(1− νq)
δ3
c

+ 8 p

δ3
c (1 + (qν)p) ,
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