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Abstract: The anatomical structure of the brain at the blood-brain barrier (BBB) creates a limitation
for the movement of drugs into the central nervous system (CNS). Drug delivery facilitated by
magneto-electric nanoparticles (MENSs) is a relatively new non-invasive approach for the delivery
of drugs into the CNS. These nanoparticles (NPs) can create localized transient changes in the
permeability of the cells of the BBB by inducing electroporation. MENs can be applied to deliver
antiretrovirals and antibiotics towards the treatment of human immunodeficiency virus (HIV) and
tuberculosis (TB) infections in the CNS. This review focuses on the drug permeation challenges and
reviews the application of MENSs for drug delivery for these diseases. We conclude that MENs are
promising systems for effective CNS drug delivery and treatment for these diseases, however, further
pre-clinical and clinical studies are required to achieve translation of this approach to the clinic.

Keywords: magneto-electric nanoparticles; electroporation and drug delivery; blood-brain barrier
and infectious disease; CNS; TB and HIV

1. Introduction

TB is an infectious disease caused by the bacillus Mycobacterium tuberculosis (M. tb).
Typically, TB affects the lungs but can spread and affect other sites of the body; i.e., extra-
pulmonary TB [1]. TB in the CNS is referred to as CNS TB and is one of the less common
yet highly devastating mycobacterial infections in humans [2,3]. CNS TB is differentiated
from TB meningitis (TBM) in that CNS TB begins as small tuberculous foci (Rich foci) in the
brain, spinal cord or meninges [2], whereas TBM is a form of meningitis characterized by
M. tb induced inflammation of the meninges. The location of the foci and the sites in which
they are found determines their ability to be controlled as well as the type of CNS TB that
occurs [2]. In 2019, the global burden of new cases of TB was estimated to be 10.0 million
of which 8.2% resulted from concomitant HIV-TB co-infections [4]. In that same year, an
estimated 1.2 million HIV-negative people died from TB and an additional 208,000 deaths
occurred among HIV positive people [4]. Two-thirds of the global TB incidence in 2019
was accounted for by eight countries led by India (26%), followed by Indonesia (8.5%),
China (8.4%), the Philippines (6.0%), Pakistan (5.7%), Nigeria (4.4%), Bangladesh (3.6%)
and South Africa (3.6%) [4]. CNS TB accounts for 1% to 2% of active TB cases of which
15% to 40% of patients diagnosed with CNS TB die or become disabled even after anti-IB
drug therapy [5]. Children and adolescents are more prone to meningitis involvement as
the clinical presentation, compared to adults (patients older than 15 years of age) [6]. This
highlights the dire state of the prognosis of CNS TB. A major challenge in the treatment
of CNS TB is the delivery of drugs across the BBB, where the endothelial cells of cerebral
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capillaries provide a highly regulated interface between the peripheral circulation and the
CNS. Paracellular tight junctions between the endothelial cells prevent ions, molecules and
unwanted cells from passively entering the brain [7]. Most of the anti-TB drugs are unable
to penetrate the BBB in sufficient amounts to effectively eradicate TB from the CNS. For
example, isoniazid and pyrazinamide exhibit good cerebrospinal fluid (CSF) penetration,
while the concentrations of rifampicin in the CSF may not reach the minimum inhibitory
concentration for TB [8,9]. Ethambutol penetrates the CSF poorly [8]. The case is similar to
CNS HIV.

HIV-1 entry into the CNS is largely mediated through blood lymphocytes and mono-
cytes that enter perivascular spaces either during their natural surveillance or due to
attraction to sites of inflammation by chemokines [10,11]. Alternatively, HIV can enter
the CNS through lymphocytes which retain viruses that replicate in macrophages or as
free virions where the mode of entry is through endothelial cells [10,12]. In the brain,
HIV-1 resides in the perivascular macrophages, microglial cells and astrocytes [13-15].
Microglial cells are the main reservoirs of HIV-1 in the CNS [14]. The buildup of HIV in the
CNS can lead to viral recurrence and rebound infection [16]. CNS HIV is associated with
acute neurological symptoms similar to viral meningoencephalitis (the inflammation of the
brain and its surrounding protective membranes) and leads to a high CSF viral load, local
immune activation, changes in magnetic resonance imaging (MRI), and partially reversible
neurocognitive impairment in some patients [17-19]. The inflammatory mediated distur-
bances increase months following the onset of neuroinvasion and lead to chronic neuronal
damage [20]. Early initiation of antiretroviral therapy (ART) can hinder the formation of
HIV-1in the cells of the CNS and may further reduce immune activation and inflammation
that are responsible for the spread of CNS infection [21]. HIV-positive individuals with
TB are five times more likely to have CNS TB than HIV-negative individuals [22]. More
than 40% of patients diagnosed with HIV develop complications of the CNS [23]. Current
ARTs in clinical practice are also accompanied by delivery challenges across the BBB [16],
resulting in an inefficacious elimination of HIV from the brain and the formation of HIV
reservoirs in the brain. Tenofovir, nelfinavir, ritonavir, atazanavir, didanosine, stavudine
and lamivudine are among the ARTs with the poorest CNS penetration [24,25]. Zidovudine,
abacavir, lopinavir/ritonavir, atazanavir, nevirapine, lopinavir and indinavir have good
CNS penetration and are among the favorable ARTs for treatment of CNS HIV [24,26],
however, the use of these ART drugs has declined significantly as they are associated with
high toxicity.

MENSs are a class of NPs that exhibit magnetic and electric properties that can be
controlled using magnetic and electric fields [27-29]. These NPs can enhance transient
permeability of the BBB through nanoelectroporation of the cells. Nanoelectroporation is
the use of focused electric pulse to porate the cell membrane to form a nanopore and also
provides electrophoretic mobility of charged drug/gene molecules and/or NPs to move
into the cell. Similar to other magnetic NPs, MENs have a nonzero saturation magnetization
that could enable them to be guided throughout the body by the application of magnetic
field gradients [29,30]. Subsequently, these NPs could be localized using traditional image-
guided magnetic processes such as MRI and magnetic particle imaging [29] to facilitate
drug delivery across the CNS.

This review discusses CNS TB and HIV drug delivery challenges, approaches to
facilitating drug transportation into the CNS and MENSs as delivery systems to improve
drug penetration into the CNS for TB and HIV. Recommendations for future studies to
address current knowledge gaps in the therapeutic application of MENs are made to
advance the translation of this approach to the clinic.

2. Drug Permeation Challenges in CNS TB Treatment

The World Health Organization (WHO) guidelines suggest treatment of TBM with two
months of rifampicin, isoniazid, pyrazinamide and ethambutol followed by ten months
of rifampicin and isoniazid for all patients [31]. This guideline is based on the treatment
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guideline to treat pulmonary TB, which has been noted to not take into account the
limited ability of anti-TB drugs to penetrate the BBB [9]. Only lipophilic drugs can readily
penetrate the BBB via lipid-mediated free diffusion provided that the drug has a molecular
weight (Mw) <400 g/mol and forms less than 8 hydrogen bonds [32]. Some antimicrobials
(small hydrophilic molecules) like isoniazid and pyrazinamide are water-soluble agents and
can cross the BBB paracellularly instead of transcellularly as seen with lipophilic agents [33].
Optimal BBB penetration is achieved when the logP values of drugs are in the range of
1.5 to 2.7, with a mean value of 2.1 [34]. Isoniazid is hydrophilic (Mw 137.14 g/mol) and is
therefore able to penetrate the BBB freely [35,36] and 80% to 90% of isoniazid penetrates
the CSF [9]. Isoniazid has proven potent bactericidal activity [9,37]. The CSF penetration
of anti-infectives in humans predicted by the ratio of the area under the concentration-
time curve in CSF to that in serum (AUCcsr/AUCs) [38]. Isoniazid has a logP value
of —0.70 and is among some of the anti-infectives that achieve an AUCcgr/AUCg ratio
close to 1.0 and is, therefore, a valuable drug for the treatment of CNS infections with
susceptible pathogens [39]. Rifampicin does not penetrate the BBB well. Rifampicin has
a Mw of 822.9 g/mol and thus exceeds the Mw of 400 g/mol recommended to penetrate
the BBB [40]. Rifampicin is however highly lipophilic (logP value of 2.7), and 80% of
rifampicin is bound to plasma proteins [41]. Concentrations of rifampicin in the CSF
are only 10% to 20% of those present in the plasma [9,42]. Thus, in plasma, most of the
rifampicin is protein-bound and only the unbound portion is active, while in the CSE, very
little protein is bound [9]. Pyrazinamide is a hydrophilic therapeutic agent with a Mw
of 123.11 g/mol and a logP value of —0.6 [43]. Pyrazinamide has good CSF penetration
(90-100%) [9]; concentrations of pyrazinamide in the CSF are close to that of serum [9,42].
Approximately 10% of pyrazinamide is protein-bound [43].

The inclusion of ethambutol in the CNS TB treatment regimen has been debated as
this drug exhibits the poorest BBB penetration even when the BBB is inflamed [9]. Ethamb-
utol (Mw 204.31 g/mol and logP value of —0.14), has CSF penetration of 20—30% [9,44].
Increasing the dose and duration of treatment with ethambutol is not advised as this may
lead to visual and neurological disturbances. Increased serum uric acid levels and acute
gouty arthritis have been reported from the increased use of ethambutol [45].

There is, however, not enough information on how these drugs cross the BBB and the
exact concentration-time profiles of these drugs in the CSF are also not clear.

2.1. Drug Permeation Challenges in CNS HIV

The recommended treatment for CNS HIV is ART targeted to treat identified CNS
HIV resistance mutations or empiric therapy using high CNS penetration drugs [46]. In-
tensified treatment with chemokine receptor 5 (CCR5) inhibitors is considered as add on
therapy to reduce neuroinflammation if CNS HIV has not been detected [46]. The entry
of antiretrovirals into the CNS is also influenced by their physicochemical properties [25].
High Mw antiretrovirals penetrate the CNS poorly [25]. Nucleoside analogues such as zi-
dovudine, lamivudine, didanosine, stavudine and abacavir have Mw < 500 Da, low protein
binding and can therefore penetrate the CNS well [25,47]. Abacavir (Mw: 286.33 g/mol)
and zidovudine (Mw: 267.24 g/mol) demonstrate good CNS penetration than enfuvir-
tide (Mw exceeding 4000 Da), a fusion inhibitor, that penetrates the CNS poorly [25].
Nearly 35% of concentrations of abacavir in plasma penetrate the CSF [47]. Zidovudine,
lopinavir/ritonavir and indinavir have logP values of 0.05, 1.7, 1.2 and 0.9 [48,49], re-
spectively, indicative of good CNS penetration and are among the favorable ARTs for
treatment of CNS HIV [26], however, the use of these ART drugs has declined signif-
icantly as they are associated with high toxicity. As discussed for TB drugs, having a
low Mw and low protein binding does not ensure high CNS penetration. Tenofovir has
low (5%) CNS penetration despite having a low Mw (287.213 g/mol) and low protein
binding [47]. CSF concentrations of tenofovir are less than the in vitro inhibitory concen-
tration to suppress 50% viral replication (ICsy) for most patients and are assumed to be
transported in the CSF via active transport [47]. Protease inhibitors have a Mw of 500 Da
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and demonstrate more than 90% protein binding, except for indinavir, which is less than
60% protein-bound in plasma [47]. The low protein binding efficiency of indinavir explains
the higher total drug concentrations in the CSF compared to other protease inhibitors [47].
Nevirapine has a low Mw of 266.6 g/mol and is the least protein-bound non-nucleoside
reverse transcriptase inhibitor (NNRTI) (60% protein binding) [47,50]. Nevirapine has a
logP value of 2.9 that further indicates that it is a very lipophilic drug and can cross the BBB
and arrive at the CNS [51]. In addition, nevirapine has good oral bioavailability (93 £ 9%)
and a long half-life (45 h) [50]. On the contrary, the use of less toxic ART drugs with poor
CNS penetration (tenofovir and atazanavir/ritonavir) has increased [26]. Although ARTs
can improve symptoms of dementia and reduce viral load, the secondary effects of some
ARTs such as abacavir, efavirenz, stavudine and zidovudine are associated with neuro-
logical disorders which further affect patient adherence to therapy [52]. Antidepressants,
antipsychotics, and stimulants can be used to treat symptoms of depression, psychosis and
lethargy, respectively. However, most treatment guidelines do not have special considera-
tions regarding CNS HIV. Considering that the brain is one of the reservoirs of the virus,
clearance of HIV from these reservoirs could lead to a cure for CNS HIV [13,15].

2.2. Drug Delivery across the BBB

Delivery of drugs to the CNS via the systemic route falls under two categories, i.e.,
invasive where deliberate access to the body is gained via incision, which may cause sev-
eral complications such as damage to neurons and inflammatory reactions [53]. Invasive
approaches require implantation of the devices such as osmotic pumps and depot formula-
tions which therefore requires surgery and a sterile environment [53]. These techniques are
therefore not suitable for chronic disease therapy such as in the case of HIV and TB.

Injection of drugs into the parenchyma of the brain (Figure 1A) is another example of
an invasive technique. Disrupting the BBB with a hypertonic solution such as mannitol or
using compounds such as bradykinin involved in the regulation of brain endothelial cellular
junction can facilitate drug delivery to the brain [54,55]. Temporal disruption of the BBB can
be achieved through the infusion of hyperosmolar solutions of arabinose, saline, mannitol
or urea into the internal carotid artery. This leads to a shrinkage of endothelial cells resulting
in the formation of gaps in the endothelial junction [53]. Le and Blakley [56] delivered
gentamicin into the CSF of in-vivo guinea pigs by causing temporal disruption of the BBB
through the administration of mannitol. The results showed that the rate of entry and exit
of gentamicin was increased by mannitol through the blood labyrinth barrier significantly
(p = 0.0044). The pharmacokinetic models for gentamicin showed no significant differences
between the model without gentamicin and the model with gentamicin and mannitol
(p = 0.433). This finding indicated that renal clearance of gentamicin from the blood was
not altered by mannitol. The concentration of gentamicin in CSF and perilymph was
always remarkably lower than that in blood [56]. Focused ultrasound is another invasive
delivery method of agents across the BBB. Focusing ultrasound in the area of interest
with low intensity allows the reversible disruption of the BBB at target sites. There are
currently no studies on the delivery of drugs for TB or HIV in the brain using focused
ultrasound. Yang et al. [57] developed an in vitro intracranial brain tumor model in
NOD-scid mice using human brain glioblastoma multiforme 8401 cells to effectively deliver
human atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes containing
doxorubicin (AP-1 Lipo-Dox) across the BBB. Yang and coworkers [57] utilized pulsed
high-intensity focused ultrasound (HIFU) to disrupt the BBB transcranially by delivering
ultrasound waves in the presence of microbubbles. The authors reported that animals
receiving drugs followed by pulsed HIFU presented with a significant accumulation of
the drug in the tumor cells compared to control animals treated with injections of AP-1
Lipo-Dox or unconjugated Lipo-Dox [57]. Focused ultrasound may be problematic in
that it may cause subtle and elusive damage to DNA [58], may be time-consuming to
administer, and may induce apoptosis [59]. However, BBB disruption (Figure 1B) is not a
logical method of drug delivery. This technique causes loosening of the tight junctions of
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the endothelium, allowing the transport of unwanted toxins into the brain in addition to
the drugs.

BLOOD
Blood- brain &
barrier ‘ 0’
.v
0 L 4
J Tlghtjunctlon
e (A) Injection (B) BBB disruption (C) Transcellular

transport

BRAIN

Figure 1. Strategies for crossing the BBB to deliver drugs. (A) Invasive approach: injection into the
parenchyma of the brain is used to avoid the BBB when treating patients. (B) BBB disruption is
achieved by injection of chemical agents, osmolytes or via focused ultrasound. This technique causes
loosening of the tight junctions of the endothelium, permitting access to the brain by conventional
drugs. (C) Transcellular transport of drug molecules through a cell.

Noninvasive approaches do not involve incision of the BBB, nor do they cause per-
manent alterations in the integrity of the BBB. Examples of non-invasive approaches that
have been used for the delivery of drugs across the BBB include altering the solubility of
the drug, NP drug delivery systems, chimeric peptides, enhanced transcellular transport,
transport/carrier systems, Trojan horse approach, intranasal delivery, monoclonal anti-
body fusion proteins, peptidomimetics, immunophilins, efflux transporter inhibitors and
prodrug approaches [53,60] (Table 1).

Chimeric peptides are a category of peptides and protein molecules that are coupled
with suitable vectors [53]. The ability of chimeric peptides to impart properties from
each “parent” protein to the subsequent chimeric protein has enabled their use in drug
delivery [53]. Chimeric peptides are formed by the covalent coupling of a non-transportable
peptide (e.g., beta-endorphin) to a transportable peptide that undergoes receptor- or
absorptive-mediated transcytosis at the BBB [61]. Immunophilins are involved in processes
such as protein folding, protein trafficking, receptor signaling, and transcription [62] and
these compounds display biological functions when complexed with their ligands [62].
Immunophilins are comprised of a family of conserved proteins which contain binding
abilities to immunosuppressive drugs [62]. Hamilton [63] reported that by binding with
FK506-binding protein (FKBP), immunosuppressive agents, particularly tacrolimus and
its analogues, could produce neuroprotective and neurogenerative effects. These small
molecular immunosuppressive drugs are thus able to cross the BBB easily and are useful
in treating brain and spinal cord injuries [53]. Peptidomimetics are small protein-like
chains intended to mimic peptides [64]. There are chemical modification methods that
involve modifying the peptide structure to improve pharmacokinetic properties while
simultaneously retaining a specific amino acid part(s) responsible for activity [64]. The
absorption of polar drugs can be achieved by increasing their hydrophobicity, however,
the volume of distribution of the drug within the body will also increase [53,65]. The
transcellular pathway (Figure 2A) allows the passive diffusion of small, lipophilic molecules
through the BBB and into the brain, while carrier-mediated transport (Figure 2B) is a type of
facilitated transport that employs specific proteins to move molecules from the environment
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into and through the cell [66]. Endocytosis and transcytosis (Figure 2C,D) are receptor-
mediated drug delivery processes that aid in the uptake of molecules including drugs across
the BBB [53]. Endocytosis and transcytosis are regulated by receptors including the insulin
receptors, transferrin receptor, low-density lipoprotein receptor-related protein (LRP),
neonatal Fc receptor present in the brain and the transferrin receptor [53]. Angiopep-2 is
a synthetic peptide and a ligand for LRP1 receptors which is readily transported across
the BBB. Conjugating drugs such as doxorubicin onto PEGylated oxidized multi-walled
carbon nanotubes (O-MWNTs) modified with angiopep-2 (O-MWNTs-PEG-ANG) has been
shown to enhance the uptake of doxorubicin into the brain [67]. Endocytosis of materials
can occur either through phagocytosis or pinocytosis [53].

BLOOD
H>0
o 1 E
o © ‘: PR _; <_ + MENs-loaded drug
o @ \Y |
(&) v Magnetostriction
h 4
&m
®
leXe) Q < N~ H<o0
@ & - -
L 2K 2 -
\
(A) (B) Carrier- (C) (D) Receptor- (E)
Transcellular Mediated Adsorptive Mediated Nanoelectroporation
Lipophilic Transport Transcytosis Transcytosis
Pathway
BRAIN

Figure 2. Illustration of transport pathways for BBB transport. (A) The transcellular lipophilic
pathway allows the passive diffusion of small, lipophilic molecules across the BBB and into the brain.
(B) Carrier-mediated transport employs specific proteins to move molecules from the environment
into and through the cell. (C) Endocytosis of molecules via adsorptive transcytosis nonspecifically
and transported through the cell. (D) Specific ligands bind receptors and are endocytosed and
transported through the cell via receptor-mediated transcytosis. (E) Translocation of MENSs across
the BBB. Once MENs have been administered into the body, an externally applied magnetic field
changes the shape of the inner core. Magnetostriction, changes the shape of the piezoelectric shell.
The magnetic field induces the nanoelectroporation of the diseased cell (see Section 2.3).

Table 1. Non-invasive approaches for the delivery of drugs across the BBB.

Approach

Drug Delivered across

the BBB Observations Ref.

Intranasal drug delivery

Intranasal administration of «-L-idur-onidase
(IDUA) encoding adeno-associated virus serotype 9
(AAV9) vector results in enzyme diffusion into [68]
deeper areas of the brain and reduction of tissue
glycosaminoglycans storage materials in the brain.

o-L-idur-onidase
(IDUA) encoding
adeno-associated virus
serotype 9 (AAV9) vector

Altered drug solubility

Conjugation of doxorubicin with angiopep-2
Doxorubicin increased delivery of doxorubicin to the brain and [67]
showed good bioavailability and lowtoxicity.

NP drug delivery system

Zidovudine was delivered via nanostructured lipid
carriers into an in vitro human brain cell line (C6)
and led to a significantly higher accumulation of the
Zidovudine drug in the brain cells. The results suggest that these [69]
NPs could be a promising delivery system to
enhance the brain uptake of zidovudine and other
non-nucleotide ARVs.
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Table 1. Cont.

Approach

Drug Delivered across

the BBB Observations Ref.

NP drug delivery system

In vitro delivery of atazanavir by solid lipid NPs
into a hCMEC/Dj cell line demonstrated a
significantly higher drug accumulation compared to
the drug aqueous solution alone.

Atazanavir [70]

Polymer drug conjugates

Increase in the uptake of PEGylated ciprofloxacin
when the surfaces of the biologically active polymer
core/shell NPs were modified with Tat peptide
(TAT-PEG-b-Chol nanoparticles).

Ciprofloxacin [71]

Peptidomimetics

A 16 lysine (K16) residue-linked low-density
lipoprotein receptor-related protein (LDLR)-binding
amino acid segment of apolipoprotein E (K16 APoE)
was used to deliver a therapeutic peptide (HAYED)

into an Alzheimer’s disease mouse model brain
leading to reduced necrosis.

HAYED peptide [72]

Viral vectors

Gadoteridol was co-infused with adeno-associated
viral type 2 vectors and results showed that infusion
of therapies directly into the disease- infected
regions of the human brain with
convection-enhanced delivery provides an effective
strategy for treating neurological disorders.

Gadoteridol [73]

Trojan horse approach

HIRMADb-IDUA fusion protein, also called
valanafusp alpha has been administered to patients
with mucopolysaccharidosis (MPS) 1. Patients were

HIRMADb-IDUA treated with HIRMAb-IDUA weekly by IV infusion
fusion protein for over a year. MPS I patients treated with
HIRMAD-IDUA who suffered from severe mental
retardation demonstrated stability in their IQ from
further decline.

[74]

The permeability of the BBB can be increased through use of pharmacological agents
thus enabling cells to become more permeable. In view of the fact that the BBB controls
material, nutrients and cell transfer from the blood to the brain and from the brain to the
blood [7,75], vascular permeability is related to BBB permeability. Histamine and vasoac-
tive peptides are agents responsible for inflammatory reactions causing a temporal increase
in vascular permeability and vascular leakage [76]. The vasodilator, bradykinin, increases
vascular permeability by acting on bradykinin 2 receptors [53]. A 9-amino-acid peptide,
labradimil (Cereport®; also known as RMP-7), is a formulated drug delivery system that
shows selectivity for the bradykinin (3, receptor designed to increase the permeability of
the BBB. In-vitro studies have revealed that labradimil selectively binds to bradykinin (3,
receptor, has a longer plasma half-life than bradykinin, and initiates bradykinin-like second
messenger systems such as an increase in the turnover of intracellular calcium and phos-
phatidylinositol [77]. Observations using electron microscopy showed that intravenous
labradimil increases the permeability of the BBB by loosening the tight junctions of the
endothelial cells [77]. The success of disrupting the BBB depends on the space created
in the pores being large enough to permit the entry of molecules without damaging the
structure of the cell [53].

BBB pores are typically <1 nm; however, particles that are several nanometers in
diameter can also cross the BBB via carrier-mediated transport [78]. Any non-specific
pores in the paracellular space nullifies the ability of the endothelial barrier to effectively
regulate molecules and ions across the barrier. In essence passive permeability across
the paracellular space would result in a short-circuit in the regulation of the BBB [79].
Tight junctions have a size-selective permeability to uncharged particles of up to 4 nm
and low permeability to larger particles [7]. This means that each tight junction forms a
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4 nm pore and that molecules larger than 4 nm would pass through gaps in the junctions.
NPs however may utilize a specific alternative lipophilic mechanism to cross the BBB [79].
NPs larger than 4 nm can cross the BBB. Adams et al. [80] successfully delivered fibrin
v377-395 peptides conjugated to iron oxide (Fe;O3) NPs of 21 + 3.5 nm in diameter to
inhibit microglial cells in rTg4510 tau-mutant mice in-vivo [80,81]. Otani and Furuse. [82]
reported that the size-selective pathway of tight junctions is approximately 60 A (equivalent
to ~6 nm). The permeability of the BBB is more dependent on the molecular properties
of the molecule than its size [7]. Small molecules can cross the BBB via lipid-mediated
free diffusion, provided that they have a molecular weight of <400 Da and form less than
8 hydrogen bonds [60,83-85]. Thus, lipophilic molecules can cross the membranes of the
BBB even if their size is large. Typically, molecules less than 250 nm in diameter are taken
up effectively by cells in the brain [86,87]. However, the size of the NP that can cross the
BBB greatly depends on the location of the brain (i.e., the pathway for crossing the BBB)
and target tissue at the brain site [87].

Nanoporation is a type of electroporation that generates very small holes (<2 nm)
in plasma membranes [88]. The pores formed are transient enabling transcellular drug
uptake as opposed to an opening of tight junctions which is typical with non-invasive
methods. Thus, there is no alteration of brain endothelial cells and the formation of gaps in
the endothelial junction. Sridhara and Joshi [89] studied the poration dynamics of lipid
translocation driven by nanoporation due to multiple high-intensity (>100 kV/cm), ultra-
short electrical pulses and to determine whether the pores, if formed, could remain open
even after the electrical field had ceased. In their molecular dynamics (MD) simulations,
the water-membrane system contained 37,157 water molecules and 512 dipalmitoylphos-
phatidylcholine (DPPC) lipid molecules for a total of 137,071 atoms in a 12.948 nm X
12.999 nm x 10.364 nm simulation box. The MD results displayed a gradual pore creation
that began during the ‘ON-time’—start of the first pulse of the unruptured membrane
patch. The existence of the first small nanopore was observed at the time () = 5 ns which
grew larger by the 10 ns time instant. During the termination of the electrical pulse at 10 ns
and 60 ns, the pore remained open without considerable changes or reduction. The pore
was seen to be at its largest at the end of the second pulse. The results of this study coincide
with the experimental study results of Pakhomov and colleagues [90] using 600 ns pulses
that have shown that nanopores are stable for many minutes. The use of multiple pulsing
along with higher applied voltages could result in a larger pore density [89]. A larger pore
density would be beneficial to pore coalescence and may promote the appearance of larger
sized entry sites at the plasma membrane [89]. Sridhara and Joshi [89] concluded that once
nanopores are formed, they can remain open for long periods of time (there is no record of
the duration of time the pores remained open in the study—the pore was still open at the
beginning of the second electric pulse and there is no record of pore closure after t = 70 ns).
The pore effects are expected to be much stronger with multiple pulsing. Nanopores that
are stable for many minutes could significantly have an impact on cell electrolyte and
water balance [89,91]. Multiple nanosecond duration electric pulses (nsEPs) cause rapid
cell swelling and blebbing (bulging out of the cell membranes), while substances such as
digitonin (a mild detergent that permeabilizes plasma membranes) eradicates swelling
and causes blebs to collapse [90]. To date, most of the research has focused on controlled
measurements using artificial lipid bilayer structures or indirect methods of nanoporation
detection. Although both techniques provide useful insights, they are unable to directly
detect and describe the dynamic nature of the poration and the recovery process in the
affected living cells [91,92].

2.3. Application of MENS to Deliver Drugs across the BBB for CNS TB and HIV

NPs are particles in the nanoscale range between 1 to 100 nm (in at least one dimen-
sion) whose properties vary depending on their size, surface area, uniformity, optical
properties and functionalization [93]. NPs are effective delivery systems for a variety of
payloads [60,94]. NPs are being investigated towards the delivery of drugs for infectious
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diseases [95]. Apart from demonstrating good stability and tunability to carry cargo, NPs
can cross biological barriers, providing controlled and sustained therapeutic effects at
target sites [96].

MENSs are a class of NPs that exhibit magnetic and electric properties that can be
controlled utilizing magnetic and electric fields. MENs are typically 30 nm in diameter,
however, these NPs can be as large as 600 nm [97]. Calcination approaches have been
investigated to determine the sizes of MENs. Hadjikhani et al. [97] investigated the effect
of alteration of calcination temperatures on the size of MENs. The authors reported
that calcination at 600 °C resulted in 30 nm MENSs, 700 °C for 100 nm MENSs, 780°C for
200 nm MENSs and 850 °C for 600 nm MENSs. Thus, the higher the calcination temperature,
the larger the size of the MENSs [97]. MENs are comprised of a lattice crystal structure
with a magnetostrictive cobalt ferrite (CoFe,O4) core surrounded by a barium titanate
(BaTiO3) piezoelectric shell. The tetragonal crystal structure of the BaTiO; shell and the
cubic structure of the CoFe,;O4 core has been shown using X-ray diffraction (XRD) [30].
Microscopy images of MENs show an irregular-sphere-like morphology [98,99]. MENs
offer advantages in that they are able/show potential to (i) achieve targeting driven by
an external magnetic force, (ii) provide on-demand externally controlled drug release and
(iii) provide image-guided precision drug delivery [30]. These properties are advantageous
towards drug delivery in the CNS for TB and HIV.

Externally applied magnetic fields can change the shape of the inner core of MENSs.
This phenomenon is known as magnetostriction and changes the shape of the piezoelectric
shell (Figure 2E). The change in the shape of the piezoelectric shell creates an electric
field at the surface of the MEN which induces temporal nanoelectroporation of the cells
whereby holes less than 2 nm in the cell plasma membranes contributing to enhanced
drug permeation and uptake of MENSs in the diseased cells [61,100]. From the literature, it
is unclear whether phagocytosis/endocytosis is also a major uptake route for MENSs, or
whether MENSs also transiently alter the size of the paracellular tight junctions across the
BBB. The greater the magnetic field, the greater the electric field that is produced [101,102].
Typically, diseased cells have a different electroporation than normal cells and, have a
lower threshold for electroporation and are therefore more permeable when exposed to an
electric field [101,102]. Electroporation has been detected using dyes (fluorophores or color
stains) or functional molecules by measuring the efflux of biomolecules, monitoring cell
swelling and through conductivity measurements, impendence measurements and voltage-
clamp techniques [103]. Any other substance present at the blood-side of the BBB would
also be taken up across the cells due to the altered permeability. Drug release has been
described to be achieved through “shaking off” of the drug on the MENSs as the induced
alternating magnetic field shifts the magnetic dipole of the particle the drug is released
intracellularly (Figure 3) [101].

MENSs have been investigated for drug delivery for CNS HIV. Nair et al. [104] demon-
strated the in-vitro on-demand release of zidovudine (AZTTP) from 30 nm CoFe,O4 @ BaTiO3
MEN:Ss by applying a low alternating current magnetic field. Nair et al. [104] demonstrated
that the MEN-AZTTP nanoformulation showed 100% drug release at low alternating
current (44 Oe at 100 Hz) without losing drug integrity and further showed HIV-p24
inhibition in vitro with good transendothelial BBB transmigration efficiency. An in vitro
BBB model made from layers of brain microvascular endothelial cells (BMVEC) on the one
side and astrocytes on the other side was used in this study. Approximately 40% of the
MENs-AZTTP could penetrate the BBB under low-energy direct current magnetic field,
this is three times higher than the free drug [104]. An alternating current (AC)-magnetic
field generated through electromagnetic coils as external stimuli were used to demonstrate
the on-demand release of AZTTP (100% at 64 Oe). The AC-magnetic field could cause
polarization changes on the MENSs surface bringing about the release of AZTTP without
hindering efficacy. The authors also showed that AC-magnetic field stimulation on MENs
produced a localized electric field and sufficient ultrasound to open the cell membrane
pore and deliver the MENs-AZTTP complex intracellularly. According to an investigation
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performed by Kaushik et al. [105] MENs (50ug) and AC-magnetic field (60 Oe) do not affect
the viability of brain microglial cells. In this study, the uptake of MENSs into the cells was
demonstrated through nanoelectroporation using ac magnetic field stimulation. MENs
were taken up by microglial cells without affecting the health of the cell (viability > 92%)
following optimization of AC- magnetic field at 60 Oe at 1 kHz [105]. Furthermore, fo-
cused ion beam transmission electron microscope (FIB-TEM) analysis of microglial cells
demonstrated a non-agglomerated distribution of MENs inside the cell and no loss of
their elemental crystalline characteristics [105]. Pandey et al. [98] demonstrated that MENs
displayed enhanced cell uptake (via microglial brain cells) and controlled drug release. The
authors further confirmed that the AC-magnetic field stimulated at 60 Oe confirmed the
localized surface potential enhancement of MENSs.

Magneto-electric coil

Low strength
magneto-electric field

Drug attached to surface
Pt o q OfMENS
) ‘:!’g——Glycerol
monooleate,
layer "
> __SE
PVP (polymg?’

= layer)

[ 4
Drug loaded on MENs via Breaking of the original Release of bound drug
ionic interactions symmetry of the charge from MENs caused by

distribution and change in charge disturbance
the shape of the inner core
by a magneto-electric field

Figure 3. Schematic diagram of the effect of an applied magneto-electric field on core-shell MENSs.
MENSs surrounded by a polyvinylpyrolidone (PVP) polymer layer and glycerol monooleate layer
with a drug loaded on the surface of MENs. Upon the introduction of low strength magneto-electric
field, the original symmetry of the charge distribution breaks and the shape of the inner core of
MENSs changes (i.e., magnetostriction) and changes the shape of the piezoelectric shell resulting in
the release “shaking off” of the drug bound to MENs caused by charge disturbance.

In another study, the delivery of BeclinlsiRNA across the BBB using MENs was
demonstrated by Rodriguez et al. [106] towards control of the inflammatory effect of HIV
infection. CoFe;O4 @ BaTiO3 NPs bound to small interfering ribonucleic acid (siRNA)
targeting Beclinl to cross the BBB and to decrease the neurotoxic effects of HIV-1 infection
in the CNS brought by an on-demand release of siRNA using an in vitro primary human
BBB model [106]. The result of this research showed that Beclin1siRNA attached to MENSs
was released through AC-magnetic stimulation [106].

MENS can be designed with a coating layer. As can be seen in chromites, ferromagnetic
materials due to their magnetic nature, have a high tendency to agglomerate [107,108]. To
avoid agglomeration, the NPs can be coated or dispersed in a non-magnetic matrix [107].
Coating layers consisting of either glycerol monooleate (GMO), polyethylene glycol, or poly-
L-Lysine have been reported [101]. Kaushik et al. [109] reported the effective controlled
on-demand release of a nanoformulation composed of clustered regulatory interspaced
short palindromic repeat (CRISPR)—associated 9, also known as Cas9/gRNA bound with
MENSs across the BBB to inhibit latent HIV-1 infection in microglial (hpglia)/HIV (HC69)
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cells. This approach led to the eradication of latent HIV in the cells [109]. While the above
studies demonstrate efficacy in vitro, there are no studies demonstrating the effectiveness
of this approach using in vivo animal models.

To date, no studies have been reported on the application of MENSs for delivery of
drugs for eradication of M. tb in a CNS infection model. However, from reports on the
delivery and efficacy of HIV drugs such as zidovudine delivered using MENs, we can
expect similar observations for TB drugs.

3. Conclusions and Future Directions

In this manuscript we have discussed the challenges faced by drugs for CNS TB
and HIV in crossing the BBB, approaches to enhance drug delivery into the CNS and the
application of MENSs for this purpose. We have found that MENs show promise as effective
systems for non-invasive drug delivery and therapy across the BBB. These NPs provide an
on-demand externally controlled drug release and have demonstrated efficacy in CNS HIV
model studies. However, significant further work is required towards the translation of this
technology to the clinic. Apart from a need for proof-of-concept studies in animal models
of HIV and TB, additional insights into the interaction of the MENs with the biological
system are required. Understanding of achievable controlled drug release and intracellular
and in vivo pharmacokinetic profiles of the drug, would be crucial for diseases such as HIV
and TB where sustained drug concentrations above the minimum effective concentration
are required. Indeed, significant efforts are directed at long-acting nano ART formulations,
and some have reached the clinic [110]. Toxicity studies over extended periods of time,
investigations of the short-and long-term effects of AC-fields and nanoporation on the
brain are also required. The intracellular trafficking and biodegradation of the MENs
should be studied further and long-term toxicity data generated.
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