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Although significant scientific research strides have been made in mapping the spatial extents and
ecohydrological dynamics of wetlands in semi-arid environments, the focus on small wetlands remains a chal-
lenge. This is due to the sensing characteristics of remote sensing platforms and lack of robust data processing
techniques. Advancements in data analytic tools, such as the introduction of Google Earth Engine (GEE) platform
provides unique opportunities for improved assessment of small and scattered wetlands. This study thus
assessed the capabilities of GEE cloud-computing platform in characterising small seasonal flooded wetlands,
using the new generation Sentinel 2 data from 2016 to 2020. Specifically, the study assessed the spectral separa-
bility of different land cover classes for two different wetlands detected, using Sentinel-2 multi-year composite
water and vegetation indices and to identify the most suitable GEE machine learning algorithm for accurately de-
tecting and mapping semi-arid seasonal wetlands. This was achieved using the object based Random Forest (RF),
Support Vector Machine (SVM), Classification and Regression Tree (CART) and Naive Bayes (NB) advanced algo-
rithms in GEE. The results demonstrated the capabilities of using the GEE platform to characterize wetlands with
acceptable accuracy. All algorithms showed superiority, in mapping the two wetlands except for the NB method,
which had lowest overall classification accuracy. These findings underscore the relevance of the GEE platform,
Sentinel-2 data and advanced algorithms in characterizing small and seasonal semi-arid wetlands.
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1. Introduction

Wetlands play a critical role in the hydrological cycle and sustaining
livelihoods and aquatic life and biodiversity. They occupy transition
zones between aquatic and terrestrial environments and share the char-
acteristics of both zones (Gxokwe et al., 2020). Wetlands cover about 4-
6% of the global land surface and are ranked amongst the very diverse
ecosystems on earth (Mahdianpari et al., 2019). Semi-arid areas are
dominated by small seasonally or intermittently flooded wetlands,
with the flooded area depending on the balance between precipitation
and evapotranspiration (Ruiz, 2008). They often host more invertebrates
than permanently inundated systems because of their oxygenated pe-
riod resulting from the episodic inundation. However their conservation
is not prioritised (Chen and Liu, 2015). This is mainly due to their small
size and ephemeral nature, which results in them being neglected in
monitoring and management programmes, leading to loss of inherent
ecosystems goods and services provision (Li et al., 2015).

Globally, the abundance and quality of wetlands in semi-arid envi-
ronments are reported to be declining due to climate change and vari-
ability as well as poor land management practices (Mahdianpari et al.,
2019). Gebresllassie et al. (2014) reported a significant wetland loss in
the semi-arid Ethiopia due to lack of policies safeguarding these sys-
tems, thus resulting in the loss of socio-economic services. In semi-
arid parts of China, it has been reported that about 30% of wetlands
have been lost over the past 50 years due to anthropogenic activities,
with most of them disappearing between 1990 and 2000 (Liu et al.,
2017). In South Africa, it is reported that over 50% of wetlands have
been eradicated in some catchments due to climate change and anthro-
pogenic activities (Day et al., 2010). Given the significance of ecological
services provided by wetlands, it is imperative that these systems are
sustainably managed.

The basis for sustainable management of wetlands is hinged on fre-
quent monitoring of their ecohydrological dynamics to derive consis-
tent and comparable information, which is lacking in most semi-arid
regions, especially in sub-Saharan Africa (Mahdianpari et al., 2019).
The availability of earth observation data offers an opportunity to map
and monitor wetlands in a spatially explicit manner in different climatic
regions, lacking monitoring systems (Gxokwe et al., 2020). The chal-
lenge however is that these data come in a range of spatial, spectral
and temporal resolutions which presents difficulties mapping semi-
arid wetlands using coarse to medium resolution data such as Moderate
Resolution Imaging Spectroradiometer (MODIS).

Wetlands in the semi-arid regions are mostly heterogeneous, with
no definitive boundaries, and are spectrally similar to the surrounding
landscapes. This results in difficulties when separating these systems
from the surrounding landscapes using the coarse to medium spatial
resolution data (Mahdianpari et al., 2020). High resolution data such
as Wordview-2 and Satellite Pour I'Obeservation de la Terre (SPOT 6-
7) are commercial and require complex processing algorithms and are
therefore not feasible for monitoring spatial characteristics of semi-
arid wetland over large areas and overtime (Gxokwe et al., 2020).

Advancements in data analytic tools and platforms and the develop-
ment of cloud computing platforms such as Microsoft Azure (MA), Am-
azon web services (AWS) and Google Earth Engine (GEE) provide
wetlands monitoring and assessment across various scales. The AWS
was launched in 2006 and contains several remote sensing data ranging
from Sentinel-1, Sentinel-2, Landsat 8, and National Oceanographic and
Atmospheric Administration (NOAA), Advanced High-Resolution Rapid
Refresh Model (AHRRRM) (Tamiminia et al., 2020). Although AWS pro-
vides unique benefits through access to a large suite of machine learning
algorithms and artificial intelligence, the platform offers pay-as-you go
services. Microsoft Azure was launched in 2010 for building, deploying
and managing applications and services through Microsoft-managed
data centres. The platform consists of advanced machine learning algo-
rithms, Landsat and Sentinel-2 data from 2013 to present for only North
America as well as MODIS data from 2000 to present.
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The recently introduced GEE platform offers a parallelised pro-
cessing on Google cloud enabling the processing of a stack of images
at once rather than relying on a single date image. The platform has
40 years petabyte scale of pre-processed remotely sensed data,
which include Landsat, MODIS, National Oceanographic and Atmo-
spheric Administration Advanced Very High-Resolution Radiometer
(NOAA AVHRR), Sentinel 1, 2, 3 and 5-P; and Advanced Land Observ-
ing Satellite (ALOS) data as well as advanced machine learning
algorithms (Amani et al., 2020). The other data types available on
the GEE cloud computing platform include climate and geophysical
data, as well as ready to use products such as Normalised Difference
Vegetation Index (NDVI) and Enhanced Vegetation index (EVI)
(Gorelick et al., 2017).

Although the GEE was launched over a decade ago, its application to
remote sensing of wetlands including the small seasonally flooded sys-
tems in the semi-arid regions is still limited. A review by Tamiminia
et al. (2020) reported 13 wetlands and mangroves studies that utilized
the GEE platform between the year 2010 and 2019 in all climatic zones,
with most of these studies exploiting Landsat 8 data. The review by
Kumar and Mutanga (2018) also reported that of 8% (out of the 300 ar-
ticles identified) of the studies utilized the GEE platforms for wetlands
and hydrological related research globally. The most recent studies by
Mahdianpari et al. (2019, 2020) used the GEE to monitor semi-arid wet-
lands in Canada with reasonable accuracies (70% - 90%), however, the
studies focused on large-scale mapping. Due to the strengths of the
GEE cloud computing platform, there is therefore a need to fully explore
the capabilities of this platform in mapping and determining character-
istics of semi-arid wetlands at site specific scales. This is particularly rel-
evant in the sub-Saharan Africa where small wetlands are poorly
documented, the application of the GEE on small seasonal wetlands is
still lacking, and data on these systems is inconsistent and incomparable
due to limited research.

Owing to this background, the overarching goal of this study was
to characterize and map two small and seasonally flooded wetlands
in the semi-arid Limpopo Transboundary River Basin in South
Africa using the GEE cloud-computing platform and the multi-year
Sentinel-2 composite data. Specifically, the objectives were to;
(1) assess the spectral separability of different wetland cover classes
detected, using the GEE and multi-year Sentinel-2 composite deriva-
tives; (2) evaluate the capabilities of GEE cloud-computing platform
in producing customized wetland cover maps at reasonable accu-
racy, using the high-resolution Sentinel-2 data, and (3) identify a
suitable GEE machine learning algorithm for accurately detecting
and mapping semi-arid seasonal wetlands characteristics, using the
multi-year Sentinel 2 composite data. The paper is organised as fol-
lows. Section 1 provides a detailed background of the study includ-
ing scientific knowledge gaps and the objectives of the study.
Section 2 shows how the GEE cloud computing platform coupled
with the field and remote sensing data were used in achieving the
objectives of this paper. The findings of the study are presented in
Section 3. Sections 4 and 5 present interpretations, conclusions and
recommendations drawn from the study findings.

2. Study area

Two wetlands located in the Limpopo Transboundary River Basin in
South Africa (LTRB) were investigated (Fig. 1). The LTRB is shared by
four countries namely South Africa, Botswana, Mozambique and
Zimbabwe, and covers an area of 412,000 km? (Mosase et al., 2019).
The basin has a semi-arid climate, with wet summers and dry winters.
The Mean Annual Precipitation (MAP) in the LTRB ranges from 300 to
700 mmy/year with most of the rainfall occurring during the October to
April period (Botai et al., 2020). Temperatures in the LTRB follow a dis-
tinct seasonal cycle with the coolest months occurring in winter (June-
August), and hottest occurring in late summer (late November- early
December). The mean daily temperatures in LTRB can go up to 40 °C
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(Sawunyama et al., 2006). The mean annual evaporation varies between
1600 mm/yr and 1700 mm/yr in the south-eastern mountainous region,
and from 2600 mm/yr to 3100 mm/yr in the western and central re-
gions (Sawunyama et al., 2006). The two studied seasonal flooded wet-
lands are the Nylsvley floodplain and Lindani valley bottom in South
Africa. The Nylsvley floodplain is Ramsar protected system located at
24°39'17"S and 28°41/28"E near Mookgopong and Modemolle towns
in the Limpopo Province of South Africa. The wetland forms a 70 km
long floodplain along Mogalakwena River, which is a tributary of the
Limpopo River (Dzurume, 2021). The dominant vegetation species oc-
curring in the Nylsvley floodplain include common grass species such
as Oryza longistaminata (rice grass) and Phragmites australis (common
reeds), and tree species such as Acacia tortilis, Acacia nilotica and Acacia
karoo. The Nylsvley floodplain receives most of the inflows from sea-
sonal rivers such as Olifantsspruit, Groot and Klein Nyl (Dzurume,
2021). Although the floodplain is 70 km long, the study focuses on the
13.69 km? portion within the boundaries of the Nyls Nature Reserve,
which was accessible during the study period. The Lindani valley bot-
tom wetland is located between 24°03’01.36”E and 28°41'43.37"S
within the boundaries of the Lindani Private Game Reserve at Vaalwater
Limpopo Province of South Africa. The wetland covers an area of about
28 ha and mostly receives water from rainfall and groundwater seeps
from several springs in the area. The dominant vegetation species in-
clude the Oryza longistaminata (rice grass), Phragmites australis (com-
mon reeds), Scirpoides dioecus (Kunth) as well as Cynodon dyctolon
(Bermuda grass).
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3. Materials and methods
3.1. Field data

Land cover data were collected in the field during the end of the dry
season and beginning of wet season between the 28th of September
2020 and the 1st of October 2020. The data collected included six hun-
dred ground truth points collected on both wetlands with locations de-
termined used a handheld Geographical Positioning System (GPS) with
less than 5% error. The points were collected using a stratified random
sampling approach. This approach involves the division of a population
into smaller subgroups named strata based on certain attributes, and
random sampling is implemented on the strata (Ding et al., 1998). Strat-
ified random sampling was selected because of the possibility that each
sample is equally likely to occur. During the implementation of stratified
random sampling in this study, the wetlands were subdivided into
10 m x 10 m quadrants based on the Sentinel-2-pixel sizes data that
was going to be used during the classification process. The quadrants
were 12 m apart in order to minimise overlapping samples on the satel-
lite image. In each quadrant a maximum of 20 ground truth points were
collected depending on the dominating landcover classes. Moreover,
wetland vegetation communities were visually identified on site and
grouped as either short grass and long grass species based on structural
features (canopy height and cover). The collected data were used in the
GEE wetland model training, and validating satellite derived wetland
cover classes.

Lindani valley bottom

Legend . .
9 Digital elevation
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Fig. 1. Location of the studied wetlands, a) Lindani valley bottom b) Nylsvley floodplain within the Limpopo Transboundary River Basin.
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3.2. Remote sensing data acquisition and processing

The acquisition and processing of remotely sensed data in this
study were executed following the steps shown on Fig. 2. Sentinel-2
MultiSpectral Instrument (MSI), level 2A (COPERNICUS/S2_SR/
20151128T002653_20151128T102149_T56MNN) Surface reflectance
images were acquired from the GEE database and used in this study.
These products are already atmospherically corrected using the Sen2cor
and contain twelve UINT16 spectral bands scaled by 10,000 as well as
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three QA bands where one (QA60) is a bitmask band with cloud mask
information. The image stack was filtered to represent the period of
2016-01-01 to 2020-12-31, and the area within the selected wetland
boundaries using the codes ee Filter.Date () and Image.filterBounds ().
The period was chosen because in 2016, drought was reported in the
Limpopo Basin, which caused significant changes in most surface
water systems including wetlands in the area. The study aimed to estab-
lish whether drought induced changes within the wetlands could be de-
termined. Two hundred ninety-six images were obtained after the
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Fig. 2. Steps undertaken to characterise and map the two wetlands using GEE.
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filtering process. The acquired image stack was then normalised for illu-
mination effects (i.e., shades) and minimisation of clouds, using median
compositing. The median composite works by reducing a stack of im-
ages through the calculation of median of all values at each pixel across
the stack of all matching bands thus minimising the effects of shades
and clouds (Mahdianpari et al., 2019). The median composite in this
study was executed using the code Median () on the GEE. This was
then used to calculate the Normalised Difference Vegetation Index
(NDVI), Normalised Difference Water Index (NDWI), and Modified
Soil Adjusted Vegetation Index 2 (MSAVI-2), using the equations
given in Table 1. The NDVI is one of the most widely used vegetation
index in wetlands studies due to the sensitivity to photosynthetically
active biomass and can discriminate between vegetation and non-
vegetation as well as wetland from non-wetland features (Liu and
Huete, 1995). The NDWI was selected due to sensitivity to open water
enabling the discrimination of water from land surfaces (McFeeters,
1996). MSAVI-2 was chosen to improve the limitations of the NDVI. In
addition to the extracted indices, the Near infrared (NIR), Red, Green
and Blue bands were selected and concatenated to the NDVI, NDWI
and MSAVI-2 outputs to produce an image with only the bands for wet-
lands classification. The NIR band was chosen because of its usefulness
in distinguishing water from land surface as well as its ability to discern
biomass content of vegetation and its health because water absorb
strong NIR light while vegetation strongly reflects NIR light. The Red
band was chosen because of its ability to delineate wetland classes be-
cause of its ability to detect chlorophyll absorption in vegetation. Blue
band has the ability to differentiate between soils and vegetation. The
produced composite was then subjected to Object Based Image Analysis
(OBIA). OBIA was selected because of the superiority against pixel-
based classification as shown in various wetlands mapping studies
such as Berhane et al. (2018), Kamal and Phinn (2011) and Kaplan
and Avdan (2017). Moreover, the approach not only relies on spectral
characteristics of each pixel but also considers other pixel characteris-
tics, such as size, shape and contextual information thus improving
spectral separability within classes of the heterogeneous wetlands
(Halabisky, 2011). The first step in OBIA is image segmentation. The
process involves partitioning of the image into multiple discreet and
non-overlapping segments based on a specific criterion (Dlamini et al.,
2021). In this process, individual pixels are merged to produce larger
objects. This increases the discrimination of spectrally similar objects
using texture, shape and contextual features and prevents the “salt
and pepper” noise in the final classification map (Dlamini et al., 2021;
Mahdianpari et al., 2020). In this study, a Simple Non-Iterative Cluster-
ing (SNIC) algorithm was used to segment the composite. The SNIC al-
gorithm was chosen because of its simplicity, memory efficiency,
processing speed as well as the ability to incorporate connectivity be-
tween pixels after the algorithm has been initiated (Achanta and
Siisstrunk, 2017). The SNIC algorithm starts the process of image seg-
mentation by initialising the centroids pixels on a regular grid image,
then the dependency of each pixel relative to the centroids is
established using the distance in five-dimensional space of colour and
spatial coordinates. In particular, the distance integrates normalised
spatial and colour distances to produce uniform super pixels (Achanta
and Siisstrunk, 2017). The candidate pixel is selected based on the
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shortest distance from the centroid (Achanta and Siisstrunk, 2017).
The SNIC algorithm was executed using the code ee.Algorithms.Image.
Segmantation.SNIC () on GEE and the output was an image with super
pixels, calculated textures, areas, sizes and perimeters for all the super
pixels.

3.3. Adopted wetland classification scheme

Satellite image classification was executed, using the Random Forest
(RF), Support Vector Machine (SVM), Classification and Regression Tree
(CART) and Naive Bayes (NB) algorithms. The RF is an ensemble classi-
fier, which consists of a combination of tree classifiers, and each classi-
fier is generated using the random factor sampled independently from
the input vector data. Each tree cast a unit vote for a popular class to
classify an input vector (Ao et al., 2019; Pal, 2005). An advantage of RF
algorithm is the ability to handle large differentiations within landcover
classes, and noise data can be neutralised (Slagter et al., 2020). More-
over, the algorithm does not require the understanding of the data dis-
tribution unlike the parametric classification algorithms such as
maximum likelihood, where data distribution needs to be known. The
SVM applies a sophisticated kernel function to classify data sets with
complex decision surface. One of the strengths of SVM is that the uncer-
tainty in model structure is decreased and similar to RF the algorithm
also does not rely on the data distribution (Oommen et al., 2008).
CART is a tree-based classification algorithm that measures the depen-
dence relation of one variable to other variables (Simioni et al., 2020).
An advantage of CART is the ability to naturally model non-linear
boundaries because of its hierarchical structure. NB forms part of simple
probabilistic classifiers based on applying Bayes theorem with strong
independence assumption between features (Shelestov et al., 2017;
Simioni et al., 2020). An advantage of NB algorithm includes the ability
to solve multi-class prediction problems, time saving as well as less
training data requirements. The four algorithms were chosen because
of the latter advantages in addition to their acceptable performance
demonstrated in several land cover studies such as Dlamini et al.
(2021); Rana and Venkata Suryanarayana (2020); Rodriguez-Galiano
etal. (2012); Simioni et al. (2020); Slagter et al. (2020). Moreover, stud-
ies such as Hayri Kesikoglu et al. (2019) and Tian et al. (2016) reported
that application of the latter algorithms on mapping semi-arid wetlands
is limited, hence these were selected. Prior to classification, the algo-
rithms were trained using 70% of the field data. The data were randomly
split in R-studio to produce a 70% training set, and 30% validation set.
The code used to split data in R-studio is “wasdt = sort(sample(nrow
(data), nrow(data)*.7))". After splitting, the data were converted to
GIS files in Esri ArcGIS 10.2, and then imported to GEE for modeling
training and validating. The training of the classifiers was executed
using the code “ee.Classifier.train ()”. Classification using the latter algo-
rithms was then implemented on the segmented image using the code
“Image.classify()” in GEE.

3.4. Accuracy assessment

In evaluating the performance of classification algorithms, three
evaluation indices were used. These are overall accuracy (OA),

Table 1
Features extracted from the optical data.
Data Data extracted Formula Band width (nm) Reference
Sentinel-2 B8 - Near-infrared (NIR) 842
B4 - Red 665
B3 - Green 560
B2 - Blue 490
NIR—Red -

Normalised Difference Vegetation Index (NDVI)
Normalised Difference Water Index (NDWI)
Modified Soil Adjusted Vegetation index (MSAVI-2)

NIR-+Red
NIR—Green -
NIR-+Green

2xNIR+1—1/(2xNIR+1)* —8x (NIR—Red) -
2

(Liu and Huete, 1995)
(McFeeters, 1996)
(Qiet al., 1994)
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producer's accuracy and user's accuracy. In addition, line graphs as well
as Jeffries-Matusita (JM) distances were used to establish the separabil-
ity of different wetland classes using the selected spectral bands. JM is a
parametric criterion that ranges between 0 and 2. This criterion uses
distances (Egs. (1) & (2)) between the class means and the distribution
of values from the means to assess the separability of one class from the
other (Dabboor et al., 2014; Wang et al., 2018). Distances approaching 2
indicate a greater average distance between two classes and therefore
separable using the data type. The OA was used to measure the effi-
ciency of used algorithms and was quantified as the ratio of total cor-
rectly labelled samples and the total number of testing samples. The
producer's accuracy was used to measure the probability that the refer-
ence sample is correctly classified on the map. The user's accuracy was
used as an indicator of the probability that a classified pixel in the wet-
land cover classification map accurately represents that category on the
ground. The accuracy assessments with the latter indices were com-
puted executed in GEE. The JM distance presented in Dabboor et al.
(2014) is given as:

IM=2(1—e"®) (1)
where B is the Bhattacharyya distance and quantified as

1 NTEHZN Ty 1 (34 3)/2)
B= 3 (ﬂi le) <T> (lJi ﬂj) +35 In W 2)

where 1; and ; are the mean and covariance matrix of class i and y; and
3; are the mean and covariance of class j. In evaluating the classification
accuracy of the output image using the latter indices, the codes “Image.
accuracy()” for OA, “Image.producersAccuracy()” for producer's accu-
racy and “Image.consumersAccuracy()” for user's accuracy were imple-
mented on the GEE. During implementation of the latter codes, firstly,
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the validation vector data were imported to the GEE and used to sample
out the corresponding regions on the classified image using the code
“Image.sampleRegions()”. The sampled regions were then used in the
latter codes as input image to test the accuracy of the classification out-
puts. The line plots and JM distances were implemented using a series of
interconnected codes presented in the supplementary material.

4. Results
4.1. Class separability

Scatter plots (Fig. 3) showing spectral reflectance values per class of the
studied wetlands indicate that most wetland classes are not distinguish-
able using Band 2, Band 3, and Band 4 for both wetlands except long
grass in the Nylsvley flood plain, which was discernible from the rest of
the classes using B4 and B8. The results also indicate that the Water class
in the Lindani valley bottom has high spectral reflectance in the NIR region
although the anticipation was low reflectance in this spectral region.

The JM distances obtained from the multi-year median composite
(Tables 2 and 3), indicate that wetland features were hardly distinguish-
able from single optical bands for both wetlands. The least distinguish-
able classes were Bare surface and Water from the Lindani valley
bottom as well as Bare surface and Short grass from the Nylsvley flood-
plain. The JM distances for all the least distinguishable classes were not
exceeding 1.4 for both wetlands. The results also show that synergic use
of all optical features significantly increased the separability between
classes with JM distances exceeding 1.8 for both wetland classes.

4.2. Classification results and accuracies

Four GEE algorithms were applied to a median composite of
Sentinel-2 images to produce custom maps for two seasonal flooded

0.3 1~ 1 1
a) — — = Long grass 08 4
0251 ...cecshort grass 0.6 -
B: f g .
| are surface S 04
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Fig. 3. Wetland cover class spectral reflectance values for a) Lindani valley bottom and b) Nylsvley floodplain, using pixel values extracted from the training data.
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Table 2

JM distances between wetland cover classes in the Lindani valley bottom.
Optical features ~ D1? D2° D3¢ D44 D5¢ D6'
NIR 0.0016 0.0131 0.1036 0.0135 1.272 0.1398
Red 0.3146 04311 0.5635 0.0502 0.1576 0.0314
Green 0.4331 0.6508 0.8978 0.0600 0.2714 0.0966
Blue 0.4675 0.6381 0.8861 0.0418 0.2193 0.0858
NDVI 0.2728 0.3044 0.6300 0.0385 0.1823 0.1127
NDWI 0.3478 0.4028 0.4346 0.0036 0.0168 0.0089
MSAVI2 0.3124 0.3509 0.6849 0.0041 0.1948 0.1187
ALL 2 2 2 2 2 2

2 D1: Long grass & Short grass.
b D2: Long grass & Bare surface.
¢ D3: Long grass & Water.

4 D4: Short grass & Water.

¢ D5: Short grass and Water.

f D6: Bare surface and Water.

wetlands of variable sizes in the LTRB. Figs. 7 and 8 show the custom
maps for the studied wetlands. Overall Accuracies based on the algo-
rithms used ranged between 20% and 80% for both wetlands, with Ran-
dom Forest (RF) having high OA for both Lindani valley bottom and
Nylsvley floodplain (68.80% and 80.55%) and Naive Bayes (NB) having
the low OA values for both wetlands (29.50% and 25.00%) (Fig. 4). The
other algorithms had reasonable accuracy with the Support Vector Ma-
chine (SVM) attaining 66.60% for Lindani and 62.29% for Nylsvley. The
Classification and Regression Tree (CART) achieved an OA of 62.30%
for Lindani and 75.00% for Nylsvley, thus proving the superiority of RF
amongst other algorithms used in this study.

Figs. 7 and 8 show the distribution of wetland cover classes at 10 m
spatial resolution. The maps illustrate fine separation between the wet-
land classes for all the algorithms. However, for the Nylsvley floodplain,
the water class could not be detected due to the unavailability of train-
ing data representing this class. The areas of the various land cover types
in Fig. 5 show that based on all the algorithms except NB, the most dom-
inating class in the Lindani valley bottom is Short grass consisting of
Cynodon dyctolon and Oryza longistaminata. In contrast, the NB identi-
fied water as being the most dominant class. The area of the short
grass ranged between 5 ha and 25 ha with the NB model identifying
the smallest area for this cover type. The producer's accuracy and
user's accuracy for the dominating short grass ranged between 20%
and 91%, with NB model having the lowest producer's accuracy
(Fig. 6), and the user's accuracy was from 60% to 80% with SVM having
the lowest accuracy. The least dominating classes in the Lindani valley
bottom wetland are water and bare surface with areas ranging of
0.3-5.0 ha for bare surface and 0.2-10.0 ha for water. The producer's ac-
curacies for these two classes ranged between 0% and 75% for water and
between 0% and 30% for bare surface. The SVM algorithm achieved 0%
producer's accuracy for both the classes. The user's accuracy for the
two classes was from 0% to 75% for bare surface and 0% to 50% for
water. The SVM algorithm had a 0% user's accuracy for both classes
(Fig. 6). The dominating landcover class in the Nylsvley floodplain is
bare surface with an estimated area ranging from 362 ha to 495 ha.

Table 3

JM distances between wetland cover classes in the Nylsvley floodplain.
Optical features D1° D2° D3¢
NIR 0.2586 0.3839 0.0342
Red 0.6208 0.5998 0.0016
Green 0.6913 0.5289 0.0226
Blue 0.7211 0.5828 0.0251
NDVI 0.5663 0.5534 0.0358
NDWI 0.6675 0.3876 0.1351
MSAVI2 0.5986 0.0038 0.0524
ALL 2 2 1.990

¢ D1: Short grass & Long grass.
b D2: Long grass & Bare.
¢ D3: Bare surface & Short grass.
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Fig. 4. Overall Accuracy comparison between the algorithms used.

The CART algorithm estimated the lowest area. The least dominating
class is long grass comprising mainly common reeds species such as
Phragmites australis. The area for the least dominating wetland cover
class ranged between 130 ha and 352 ha. The highest area was esti-
mated by CART, and the lowest by NB. The producer's accuracy for the
dominating class ranged between 62% and 88% with the highest being
attained by the NB and the lowest by the SVM model. The producer's ac-
curacy for the least dominating class ranged between 33% and 66.6%
with the highest attained by NB model and lowest by CART and RF
models. The user's accuracy for the most dominating class ranged be-
tween 22% and 71% with highest recorded by SVM and CART and the
lowest by the NB model. User's accuracy for the least dominating ranged
between 20% and 66.6% with highest recorded by RF and lowest by
CART.

5. Discussion

Accurate detection and monitoring of small seasonal and heteroge-
neous wetlands in the semi-arid regions is important for understanding
the ecohydrological dynamics of these systems, as most of these wet-
lands particularly in the sub-Saharan Africa offer socio-economic bene-
fits to the surrounding communities (Gardner et al., 2009; Kabii and
Kabii, 2005; Thamaga et al., 2021). Advancements in data analytic
tools provide unique opportunities to improve the detection and moni-
toring of semi-arid wetlands of variable sizes, which were not feasible,
using the traditional remote sensing techniques. The introduction of
cloud computing platforms such as Google Earth engine (GEE), offers
advantages such as advanced machine learning algorithms and parallel
processing, memory efficiency and fast image processing power. The
study sought to assess the capabilities of GEE cloud-computing platform
in characterizing and mapping semi-arid seasonally flooded wetlands at
site specific scale, as well as suggesting a suitable GEE machine learning
algorithm for characterizing and mapping such systems.

In general, the results demonstrate the capabilities of Google Earth
engine cloud computing platform in characterizing and mapping the
semi-arid wetland systems of variable sizes with acceptable overall ac-
curacies. In addition, RF, CART and SVM algorithms proved to be supe-
rior to the NB model with low OA values for both studied wetlands.
Although higher OA were obtained using the latter algorithms, low pro-
ducer's and user's accuracies occurred in the Lindani valley bottom for
Bare and Water classes, especially using SVM model. The contributing
factors to the low producer's and user's accuracies for the two classes
were few training and validation sample points representing these clas-
ses due to less than a pixel spatial coverage of each class within the wet-
land boundary. Fewer training and validation points tend to reduce the
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level of accuracy during classification (Corcoran et al., 2015;
Mahdianpari et al., 2020; Zhen et al.,, 2013). In addition to few training
and validation data points, the multi-year images used during the com-
putation of median composite did not consider seasonality and yearly
differences, and that may have reduced the producer's and user's accu-
racies. The study by Noi Phan et al. (2020) analysed the impact of differ-
ent composition methods as well as input images on the classification
accuracy of different landcover classes using GEE. The results showed
that temporal aggregation considered during median compositing pro-
duced high accuracy values for the classification outputs. This demon-
strates the significance of temporal aggregations during the median
compositing stage. Although the results underscore the relevance of
the GEE cloud computing platform in characterizing and mapping
small seasonal flooded wetlands in the semi-arid regions, there are
some limitations associated with the use of this platform. These include
computational restrictions where large trainings required by complex
machine learning algorithms cannot be performed due to space limita-
tions, unavailability of complex and accurate image segmentation algo-
rithms as well as restricted image processing tools. Moreover, the
algorithms used have limitations such as, slow training and biasness
when dealing with categorical data in the case of RF, under performance
when dealing large data in case of SVM, more time required to train the
model in the case of CART and dependencies amongst classes cannot be
modelled when using NB.

Class spectral separability results show that the use of single optical
bands and indices in differentiating between the wetland classes for all
bands, not feasible in this case, although spectral bands such as NIR and
Red are known to be useful in wetlands delineation, vegetation, soil and
geology studies (Amani et al., 2018). Water was expected to be easily
discernible from other classes as it is known to have strong NIR adsorp-
tion and Low NIR reflectance making it easy to discriminate it from
other classes such as vegetation and soils which reflect more light at
NIR region. A study by Amani et al. (2018) reported great separability
of wetland cover classes using the NIR band particularly shallow waters
of the Newfoundland in semi-arid Canada. Red Band is known to be use-
ful in detecting chlorophyll absorption in vegetation as well as the com-
posite of soils, where soils with rich iron oxide will have stronger
reflectance and healthy vegetation will absorb red light, making it
easy to separate these classes from water. The results by Amani et al.
(2019) show that the shallow water of the Newfoundland wetlands in
Canada were discernible from the other classes such as soils and vegeta-
tion using the Red Band, however it was highlighted that in some in-
stances it may not be easy to discriminate these classes due to
similarities in spectral reflectance.

The synergic use of all spectral features significantly increased the
separability of different classes for both wetlands with JM distances
above 1.9. However, in the NIR region the logical expectation was that
vegetation and water will have strong reflectance and adsorption in
the NIR region, but in the case of Lindani valley bottom, water had stron-
ger reflectance in this spectral region. This could be due to the sub-
merged and floating wetland vegetation that interfere with the water
signals thus causing stronger reflectance of water at NIR region (De
Vries et al., 2017). In addition, materials at the bottom of the shallow
waters are known to affect absorption and reflectance of light by shal-
low waters (Vincikova et al., 2015). This could also be the case for this
wetland with shallow water. Jones (2015), reported increased errors
in mapping the spatial extent of water in areas within the greater Ever-
glades where vegetation is floating. This showed the problem of dis-
criminating between water and vegetation in such wetlands. In the
study presented in this paper, both wetlands had short and long grass
classes with higher reflectance values in the visible red-light region in-
dicative of water stressed vegetation. Water stressed vegetation is
known to have stronger reflectance signals in visible red-light region
(Adam et al., 2010; Macarthur, 1975). The study by Caturegli et al.
(2020) assessed the effects of water stress on spectral reflectance of
Bermudagrass (Cynodon dyctolon) under controlled laboratory
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conditions. The results showed an increase in red light reflectance
with increasing water stress, thus proving that water stressed vegeta-
tion has a stronger reflectance in the visible red-light region. The indices
were found to be the least useful in separating the class for both wet-
lands, partly because seasonality and yearly differences were not con-
sidered during median compositing of the selected images. Maximum
NDVI values tend to correspond to the growing season in most cases.
A study by Wang et al. (2020) examined the response of the maximum
NDVI values to precipitation occurring during the period of active
growth from 2000 to 2013 in the Alpine grassland site of the Tibetan
Plateau. The results showed a positive linear relationship between pre-
cipitation and the maximum NDVI thus proving that NDVI is most useful
during the peak growing season.

The findings of this study prove that the GEE platform and advanced
machine learning algorithm have the potential to improve the detection
and monitoring of small seasonally flooded wetlands in semi-arid re-
gions using Sentinel-2 multi-year composite image. This has been previ-
ously a daunting task, using the conventional mapping methodologies
and optical data. In addition, the results demonstrate that the most de-
tectable wetland features were mostly wetland vegetation communi-
ties, although there were some challenges relating to accuracy
particularly for the Lindani valley bottom system. The study provides
baseline information and new insights about better enhancing small
seasonal flooded wetlands from optical data at reasonable accuracy
and moderately high-resolution, thus underscoring the significance of
freely available optical data in monitoring semi-arid seasonal flooded
systems. This is important for semi-arid regions with limited data access
particularly sub-Saharan Africa where less attention is given to these
systems due to limited information regarding their status although
serving as important source of water for most communities. The find-
ings also contribute towards the ongoing global wetland monitoring
programmes such as Wetland Monitoring and Assessment Services for
Transboundary Basins in Southern Africa (WeMAST) funded by
European Union- Africa Global Monitoring for Environmental Security
(EU Africa GMES). This programme aims at developing an integrated
platform for wetlands assessment and monitoring that will support sus-
tainable management in transboundary basins. Furthermore, the study
contributes to the sustainable development goal 6.6, seeking to halt
degradation and destruction of ecosystems including wetlands and as-
sist in recovery of the already degraded systems.

6. Conclusion and recommendations

The current study was aimed at characterizing and mapping two
seasonal flooded wetlands in the Limpopo Transboundary River Basin,
with the objective of assessing the usefulness of GEE cloud computing
platform in producing maps of the studied wetlands as well as suggest-
ing possible GEE algorithms for detecting and mapping such systems.
The main findings indicate the capabilities of GEE in mapping seasonal
semi-arid wetlands system of variable size with reasonable overall ac-
curacies, and RF CART and SVM algorithms being superior to the NB
model. Although reasonable overall accuracies were attained, there
were poor producer's and user's accuracies for some classes such as
Water and Bare surface especially for the Lindani valley bottom wet-
land. This can be attributed to less than a pixel spatial coverage of
these classes within wetlands perimeter, thus resulting in difficulties
in their detection to the highest precision using Sentinel-2 composite
data. In addition, the seasonality and yearly difference were not consid-
ered which could have significantly affected the results because some
features such as water tend to correspond to seasonality changes, espe-
cially for semi-arid season. It is therefore recommended that temporal
variability be considered in-order to capture the peak growing season
of the systems and thus better enhancing the wetland features. Spectral
confusions were also observed between water and some wetland vege-
tation, which resulted in the higher reflectance of water in the NIR re-
gion. In avoiding such, the study recommends the integration of
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Synthetic Aperture Radar (SAR) data to the optical data since SAR data
can penetrate through forested vegetation thus minimising the effect
of floating vegetation in the detection of water class. Moreover, the test-
ing of other machine learning algorithms such as Artificial Neural
Network (ANN) as well as the inclusion of Short-wave infrared and
thermal bands are recommended.
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