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How do we appropriately fit a model based on an idealised Friedmann-Lemâıtre Robertson-Walker
spacetime to observations made from a single location in a lumpy Universe? We address this question
for surveys that measure the imprints of the baryon acoustic oscillation in galaxy distribution and
the peak apparent magnitude of the Type Ia supernova. These observables are related to the
cosmological model through the Alcock-Paczyński parameters and the distance-redshift relation.
Using the corresponding inhomogeneous spacetime expressions of these as observed data, we perform
a parameter inference assuming that the background Friedmann-Lemâıtre Robertson-Walker model
is the correct model of the Universe. This process allows us to estimate the best fit Hubble rate and
the deceleration parameter. We find that the inferred Hubble rate from the monopole of the Alcock-
Paczyński parameters is in tension with the Hubble rate determined using the distance-redshift
relation. The latter gives the best fit Hubble rate for the cosmological expansion. The constraint
on the Hubble rate from the Alcock-Paczyński parameters is contaminated by the environment.
When the environmental contribution is restricted to modes in the Hubble flow, we find about (9-
12)% discrepancy in the Hubble rate. Finally, we comment on the insufficiency of the method of
cosmography in constraining the deceleration parameter.

I. INTRODUCTION

The distribution of large scale structures in the Universe on ultra-large scales appear homogeneous and isotropic [1–
3]. On scales of superclusters, there are inhomogeneities [4]. The Universe seen on scales of clusters appear very lumpy
with sources moving with discernible peculiar velocities within clusters and clusters interacting gravitationally with
each other [5, 6]. Ellis and Stoeger pointed out in [7] that fitting models based on homogeneous and isotropic
Friedmann-Lemâıtre Robertson-Walker (FLRW) spacetime to observation of a lumpy Universe leads to a geometry
that ignores on average the details present on small scales. Such a description of physical reality by the best-fit
FLRW model embodies a smoothing scale that is usually not made explicit. Ellis and Stoeger further argued that
any relevant averaging procedure that yields a best-fit FLRW model must be performed on the past light-cone of
the observer [8, 9]. This is particularly important because averaging on the hypersurface of constant time could be
gauge dependent. The question of which of the N-possible observers in the Universe sees a homogeneous and isotropic
FLRW spacetime is still unaddressed [9, 10]. It is important to note that observing isotropic distribution of matter
on the past light cone of an observer does not immediately imply a homogeneous distribution of matter without a
further assumption of the Copernican principle [11, 12]. This work is about the cosmological fitting problem in the
light of the current Hubble tension.

Hubble tension refers to the discrepancies in the value of the Hubble rate, H0, when late/early time observations are
interpreted using the FLRW spacetime. For example, the SH0ES collaboration constrains H0 to be H0 = 73.2± 1.3
km/sec/Mpc from the intercept of the Hubble diagram of SNIa with the absolute luminosity calibrated using nearby
Cepheid variables [13], detached eclipsing binary system in the Large Magellanic Cloud (LMC) [14] and distance to
the NGC 4258 [15]. The Carnegie-Chicago Hubble Program (CCHP) constrains H0 to be H0 = 69.6±1.9 km/sec/Mpc
using the information contained in the Hubble diagram at low redshift. Here, the absolute luminosity is calibrated
using the Tip of the Red Giant Branch (TRGB) stars in the Hertzsprung-Russell diagram [16]. The calibration of
the absolute luminosity using different anchors by the two groups does not seem to be the source of the discrepancy
but rather the ability to synchronise the zero-point of the distance modulus [17]. The Baryon Acoustic Oscillation
(BAO) spectroscopic survey however, constrains a combination of the Alcock-Paczyński parameters [18] with respect
to the BAO peak at an effective redshift different from zero. The Alcock-Paczyński parameters are then interpreted
in terms of the flat FLRW model to make a determination of H0 = 68.6±1.1 km/sec/Mpc [19–21]. There are a whole
lot of other determinations of H0 with values falling into either within BAO or SH0ES categories, for details see [22].

All these efforts assume that the FLRW spacetime provides the correct description of the Universe on all scales [13,
16, 19, 21, 23, 24], yet they return different determinations of H0. We study this tension by averaging over the space-
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time independent inhomogeneous generalisation of each of the observable-redshift relations used in the determination
of H0. We make use of the formalism developed by Kristian and Sachs [25] to derive these equations in the limit
of small redshifts. We fit FLRW model at fixed redshift to the corresponding monopole (past-light cone average) of
the generalised observable-redshift relations. We made use of the 1 + 3 covariant decomposition formalism developed
in [26, 27] to decompose the observable-redshift relations into covariant irreducible units. In addition, we made use
of the observer past-light cone moment decomposition formalism developed in [28, 29] to extract the monopole in a
coordinate independent way. This allows us to obtain the best-fit Hubble rate and the deceleration parameter, q0,
using each of the observable-redshift relations by matching the monopole of the arbitrary inhomogeneous model to
that of the homogeneous and isotropic FLRW spacetime order by order in redshift.

We find that the difference between the Hubble rate obtained from fitting the local distance modulus for the SNIa
and the Alcock-Paczyński parameters to the FLRW model is proportional to the square of the shear tensor associated
with a geodesic observer in our local group. In a perturbed FLRW spacetime, this term is proportional to the variance
in the mass density field fluctuation smoothed at scale R. We show that the smoothing scale R corresponds to a
scale where the geometry of the local observer decouples from the large scale expansion of the Universe(i.e the radius
of the zero-velocity surface). We argue that the smoothing scale must be set to this value in order to avoid the
caustics or the conjugate point at the boundary of our local group [30]. Taking the mass of our local group to be
MLG ∼ (1011 − 1012)M� [31–33] gives a smoothing scale of R ∼ (0.8 − 1.2)Mpc. The translates to about (9-12)%
discrepancy in the Hubble rate and this is the amount needed to resolve the supernova absolute magnitude tension
as well [34]. In addition, we find that the deceleration parameter, q0 obtained from cosmography is also impacted
by cosmic structures. We find a discrepancy in the determination of q0. The value we find is in agreement with the
recent measurement of q0 from Pantheon supernova sample [35]. It is important to note that monopole of the low
redshift Taylor series expansion of the area distance differs significantly from the full expression [36], therefore, this
result may not be trusted. We argue that it is rather an indication of a break-down of the low redshift Taylor series
expansion since the determination using the full expression gives a much lower value [37].

The rest of the paper is organised as follows: we describe the underlying philosophy behind the cosmological fitting
problem in section II. This is followed by a description of the generalised spacetime independent inhomogeneous
models for the area/luminosity distance in sub-section II.1. We describe how to fit inhomogeneous models of various
observables to the FLRW model in section III. We specialised the discussion to a perturbed FLRW model in section
IV. We discuss the existence of a causal horizon and how to identify it in section IV.1. We conclude in section V. We
provide details on how the generalised inhomogeneous observable-redshift relations were derived in Appendix A.

Cosmology: We adopt the following values for the cosmological parameters of the standard model [23]: the
dimensionless Hubble parameter, h = 0.674, baryon density parameter, Ωb = 0.0493, dark matter density parameter,
Ωcdm = 0.264, matter density parameter, Ωm = Ωcdm + Ωb, spectral index, ns = 0.9608, and the amplitude of the
primordial perturbation, As = 2.198× 10−9.

II. INTRODUCTION TO THE COSMOLOGICAL FITTING PROBLEM

There are two approaches for building a model of the Universe; the pragmatic and observational approaches. The
pragmatic approach makes assumptions about the geometry of the Universe and then use observations to validate
those assumptions. For example, the standard model of cosmology is built on a priori assumption that all physical
quantities measured by a comoving observer are spatially homogeneous and isotropic (cosmological principle), This
assumption restricts a set of all possible spacetimes of the Universe to the FLRW [38]. The current effort in cosmology
is mainly directed towards making a very precise determination of the free parameters of this model [23, 39, 40]. While
the alternative observational approach uses observational data from our past light cone such as apparent luminosities,
angular diameters and number count of sources without assuming the cosmological principle to construct the geometry
of the Universe[41–43]. The observational approach encounters difficulties due to the absence of the initial data [44].
However, it holds a huge promise that when all the issues are resolved, it will not only provide us with exact geometry
of the Universe, it will also allow us to quantify homogeneity scale if anything like that exists.

The cosmological fitting approach we describe here is an intermediate approach between these two approaches [45].
It does not assume a priori that the FLRW spacetime describes the observable Universe accurately at all times and
at all distances, rather it considers it as a fiducial model of the Universe. For example, we assume that the fiducial
model is specified by

Ū =
{
M̄, ḡab, ū

a, ρ̄, N̄ , µ̄, āb, ᾱ‖ , ᾱ⊥
}
, (1)

where M̄ is Riemannian manifold, ḡab is the metric, ūa is the four velocity, N̄ is the number count of sources, µ̄
is the distance-redshift relation (distance modulus), ab is the intercept of the Hubble diagram, ᾱ‖ and ᾱ⊥ are the
radial and orthogonal components of the Alcock and Paczyński parameters [18]. Then, it takes some hints from the



3

observational approach such that it assumes that there exists a model of the observed Universe which gives a realistic
representation of the Universe including all inhomogeneities down to some specified length scale |x1 − x2| > R

U =
{
M, gab, u

a, ρ,N, µ, ab, α‖ , α⊥
}
. (2)

The task then is to determine a best fit model of the Universe given U . Just like in the observational approach, the
most optimal procedure for obtaining the best fit model is to fit the observed data or observables on the past light
cones C−(p̄) and C−(p) of points p̄, p in Ū and U respectively. Since Ū is homogenous and isotropic, any point is
equally likely, for the points in U , we smooth over angular dependence of any observable, X, associated with U , on
the past light cone of an observer with four velocity ua within a sphere of constant redshift

〈X(z, n̂)〉Ω = 1
4π

∫
d2ΩX(z, n̂) =

∫
dn̂ X(z, n̂) , (3)

where n̂ is line of sight direction. We assume that the redshift is monotonic for points separated by distance greater
than R. We compare the monopole of the observable X obtained by smoothing out anisotropies on the past null
cone C−(p) to the corresponding prediction by the fiducial model of the same observable. The free parameters of the
fiducial model, i.e Ū are then adjusted to obtain the best-fit value to the angular average of the observable in the
lumpy Universe. In principle, we evaluate the χ2 of any observable X:

χ2
X =

∑
i

[
〈Xi〉Ω − X̄

(
zi|HX

0 , q
X
0
)

σXi

]2

, (4)

where σXi is the covariance, in a single parameter, it reduces to the variance, H0 and q0 are the Hubble rate and the
deceleration parameter respectively. Then we find the optimum values of HX

0 and qX0 by minimising the χ2
X with

respect to HX
0 and qX0

∂χ2
X

∂HX
0

= 0 , and ∂χ2
X

∂qX0
= 0 . (5)

In order to build a complete picture of the best-fit model, the ideal thing we will be to obtain the optimum values of
H0 and q0 by minimaxing the joint χ2 = χ2

µ+χ2
ab

+χ2
α‖

+χ2
α⊥

+ · · · with respect to H0 and q0 simultaneously. We do
not consider this here because our focus is to identify the source of tension in the inferred Hubble rate. This is best
done by independently fitting the late and early Universe observables to their corresponding FLRW space models.

This intermediate approach offers tremendous advantages over the other two approaches, such as;

• Clear description of the relevant physics: It makes apparent the geometrical and physical interpreta-
tion of the FLRW models we use because it provides a clear link between the highly symmetric fiducial model
and more realistic descriptions of the lumpy Universe we observe.

• Delineation of scales: It helps to establish the appropriate scale of validity of the best-fit model of the
Universe. That is it helps to address statement that the Universe can be regarded as almost FLRW Universe if
averaged out over a specified length scale.

• Guidance in the presence of tension: It does not only enable one to determine the best-fit FLRW Universe
model, it allows to predict the presence of tension in the model parameters. For example, under this framework
tensions appear in the model parameters when the fiducial model is fit to data from length scales or time in the
evolution of the Universe where the background FLRW spacetime is not applicable(i.e nonlinear scales). We
discuss this point in greater detail in the subsequent sections.

• Wider application: It is possible to use it repeatedly; that is, to consider which of the lumpy Universe models
U and another lumpiness model, say U ′ give an even better description of the real Universe than U , i.e which
one of them describes the inhomogeneities at an even more detail.

II.1. Inhomogeneous distances in a realistic model of the Universe

We work in the geometric optics limit i.e we assume that the wavelength of photon is small compared to the radius
of curvature of the Universe. In this limit, null geodesics describes photon propagation and a tangent vector to the
null geodesic is given by ka = dxa/dλ and it satisfies

kak
a = 0 and kb∇bka = 0 . (6)
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where λ is the affine parameter. When initialised at the observer position, it increases monotonically [46]. ∇ is
the covariant derivative of the physical spacetime of the Universe. With respect to a set of fundamental comoving
observers with the average 4-velocity ua, we can decompose ka into parallel and orthogonal components:

ka = (−ubkb) (ua − na) = E (ua − na) , (7)

where na is the Line of Sight (LoS) spatial direction vector with a normalization nana = 1, E = −ubkb is the photon
energy measured by ua. na is orthogonal to ua; naua = 0. Note that our choice of na is opposite to the direction of
photon propagation. ka is pointing along an incoming light ray on the past light cone of the observer. The apparent
magnitude of any source, m, is related to the observed flux density FdL

measurement at a given luminosity distance
dL in a given spectral filter according to

m = −2.5 log10 [FdL
] . (8)

The absolute magnitude, M , of the same source is defined as the apparent magnitude measured at a distance DF

M = −2.5 log10 [FDF
] , (9)

where FDF
is called the reference flux or the zero-point of the filter [47–49]. The observed flux density at both

distances obey the inverse square law with the luminosity distance, dL: FdL
/FDF

= [DF /dL]2 . The distance modulus
is defined as the difference between m and M

m−M = −2.5 log
[
FdL

FDF

]
= 5 log

[
dL
DF

]
= 5 log

[
dL
[pc]

]
− 5 . (10)

In the last equality, we set DF = 10 pc for historical reason. In this case, it means that the absolute magnitude is the
apparent magnitude if the telescope is placed at a distance of 10 pc. In cosmology however, DF is set to DF = 1 Mpc
leading to

µ(z, n̂) = m(z, n̂)−M = 5 log
[

dL
[Mpc]

]
+ 25 , (11)

where dL is in the units of Mpc. This implies that for cosmological purposes, the consistently calibrated cosmic
distance ladder would have a reference flux determined at 1Mpc. The generalised coordinate independent expressions
for the area and the luminosity distance at low redshift are (see appendix A for details of the derivation) [25, 50]

dA(z, n̂) = z

[KcKd∇cud]o
− 1

2

[
KcKdKe∇e∇duc

(KcKd∇cud)3

]
o

z2 +O(z)3 , (12)

dL(z, n̂) = z

[KcKd∇duc]o

{
1 + 1

2

[
4− KcKdKe∇e∇duc

(KcKd∇cud)2

]
o

z +O(z2)
}
, (13)

where Ka is a normalized null vector: Ka = ua − na. The associated null geodesic tangent vector is given by
ka = (1 + z)Ka. In general, dL is related to dA via distance duality relation: dL = (1 + z)2dA [51–53]. We neglect
the effect of the heliocentric peculiar velocity. Its contribution will not substantially change the the determination of
the Hubble rate, expecially via the local distance ladder [54]. The redshift in equations (12) and (13) corresponds to
the cosmological redshifts.

On the FLRW background space, equation (12) and (13) reduce to

d̄A(z) = z

H0

[
1− 1

2 (3 + q0) z +O(z)2
]
, (14)

d̄L(z) = z

H0

[
1 + 1

2 [1− q0] z +O(z)2
]
. (15)

The magnitude-redshift relation is given by equation (11) with the luminosity distance given by equation (15). We
have truncated the Taylor series expansion at second order in redshift expansion because our focus is on how the
cosmic structures impact the measurement of the Hubble rate, H0 and the deceleration parameters, q0. It is certainly
debatable whether these series expansions on arbitrary spacetime have much relation with the magnitude-redshift
relation in the observable Universe. In particular, is it analytic, especially in the region where shell crossing occurs?
These doubts are valid, but, this is how we address them:

• Differentiability at z = 0: We showed in [36] that dA expanded up to second order in standard cosmolog-
ical perturbation theory on an FLRW background spacetime is differentiable at z = 0. The linearly perturbed
FLRW equations can be re-written in terms of the equations of the exact inhomogeneous Szekeres models [55].
This shows that the generalised inhomogeneous model is also differentiable at z = 0.
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• Shell crossing singularity: It is likely that in certain directions, the Taylor series expansion of observables
will be multivalued as a light beam passes through collapsing regions, this is a valid concern. We show in section
IV.1, that collapsing region around the observer can be isolated from the expanding spacetime by setting the
smoothing scale at the zero-velocity surface [36]. Similar restriction was deployed recently in an attempt to
estimate equation (13) from a general relativistic N-body simulation [56].

• Convergences of the series expansion: Convergence of series expansion is a problem in general, in our
case, it is well-known that for z < 0.1, equations (14) and (15) converge at second order in redshift expansion. It
is likely that in the presence of structures, higher-order redshift correction will be needed to achieve convergence
at the same redshift. We find some hints of this in [36] but a more detailed study is needed since next to leading
order terms were neglected in the analysis. Currently, we are essentially interested in what happens in the limit
where z � 1 and we have no reason to believe that second-order series expansion in redshift will not be enough
to determine the Hubble rate.

II.2. Covariant and multipole moment decomposition of observables

We are primarily interested in the multipole moment decomposition of the observable-redshift relations so that the
monopole or the all-sky average can be compared to the corresponding expression based on the background FLRW
spacetime. To accomplish this, we decompose KaKb∇aub and KaKbKc∇a∇buc into irreducible physical quantities
that live on the hypersurface orthogonal to ua using in 1+3 covariant decomposition formalism [26, 27, 52, 57–59].
The irreducible decomposition of the spacetime covariant derivative of ua for geodesic observers is given by [27, 59]

∇bua = 1
3Θhab + σab , (16)

where Θ denotes the expansion (Θ > 0)/contraction (Θ < 0) of the nearby geodesics associated with ua, σab is the
shear tensor, it describes the rate of change of the deformation of spacetime in the neighbourhood of the observer,
hab = gab +uaub is the metric on the hypersurface orthogonal to the time-like ua (uaua = −1) and gab is the physical
spacetime metric. The vorticity vanishes for irrotational fluids or geodesic observer. There is a 1-to-1 mapping
between all symmetric trace-free tensors of rank ` and the spherical harmonics of order ` [28, 60–62]. We can see this
by decomposing the LoS direction vector na at the observer position on an orthonormal tetrad basis [61, 63]

na(θ, φ) = (0, sin θ sinφ, sin θ cosφ, cos θ) . (17)

In the standard spherical harmonics decomposition formalism, any function f on the sky may be expanded in spherical
harmonics, Y `m(n̂) according to

f(n̂) =
L∑
`=0

∑̀
m=−`

F `mY `m(n̂) =
∞∑
`=0

FA`
nA` = F + Fan

a + Fabn
anb + Fabcn

anbnc . (18)

where F `m is the spherical harmonic coefficients. A` = a1a2...a` is a compound index notation that denotes number
of indices, FA`

is the moments, it is symmetric, trace-free and orthogonal to ua, FA`
= F(A`) , FA`abh

ab = 0 , and
FA`au

a = 0 respectively. Here, “(· · · )” brackets in the subscript denote the symmetrisation overall indices and the
angle brackets “〈· · ·〉” denotes PSTF part. In the second equality, we show an equivalent way of performing the
spherical harmonic expansion in Projected Symmetric Trace-Free (PSTF) tensors in nabasis [28, 60–62]. The PSTF
part of any index-tensor is given by [28, 64–67],

F〈A`〉 =
[`/2]∑
n=0
B`nh(a1a2 ....ha2n−1a2n

Fa2n+1...a`) , with B`n = (−1)n`!(2`− 2n− 1)!!
(`− 2n)!(2`− 1)!!(2n)!! . (19)

[`/2] means the largest integer part less than or equal to `/2, `! = `(` − 1)(` − 2)(` − 3)...(1), and `!! = `(` − 2)(` −
4)(`− 6)...(2 or 1). The moment and covariant decomposition of KaKb∇aub and KaKbKc∇a∇buc within General
Relativity for dust is given by [9, 68, 69]

KaKb∇aub = 1
3Θ + σabn

anb , (20)

KaKbKc∇a∇buc = O +Oana +Oabnanb +Oabcnanbnc (21)
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where O, Oa, Oab and Oabc are the monopole, dipole, quadrupole and octupole moments of KaKbKc∇a∇buc

O = 1
6ρ+ 1

3Θ2 − 1
3Λ + σabσ

ab , (22)

Oa = 1
3D̃aΘ + 2

5D̃bσ
b
a , (23)

Oab = Eab + 2Θσab + 3σcaσbc , (24)
Oabc = D̃aσbc . (25)

Here ρ is the matter density, Λ is the cosmological constant, Eab is the Electric part of the Weyl tensor and D̃a is
the spatial derivative on the hypersurface. Eab describes how nearby geodesics tear apart from the equation. It is
crucial in the discussion that follows. An extension to modified gravity theories and general matter fields should be
straightforward.

III. THE COSMOLOGICAL FITTING PROBLEM

In this section, we consider how surveys that measure the imprints of the Baryon Acoustic Oscillation (BAO) in
galaxy distribution and the apparent magnitude of the type Ia supernova are compared to a cosmological model
through the Alcock-Paczyński parameters, the distance-redshift relation. Our key focus will be to estimate how
inhomogeneity affects the determination of the Hubble rate and the deceleration parameter.

III.1. Cosmological fitting problem: Alcock-Paczyński parameters

The BAO scale constitutes an important link between the physics, before and around the drag and present epoch.
Similar to the Cosmic Microwave Background radiation, CMB, the plasma physics of acoustic density waves before
decoupling imprints a characteristic scale in the matter distribution. The characteristic scale, i.e BAO scale appears
as an excess in the probability of finding galaxies separated by some distance in the distribution of sources seen today
on the sky. Since a fiducial model for the separation is required for calculating the separation between galaxies, Alcock
and Paczyński [18] introduced a clever way to recover the true separation. For a spherical symmetric distribution of
sources, the two-point correlation function, ξg, is given by [70]

ξg(r12‖ , r12⊥) = 1
α‖α

2
⊥
ξg(α‖rfid

12‖ , α⊥r
fid
12⊥) , (26)

where r12 and rfid
12 are the true and fiducial separation between two galaxies respectively. Within the cosmological

standard model treatment, the difference between the fiducial model and true model are parameterised by

ᾱ‖ = H̄fid

H̄
, ᾱ⊥ = d̄A

d̄fid
A

. (27)

Here H̄fid and d̄fid
A are the fiducial Hubble rate and area distance respectively. H̄ and d̄A are then adjusted to obtain

the best-fit to the observed data. BAO is sensitive to the Hubble rate through the distortions (α‖ and α⊥) at the
survey mean redshift z. The determination of the value of the Hubble rate today is made assuming a model. The
measurement of the monopole of equation (26) constrains α = α

2/3
⊥ α‖

1/3 [19, 71], while the quadrupole moment is most
sensitive to the Alcock-Paczyński ratio ε = α⊥/α‖ [70]. Using the void-galaxy cross-correlation from the BOSS survey
at the mean redshift of z = 0.57, [70] finds a strong constraint on α⊥/α‖ = 1.016 ± 0.011 using the CMASS galaxy
sample of the BOSS DR12 data release. This constraint when interpreted in within the ΛCDM model(i.e equation
(27) with the sound horizon, rs, set to the Planck value) is consistent with the Planck collaboration’s determination
of H0 from the analysis of the anisotropies in the cosmic microwave background (CMB) [23]:

H0 = 67.4± 0.5 km/sec/Mpc . (28)

In a lumpy Universe, the structure of equation (26) will change slightly, however, it holds for spherical symmetric
distribution of sources. We will discuss modifications away from this limit elsewhere. For an almost FLRW spacetime
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for which we are interested here, equation (27) generalises as follows:

α‖ =
∂r‖
∂rfid
‖

=
∂r‖
∂z

∂z

∂rfid
‖

' dλ
dz

dz
dλfid , (29)

= H̄fid

H

[
1 + σab

H
nanb

]−1
, (30)

= H̄fid

H

[
1− σab

H
nanb + σab

H

σcd
H
nanbncnd +O(σ4)

]
, (31)

where, H = Θ/3, in the last equality, This is the Hubble rate associated with the expansion of the nearby congruence
in a lumpy Universe. Moreover, we assumed that the real Universe is almost statistical homogeneous and isotropic, i.e
σabn

anb/H � 1. To move from the first line of equation (29) to the second, we made use of the propagation equation
for the redshift [72]

dz
dλ = −(1 + z)2 [H + σabn

anb
]
,

dz
dλfid = −(1 + z)2H̄fid . (32)

Note that on the fiducial FLRW spacetime, the shear vanishes σab = 0. At low redshift, the generalised counter-part
to ᾱ⊥ involves replacing the background area distance with equation (12).

To obtain the best-fit model from the radial component of the separation in the limit z → 0, we compare ᾱ‖ to
all-sky average of α‖

ᾱ‖ =
〈
α‖
〉

Ω = H̄fid

H

[
1 +

〈σab
H

σcd
H
nanbncnd

〉
Ω

+O(σ4)
]
, (33)

= H̄fid

H

[
1 + 2

15
σabσ

ab

H2 +O(σ4)
]
. (34)

To perform the all-sky average we decompose σ(abσcd) into irreducible unit and then extract the monopole using

nanbncndσ(abσcd) = nanbncndσ〈abσcd〉 + 4
7n

anbσc〈aσb〉c + 2
15σabσ

ab. (35)

This can also be done by performing the angular integration in equation (33) right away [29]. Comparing equation
(27) to equation (34), we obtain the effective Hubble rate

Hα‖ = H

[
1− 2

15
σabσ

ab

H2 +O(σ4)
]
. (36)

The Hubble rate inferred from the constraint on α‖ is biased by −2σabσab/15H2. For the orthogonal component, α⊥,
we focus on dA, since the fiducial model is the same, it reduces to comparing equation (14) to the all-sky average of
equation (12) at a fixed redshift. At the leading order in redshift, the effective Hubble rate from fitting the monopole
of area distance in a lumpy Universe to the FLRW spacetime is given by

1
HdA

0
=
〈

1
H0

(
1 + σab

H0
nanb

)−1 ∣∣∣∣
z=zo

〉
Ω

= 1
H0

[
1−

σ〈ab〉

H0
nanb +

σ(ab

H0

σcd)

H0
nanbncnd +O(σ4)

]
, (37)

where Θo = 3H0 is the monopole component of KaKb∇aub. Again, we expanded
(
KaKb∇aub

)−1 up to second order
in σabn

anb/H0 � 1. Using equation (35) again and noting that σaa = 0, we find

1
HdA

0
≡ 1
H0

[
1 + 2

15
σabσ

ab

H2

∣∣∣∣
zo

+O(σ4)
]
. (38)

The Hubble rate inferred from the area distance by fitting the area distance information from the lumpy Universe to
an FLRW background spacetime is given by

HdA
0 = H0

[
1− 2

15
σabσ

ab

H2

∣∣∣∣
zo

+O(σ̃4)
]
. (39)

Furthermore, the evolution of σab is sourced by the electric part of the Weyl tensor, Eab [27, 59]
Dσab
Dτ = −2

3Θσab − σc〈aσb〉c − Eab . (40)
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Again, Eab contains information about the tidal forces due to gravity, it represents how nearby geodesics tear apart
from each other [59]. In an almost FLRW spacetime (i.e small perturbation on top of an FLRW spacetime), σij is
related to Eij in comoving spacetime

σij(η,x) ∼ −
∫ η

ηini

dη′Eij(η′,x′) . (41)

In this form, it is straightforward to see that σij describes the cumulative effect of the local geometry deformation
from the initial seed time to the time of observation. It also helps to understand why σij characterises the cosmic
web more transparently than Eij [73, 74].

For the deceleration parameter today, we compare equation (14) to the monopole of equation (12) at the second
order in redshift (

3 + qdA
0

)
HdA

0
=
〈
KaKbKc∇a∇buc

(KaKb∇aub)3

〉
Ω
. (42)

Decomposing the denominator in terms of the expansion and shear tensor and expressing the result into irreducible
unit, we found (

KaKb∇aub|0
)3 = 1

27Θ3 + 1
3Θ2σab + σabσcdΘnanbncnd +O(σ3) , (43)

= H(3) +H(3)
abn

anb +H(3)
abcdn

anbncnd +O(σ3) . (44)

In the second equality, we have introduced the first few multipole moments as

H(3) = H3 + 2
15Θσabσab = H3

(
1 + 6

15
σabσ

ab

H2

)
, (45)

H(3)
ab = 1

3Θ2σab + 4
7σ

c
〈aσb〉cΘ , (46)

H(3)
abcd = σ〈abσcd〉Θ . (47)

Here H(3) is the monopole, H(3)
ab, and H(3)

abcd are quadrupole and the Hexadecapole moments of
(
KaKb∇aub|0

)3
respectively. Using equation (21) and (44) we find the best-fit deceleration parameter is given by

qdA
0 = −3 + HdA

0
H(3)

[
O
(

1 + 2
15
H(3)

abH(3) ab

H(3) 2

)
− 2

15
H(3)

ab

H(3) O
ab

]∣∣∣∣
z=z0

, (48)

≈ 1
H2

{
1
6ρ−

1
3Λ + 3

5σabσ
ab + 2

3

(
1
6ρ−

1
3Λ
)
σabσab
H2 − 2

5
σabEab
H

}∣∣∣∣
z=z0

. (49)

Given that the distance duality relation or Etherington reciprocity theorem holds, the Hubble and deceleration
parameters obtained from the monopole of luminosity distance must correspond to the Hubble rate given in equations
(39) and (49) respectively [75]. We checked and find that this holds, thus for the Hubble rate HdL

0 = HdA
0 and the

deceleration parameter qdL
0 = qdA

0 .

III.2. Cosmological fitting problem: Distance modulus

The Carnegie-Chicago Hubble Program, CCHP, uses the distance modulus with the luminosity distance given by
the flat FLRW spacetime (equation (15)) to estimate H0 and q0 [16].

µ(z,H0, q0) = m−M , (50)

= 5 log10 dL + 25 = 5 log10

[
z

H0

(
1 + 1

2(1− q0)z +O(z2)
)]

+ 25 . (51)

One unique feature of the CCHP approach is that it uses the Tip of the Red Giant Branch stars, TRGB, to calibrate
the SNIa samples. According to [76], the best-fit H0 depends crucially on the accuracy with which the absolute
magnitude of the SNIa is calibrated

M = m− µTRGB
0 , (52)

where m is the apparent magnitude of the peak of the SNIa light curve for a given subsample of SNIa co-located with
the TRGB, µTRGB

0 is the true calibrator distance modulus. After calibrating M [16, 77], equation (50) is used for the
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SNIa sample in the Hubble flow (i.e within the redshift range (0.03 ≤ z ≤ 0.4)). CCHP usually put uninformative
prior(the value of q0 does not vary in the model estimates of distance to each of the SNIa in the sample) on q0 = −0.53
to determine the Hubble rate to be [16]

H0 = 69.6± 1.9 km/sec/Mpc . (53)

The generalised form of the distance modulus is obtained by replacing dL given in (15) with the generalised form
given equation (13). Then compare the all-sky average to equation (50)

〈µ〉Ω = 〈m〉Ω − 〈M〉Ω = 5 〈 log10 [dL(z, n̂]〉Ω + 25 (54)

Comparing equation (54) to equation (50) requires that we perform the angular integration over logarithm of dL

〈log10 dL(z, n̂)〉Ω = −
〈
log10[KcKd∇duc]o

〉
Ω +

〈
log10

[
d̂L(z, n̂)

]〉
Ω
, (55)

where we have used the quotient rule for logarithm to re-write equation (13). We have also introduced the generalised
form of the normalised luminosity distance

d̂L(z, n̂) = z

{
1 + 1

2

[
4− KcKbKa∇a∇buc

(KcKb∇cub)2

]
0

z +O(z2)
}
. (56)

In order to simplify
〈
log10[KcKd∇duc]o

〉
Ω further, we use the irreducible decomposition of KaKb∇aub

log10
[
KaKb∇aub

∣∣
0

]
= log10

[
H0

(
1 + σab

H0
nanb

)]
= log10H0 + log10

(
1 + σab

H0
nanb

)
. (57)

For σabnanb/H0 � 1, we can expand the second term in Taylor series and use equation (35) to obtain the PSTF part

log10

(
1 + σab

H0
nanb

)
= 1

log 10

[
σab
H0

nanb − 1
2
σab
H0

σcd
H0

nanbncnd +O (σ)3
]
, (58)

= 1
log 10

[
− 1

15
σabσ

ab

H2
0

+
(
σab
H0
− 2

7
σc〈aσb〉c

H2
0

)
n〈anb〉 − 1

2
σ〈abσcd〉

H2
0

n〈anbncnd〉 +O (σ)3
]
.(59)

Now it straight forward to perform the all-sky average to obtain the monopole〈
log10

[
KaKb∇aub

∣∣
0

]〉
Ω = log10H0 − log10

[
1 + 1

15
σabσ

ab

H2
0

]
. (60)

Extracting the monopole of
〈

log10

[
d̂L(z, n̂)

]〉
Ω

is little more algebraically more involved. We go through it step-by-
step. Firstly, we decompose d̂L(z, n̂) in multipole moments

d̂L(z, n̂) =
∞∑
`=0

d̂A`
(z)n〈A`〉 = d̂L0 + d̂Lan

a + d̂Labn
anb + d̂Labcn

anbnc +O
(
d̂LA`>3

)
, (61)

where d̂L0 , d̂La and d̂Lab are the monopole, dipole and quadrupole moments of the Hubble rate-normalised luminosity
distance respectively. Then by factoring out the monopole of d̂L and requiring that d̂LA`>1

/d̂L0 � 1 allows to expand
the anisotropic part on the background of its monopole moment

log10(d̂L(z, n̂) = log10 d̂
L
0 + 1

log 10

[
d̂La

d̂L0
na + d̂Lab

d̂L0
nanb − 1

2

(
d̂La

d̂L0

d̂Lb
d̂L0
nanb + d̂Lab

d̂L0

d̂Lcd
d̂L0

nanbncnd

)
+O

(
d̂LA`

d̂L0

)3 ]
. (62)

Then taking the all sky average leads to

〈
log10(d̂L(z, n̂)

〉
Ω

= log10 d̂
L
0 −

1
2

1
log 10

(
2
15
d̂Lab
d̂L0

d̂abL
d̂L0

+ 1
3
d̂La

d̂L0

d̂aL
d̂L0

)
+O

(
d̂LA`

d̂L0

)3

. (63)

We neglect the contribution of the second term since their contribution is second order in redshift O(z2)

d̂Lab
d̂L0

d̂abL
d̂L0

= d̂La

d̂L0

d̂aL
d̂L0
≈ 0 . (64)
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We can now make use of the product rule for logarithms to re-write
〈

log10 d̂L(z, n̂)
〉

Ω
as

〈
log10 d̂L(z, n̂)

〉
Ω

= log10 cz + log10

{
1 + 1

2

[
4−

〈
KcKbKa∇a∇buc

(KcKb∇cub)2

〉
Ω

z

]
+O(z2)

}
(65)

We simplify this further by first decomposing the denominator into irreducible parts(
KaKb∇aub|0

)2 = 1
9Θ2 + 2

3n
anbσabΘ + nanbncndσabσcd , (66)

= H(2) + n〈anb〉H(2)
〈ab〉 + n〈anbncnd〉H(2)

〈abcd〉 , (67)

where H(2) is the monopole, H(2)
〈ab〉 is the normalised quadrupole and H(2)

〈abcd〉 is the hexadecapole

H(2) = 1
9Θ2 + 2

15σabσ
ab = H2

(
1 + 2

15
σabσ

ab

H2

)
, (68)

H(2)
〈ab〉 = 4

7σ
c
〈aσb〉c + 2

3Θσ〈ab〉 , (69)

H(2)
〈abcd〉 = σ〈abσcd〉 . (70)

Therefore, the monopole of the argument of the second term in equation (65) becomes〈
KcKbKa∇a∇buc

(KcKb∇cub)2

∣∣∣∣
0

〉
Ω

= 1
H(2)

[
O
(

1 + 2
15
H(2)

abH(2) ab

H(2) 2

)
− 2

15
H(2)

ab

H(2) O
ab

]
, (71)

= 3 + 1
H2

{
1
6ρ−

1
3Λ + 3

5σabσ
ab + 6

15

[
1
6ρ−

1
3Λ
] [

σ〈ab〉σ
〈ab〉

H2

]
− 4

15
σ〈ab〉E〈ab〉

H

}
. (72)

Finally, we find that the monopole of the logarithm of the Hubble rate normalised luminosity distance is given by〈
log10 d̂L(z, n̂)

〉
Ω

= log10

{
z

[
1 + 1

2

[
1− 1

H2

(
1
6ρ−

1
3Λ + 3

5σabσ
ab + 6

15

[
1
6ρ−

1
3Λ
]
σ〈ab〉σ

〈ab〉

H2 (73)

− 4
15
σ〈ab〉E〈ab〉

H

)]
z +O(z2)

}
.

Putting everything back to equation (54), we find that the monopole of the distance modulus is given by

〈µ〉Ω = 〈m〉Ω − 〈M〉
R
Ω = 25 + 5 log10

{
1
Hµ

0

[
z

(
1 + 1

2
(
1− qµ

)
z +O(z2)

)]}
, (74)

where the following terms were defined by comparing to the equivalent FLRW expression given in equation (50) and
(51)

〈M〉RΩ = 〈M〉Ω + 5 log10

[
1 + 1

15
σabσ

ab

H2

∣∣∣∣
z=0

]
, (75)

Hµ
0 = H0 , (76)

qµ = 1
H2

(
1
6ρ−

1
3Λ + 3

5σabσ
ab + 2

3

[
1
6ρ−

1
3Λ
]
σ〈ab〉σ

〈ab〉

H2 − 4
15
σ〈ab〉E〈ab〉

H

)∣∣∣∣
z=0

. (77)

This indicates that the best-fit absolute magnitude, 〈M〉RΩ of the SNIa includes the effect of tidal deformation of the
local geometry. Stated differently, the measurement of the Hubble rate via the local distance ladder accounts for the
impact of tidal deformation on the luminosity distance. The Hubble rate determined using the local distance ladder
with a properly calibrated absolute magnitude corresponds to the global volume expansion.

III.3. Cosmological fitting problem: intercept of the Hubble diagram

On the other hand, the SH0ES collaboration uses the Cepheid variable stars to calibrate the absolute magnitude of
the SNIa. The estimate of the Hubble rate is obtained from the constraint on the intercept of the magnitude-redshift
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relation with the luminosity distance given by the flat FLRW spacetime. Starting from equation (11), they re-write
the distance modulus as follows [13]

m = M + 25 + 5 log10 d̄L = −5ab + 5 log10 d̂L(z) , (78)

where ab is the intercept of the of the Hubble diagram and d̂L is the Hubble parameter normalised luminosity distance:

5ab = − (Mb + 25− 5 log10H0) , (79)

d̂L(z) = H0dL(z) = z

[
1 + 1

2(1− q0)z +O(z2)
]
. (80)

The Hubble rate is then determined from equation (79)

log10H0 = Mb + 25 + 5ab
5 , (81)

where Mb is called standardizable absolute luminosity in [13] but it does the same job as equation (52) in CCHP

Mb = mb,SNIa − µ0,ceph (82)

where, µ0,ceph, is an independent distance modulus to cepheids and mb,SNIa, is the apparent magnitude of a sub-sample
of nearby SNIa that live in the same host as the cepheids. The SH0ES collaboration has since made use of different
geometrical distance estimates such as the NGC 4258 obtained by modelling of the water masers in the nucleus of the
galaxy orbit about its supermassive black hole [15]; Large Magellanic Cloud using eclipsing binary systems composed
of late-type stars [14]; Milky Way Cepheids using parallax methods [78, 79] to calibrate Mb. Even though the SH0ES
collaboration limits type Ia supernova sample to z = 0.023 due to systematics associated with disentangling the
peculiar velocities of the sources from the coherent Hubble flow, they have accurate information on the intercept

ab = log10

{
cz

[
1 + 1

2(1− q0)z +O(z3)
]}
− 0.2Mb , (83)

≈ log10 cz − 0.2Mb , (84)

Similarly, the SH0ES collaboration puts uninformative prior on q̄0 = −0.55 [80] to determine ab = 0.71273± 0.00176.
With the constraint on Mb, they found that the Hubble rate is given by [81, 82]

H0 = 73.1± 1.4 kms−1Mpc−1 . (85)

Note that the quoted error here are the error associated with the determination of ab and Mb added in quadrature [13].
We will now show how the approach taken by the SH0ES collaboration may be generalised to apply to arbitrary

inhomogeneous models. The key ingredient in the generalised expression is the luminosity distance given in equation
(13). Starting from equation (11) and following similar steps that starts from equation (78) in the FLRW limit

〈m〉Ω = 〈M〉Ω − 5
〈
log10[KcKd∇duc]o

〉
Ω + 5

〈
log10

[
d̂L(z, n̂)

]〉
Ω

+ 25 , (86)

= −5 〈ab〉Ω + 5
〈

log10 d̂L(z, n̂)
〉

Ω
, (87)

where d̂L(z, n̂) is given in equation (56) and the generalised intercept is given by

〈ab(n̂)〉Ω = −1
5

(
〈M〉Ω + 25− 5

〈
log10

[
KaKb∇aub

∣∣
0

]〉
Ω

)
. (88)

Recall that the decomposition of
〈
KaKb∇aub

〉
Ω is discussed between equation (57) to (60). Putting this back into

equation (88), gives

〈ab(n̂)〉Ω = −1
5

(
〈M〉RΩ + 25− 5 log10H0

)
, (89)

where we have introduced a renormalised absolute magnitude defined in equation (75). Similarly, the Hubble rate
depends on the monopole of the intercept and renormalised absolute luminosity according to

log10H0 = 〈M〉
R
Ω + 25 + 5 〈ab〉Ω

5 . (90)
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〈ab〉Ω is obtained independently by fitting to the intercept of the distance modulus of the SNIa peak magnitudes. The
intercept of the distance modulus constrains 〈M〉RΩ + 5 〈ab〉Ω, from where we find

〈ab(n̂)〉Ω =
〈

log10 d̂L(z, n̂)
〉

Ω
− 0.2 〈M〉RΩ , (91)

≈ log10

{
cz

[
1 + 1

2

[
4−

〈
KcKbKa∇a∇buc

(KcKb∇cub)2

〉
Ω

]
0

z +O(z2)
]}
− 0.2 〈M〉RΩ , (92)

= log10

{
cz

[
1 + 1

2

[
1− 1

H2

(
1
6ρ−

1
3Λ + 3

5σabσ
ab + 6

15

[
1
6ρ−

1
3Λ
]
σ〈ab〉σ

〈ab〉

H2 (93)

− 4
15
σ〈ab〉E〈ab〉

H

)]
z +O(z2)

}
− 0.2 〈M〉RΩ ,

≈ log10 cz − 0.2 〈M〉RΩ . (94)

where we made use of equation (65) in the second equality, in the third equality, we used equation (73) and the very
low redshift approximation is enough [13].

Finally, we remark that the Hubble rate and the deceleration parameter obtained from fitting to the monopole of
the Alcock-Paczyński parameters for the BAO signal in the two-point correlation function agree:

HdL
0 = HdA

0 = H
α‖
0 , (95)

qdL
0 = qdA

0 . (96)

But they differ from the local cosmic distance ladder measurement determination

HµI

0 = Hµ
0 , (97)

qµI

0 = qµ0 . (98)

The Hubble rate from local cosmic distance measurement corresponds to volume expansion without any contamination
due to the tidal deformation of the local spacetime geometry. The Hubble rate and the deceleration parameter
determined from the local cosmic ladder and Alcock-Paczyński parameters of the BAO signal differ according to

HdA
0 −Hµ

0 ≈ −
2
15
σabσ

ab

H

∣∣∣∣
z=0

+O(σ3) , (99)

qdA
0 − q

µ
0 ≈ −

2
15
σ〈ab〉E〈ab〉

H2

∣∣∣∣
z=0

+O(σ3). (100)

It is possible to calibrate the SNIa using the BAO distance information (proper distance travelled by the acoustic waves
from the initial time to the last scattering surface) instead of the nearby distance anchors [83]. This approach usually
involves the use of a model which does not include the tidal fields we discussed here in the calibration process [84],
thus, we can associate the absolute magnitude of the SNIa determined through this process to 〈M〉Ω. On the other
hand, the local cosmic distance ladder approach does not assume any model for distance(apart from the parallax
formula for distance, flux inverse square law, period-luminosity relation for cepheids) during the calibration process,
hence, we can associate the absolute magnitude it determines to 〈M〉RΩ . The difference is given by

〈M〉RΩ − 〈M〉Ω ≈
1

3 log 10
σabσ

ab

H2

∣∣∣∣
z=0

+O(σ3) . (101)

IV. THE PERTURBED FLRW SPACETIME

The results we have derived so far by fitting the FLRW model to an inhomogeneous model is general, they apply
to any inhomogeneous cosmological model provided that anisotropies are small when compared to the monopole. In
this section, we specialise to a Universe where the inhomogeneities could be described as small perturbations on top
of a flat FLRW background spacetime. We work in conformal Newtonian gauge (our result is gauge-invariant):

ds2 = ā2[− [1 + 2Φ
]
dη2 +

([
1− 2Φ

]
δij
]
, (102)

where δij is the metric of the Minkowski spacetime, ā is the scale factor of the expanding background FLRW spacetime
and Φ is the Newtonian gravitational potential. The components of the time-like four velocity in perturbation theory
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are given by

u0 = 1− Φ + 3
2Φ2 − 1

2Φ(2) + 1
2∂iv∂

iv , (103)

ui = ∂iv + 1
2v

i(2) + 1
2∂

iv(2) . (104)

where vi is the peculiar velocity, ∂i is the spatial derivative on the Minkowski spacetime in cartesian coordinates, and
v is the peculiar velocity potential. The indices with the small English alphabets denote the spatial component of the
spacetime. The green superscripts denote terms evaluated at second order in perturbation theory.

Using equations (102), (103) and (104) at leading order in perturbation theory, the shear tensor, σab becomes

σij(η,x) = ā∂〈i∂j〉v(η,x) . (105)

The ensemble average of the shear scalar is given

σabσ
ab

H2 = 2
3f

2(z)σ2
R(z) , (106)

where f is the rate of growth of structures. We made use of the continuity to express the velocity potential and the
in terms of the matter density contrast δm

v(k, η) = H
k2 f(η)δm(k, η) . (107)

In addition, we introduced the variance in matter density field

σ2
R =

∫ kUV

0

dk
2π2

[
k2Pm(k)

]
=
∫ ∞

0

dk
2π2

[
(kW (kR))2Pm(k)

]
. (108)

Here, Pm is the power spectrum of the matter density field. We have introduced a top-hat window function, W ,
instead of a UV dependent momentum integral. The scale, R, will be fixed shortly. For the different determinations
of the Hubble rate, we focused on the dominant terms only, perturbing the monopole of various definitions of the
Hubble rate give

Hµ
0 = HµI

0 ' H̄0 , (109)

HdA
0 = HdL

0 = H
α‖
0 ' H̄o

[
1− 4

45f
2(z)σ2

R(z)
∣∣∣∣
0

]
. (110)

Note that Θ is well described by the FLRW background spacetime to an accuracy better than 0.1% [85], thus we
neglect its perturbations and approximate Hµ

0 and HµI

0 with the FLRW background prediction, H̄0. The relationship
between the rest of Hubble rate determinations and HµI

0 is given

H
α‖
0

HµI

0
= 1− 4

45f
2(z)σ2

R(z)
∣∣∣∣
0
. (111)

Therefore, the BAO determination of the Hubble rate differs from the local measurements by a factor of 1 −
4f2(0)σ2

R/45. The electric part of the Weyl tensor, Eab, at leading order in perturbation theory is given by

Eij(η,x) = ∂〈i∂j〉Φ(η,x) . (112)

We use the Poisson equation to express Φ in terms δm

Φ(k, η) = −3
2Ωm(z)

(
H
k

)2
δm(k, η) , (113)

where Ωm is the matter-energy density parameter. Using equations (107) and (113) we find that

σabEab
H3 = −Ωmf(z)σ2

R(z) . (114)

Expanding the first two terms in q0 =
( 1

6ρ−
1
3Λ + σabσab

)
/H2

0 up to second order in perturbation theory gives

1
H2

0

(
1
6

1
ρ
− 1

3Λ
) ∣∣∣∣

zo

≈ q̄0 −
1

3H0
Ωmδm∂2v + 1

3H2
0
q̄0(∂2v)2 , (115)

≈ q̄0 + 1
3Ωmf(0)σ2

R + 1
3 q̄0f

2(0)σ2
R , (116)
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The product of q0 and shear scalar in perturbation theory is given by

1
H2

0

(
1
6

1
ρ
− 1

3Λ
) ∣∣∣∣

zo

σabσ
ab

H2

∣∣∣∣
zo

= 2
3 q̄0f

2(0)σ2
R , (117)

where q̄0 is the deceleration parameter on the background FLRW spacetime with dust and Cosmological constant

q̄0 = Ωm
2 − ΩΛ = −1 + 3

2Ωm , (118)

where ΩΛ is the energy density due to the Cosmological constant. In the second equality, we made use of the Friedmann
equation Ωm + ΩΛ = 1 , to express q̄0 in terms of Ωm only. The matter density and the cosmological constant today
are defined in terms of these parameters as ρ̄0 = 3H 2

0Ωm0 and Λ = 3H 2
0ΩΛ0. Using equation (116), q0 perturbed up

to second order is given by

1
H2

0

(
1
6ρ−

1
3Λ + σabσab

)
≈ q̄0 + 1

3Ωmf(0)σ2
R + 1

3 q̄0f
2(0)σ2

R + 2
3(f2(0))σ2

R(z) (119)

Finally, the deceleration parameter for both cases becomes

qdA
0 = qdL

0 ' q̄0 + 11
15Ωmf(0)σ2

R +
(

7
9 q̄0 + 2

5

)
f2(0)σ2

R , (120)

qµ0 = qµI

0 ' q̄0 + 3
5Ωmf(0)σ2

R +
(

7
9 q̄0 + 2

5

)
f2(0)σ2

R . (121)

The exact magnitude of the difference between the predications of the effective Hubble rate and deceleration parameter
from different ways of fitting an FLRW model to a lumpy Universe depends on σ2

R. We discuss how we handle the
dependence on σ2

R in section IV.1.

IV.1. Causal horizon and the expanding regions of spacetime

In cosmology, the well-known causal limits are determined by the dynamics on the null cone, for example, the
particle horizon, which indicates the maximum distance light from particles could have travelled to the observer in
the age of the Universe. Ellis and Stoeger argued in [86] that there exists a causal horizon that is determined not
by the dynamics on the light cone but by the dynamics of our time-like geodesic. It is given by the boundary of the
comoving region that has contributed most significantly to the dynamics of our local environment. The dominant
interaction within this region are not mediated by massless particles (i.e the vector and tensor perturbations on an
FLRW background spacetime have negligible impact on the dynamics within this region), instead, they are mediated
by massive particles which travel at very low speeds relative to the cosmic rest frame. It is these differences in speed
that cause our local environment to decouple from the Hubble expansion because it cannot keep up the cosmic rest
frame [86, 87]. We determine the causal horizon as the comoving radius where divergence of our 4-velocity vanish.
This is also called the zero-velocity surface [88]. At the leading order in cosmological perturbation theory, this is given
by

Θ ' 3H0 + ∂i∂
iv
∣∣
z=0 = 3H0 + c

r

d ln ρ
d ln r . (122)

In the second equality, we made use of the continuity equation: δ′m = −∂i∂iv with δm ≡ δρ/ρ̄ = (ρ− ρ̄)/ρ̄ and use
the chain rule to express the conformal time derivative of δm in terms of radial derivative of ρ

δ′m = dδm
dη = 1

ρ̄

∂r

∂η

∂ρ

∂r
≈ −1

ρ̄

∂ρ

∂r
≈ − c

r

d ln ρ
d ln r . (123)

The radius of the zero-velocity surface Θ(0, r) = 0 is given by

R0 = − c

3H0

d ln ρ
d ln r . (124)

The spacetime in the region r < R0 are not expanding and it defines the local sphere of influence with respect to the
observer. We estimate equation (122) using a dark matter halo model with the Einasto [89] and NFW profiles [90]
with the outer profile given by the mean matter density [91]. The result is shown in figure 1. R0 is obtained from
figure 1 as the value of r where the curves intersect the Θ(0, r) = 0 horizontal line. We find that R0 is dependent on
the mass of the host halo. The larger the halo mass, the higher the causal horizon. One might ask, how is R0 related
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FIG. 1. The horizontal line in the left panel shows the zero-velocity(expansion) surface: Θ(0, Rn̂) = 0, i.e the transition radius
where the spacetime go from expansion to contraction. The exact position of R depends on the halo mass. The three curves;
thick, dashed and dash-dotted lines correspond to the following halo masses M = [1011, 1012, 1013]M� respectively. On the
right panel, we compute the gradient of the halo density only for the same halo masses shown in the left panel. The splashback
radius for a given halo mass is the position of the least gradient. The splashback radius is always less than the radius of the
zero-velocity surface. In both cases, we fixed the halo concentration at 5.

to the virial radius, r∆c
(∆c is over-density constant). The mass contained with r∆c

(virial mass) is the mass of a
gravitationally bound astrophysical system, assuming the virial theorem holds. Recent studies have shown that r∆c

does not correspond to the physical boundary of a gravitationally bound astrophysical system. The reason is that the
mass contained within r∆c

is subject to pseudo-evolution [92, 93]. And there are physical processes that are known
to redistribute sub-structures formed during collapse from small to large radii greater than r∆c

[94–96]. For these
reasons, the splashback radius, rsp, was introduced as a radius that includes all matter that orbits a halo [92, 97].
The splashback radius of haloes of different masses is shown in the right panel of figure 1. We find that R0 is different
from the splashback radius of the host halo. In fact from figure 1, we find that R0 is always greater than the rsp
at any of the given halo mass we considered. There are observational constraints for the radius of the zero-velocity
surface for our local group R0 ∼ (0.95− 1.05)Mpc [31, 88, 98] and this is the value we use for the rest of the analysis.

IV.2. The cosmological tensions: Hubble rate, absolute magnitude and the deceleration parameter

Now that we have determined the minimum length scale participating in the cosmic expansion, it is straightforward
to calculate the Hubble discrepant (i.e equation (111)). The minimum length scale corresponds to the distance where
the reference flux or the absolute magnitudes of sources in the Hubble flow are calibrated. This makes sense because
cosmic evolutionary effect does not contribute to the absolute magnitude. Setting the smoothing scale to the radius
of the zero-velocity surface R = R0. The full result is shown in figure 2. We find about ∼ (9 − 12)% difference in
the determination of the Hubble rate between the local measurements using the cosmic distance ladder and the BAO
determinations.

Although, the cosmological interpretation of the peak magnitude of the SNIa by the SH0ES and CCHP groups was
done using a smooth luminosity distance, Both groups differ on the calibration of the supernova absolute magnitude.
The SH0ES build a local cosmic distance ladder using distance measurements to a set of anchors to infer the absolute
magnitude of the SNIa. Other than using the standard formula for the parallax for the milky-way cepheids or the
inverse square law for flux for the detached eclipsing binaries, or Leavitt’s law for cepheids [99], etc, the process of
calibrating the absolute magnitude of the SNIa is cosmological model-independent. Since these set of anchors live
nearby, the calibration of the local cosmic distance ladder includes the impact of the tidal deformations on the local
spacetime that we discuss here [36]. We showed how the impact of the tidal deformation results in a renormalisation
of the absolute magnitude in subsection III.2. Calibrating the SNIa absolute magnitude using the proper distance
acoustic waves could have travelled from the origin of the Universe to the surface of the last scattering as an anchor,
requires that we assume a particular model based on the FLRW spacetime. This model does not include the impact
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FIG. 2. Left panel: We show the fractional difference between the Hubble rates determined using the local measurement of the
peak apparent magnitude of SNIa and the interpretation of the Alcock-Paczyński parameters in terms of the FLRW spacetime.
Right panel: We show the difference between the renormalised absolute magnitude due to the impact of the tidal deformations
on the distance to the anchor and the intrinsic absolute magnitude. We made use of the linear theory matter power spectrum
to evaluate these.

of the tidal field on distance measurement [83].
The supernova absolute magnitude tension refers to the disparity in the determination of the supernova absolute

magnitude between the inverse distance ladder method with the sound horizon scale at the surface of the last scattering
as an anchor and local cosmic distance ladder with the anchors in the nearby Universe [84, 100]. Using the inverse
distance method on Pantheon supernova peak magnitudes, [34] found the absolute magnitude to be

MP18 = −19.387± 0.021 mag . (125)

For this same supernova sample, but using the SH0ES Cepheid photometry for the geometric distance estimates, [34]
finds the absolute magnitude to be

ME21 = −19.214± 0.037 mag . (126)

The difference between equation (125) and (126) is given by

ME21 −MP18 = 0.173± 0.04 mag . (127)

We can relate equation (125) to 〈M〉Ω and equation (126) to 〈M〉RΩ so that the difference between them is given by
equation (75)

〈M〉RΩ − 〈M〉Ω = 2
9 log 10f

2(0)σ2
R . (128)

We show the result of calculating equation (128) in the right panel of figure 2. With R = D = 1Mpc, we find a
diffrenece of about 0.12 mag

In addition to the Hubble rate and the absolute magnitude, we also derived the expression for the deceleration
parameter by fitting the FLRW model to the monopole of an inhomogeneous model of the area distance, distance
modulus, etc. In this case, we find that both the local measurements and the BAO measurements (Alcock-Paczyński
parameters) give deceleration parameter that differ substantially from the prediction of an FLRW model

q
dA/µ
0 − q̄0 = ∆qdA/µ

0 , (129)

where ∆qdA/µ
0 depends on the scalar invariant of a combination of shear tensor and the electric part of the Weyl

tensor, i.e. σ〈ab〉E〈ab〉/H
2
∣∣
z=0 and σabσ

ab/H2
∣∣
z=0. The corresponding cosmological perturbation limit of both ex-

pressions are given in equations (120) and (121). Again the local cosmic ladder and the Alcock-Paczyński parameters
determinations of the deceleration parameter differ only in the coefficient of this term σ〈ab〉E〈ab〉/H

2
∣∣
z=0(see equation

(100)). σ〈ab〉E〈ab〉/H2
∣∣
z=0 is related to the spatial curvature of the local domain.

We show in figure 3, the fractional difference between the deceleration parameters derived in equations (120) and
(121) and the FLRW predictions. We found over a 100% difference between the deceleration parameter from the local
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FIG. 3. We show the fractional difference between the deceleration parameters derived in equations (120)(thick lines) and
(121) (dashed lines) and the FLRW predictions.

measurement interpreted based on an FLRW model and Planck prediction. This finding is consistent with the recent
measurements of the deceleration parameter using the Pantheon supernova samples and the cosmographical expression
for the luminosity distance in FLRW limit [35, 100]. However, it differs from the measurement of the deceleration
parameter by the SH0ES collaboration [37]. Note that SH0ES collaboration made use of the full expression for the
luminosity distance based on the background FLRW spacetime and not its cosmographical approximation [80]. Given
that [37] made use of the data set used by [35, 100] but supplemented with another data set which is composed of
high redshift SNIa, It is most likely that the reason for this disparity is related to the breakdown of Taylor series
expansion in the presence of structures as reported in [36].

The Hubble tension is usually described as a discrepancy between the early and late-time Universe determination
of the Hubble rate [22]. We have shown that it could be a consequence of how the distance measurements in the
neighbourhood of the observer are interpreted within the ΛCDM model. The key factor is that the local spacetime
around the observer is tidally deformed, the background FLRW spacetime does not capture this effect. We showed
that the model of area/luminosity distance that includes the effects of inhomogeneities through the perturbation of
the FLRW spacetime would be able to explain the Hubble tension without any need of invoking any exotic evolving
dark energy [101, 102] (see [103, 104] for a list of all possible models within this framework), frame-dependent
dark energy [105] (this approach explains the SH0ES result but gives a large value of the Hubble constant from
the BAO analysis), quantum measurement uncertainties [106], evolving gravitational constant [107], modification of
gravity [108, 109]. One unique thing about all these approaches except the frame dependent dark energy which breaks
4D diffeomorphism invariance but retains 3D coordinate invariance is that they assume that the FLRW background
spacetime is valid on all scales and at all times. This is contrary to the findings in [36] which showed that the FLRW
background spacetime in the presence of structures break down at about 1 Mpc. This scale is consistent with the
scale where caustics or conjugate points appears [110]. Appearance of the conjugate points is a unique indicator for
the breakdown of the coordinate system [30].

Furthermore, we showed that the interpretation of the BAO measurement (i.e Alcock-Paczyński parameters) using
the area distance based on the background FLRW spacetime infers a wrong H0 because the symmetries of background
FLRW spacetime does not allow the contribution of the electric part of the Weyl tensor or the effect of the tidal
deformations around the observer. If the Alcock-Paczyński parameters are consistently interpreted or evolved from
high redshift to low redshifts using a model of the area distance that includes the impact of the tidal field or the area
distance derived from a perturbed FLRW spacetime as described in [36], the tensions in the Hubble parameter would
not arise.

Of course, we are not the first to claim that the effects of inhomogeneities could resolve the Hubble tension. In
fact it was argued in [111] that the large scale outflows due to the presence of local voids could be the cause of the
Hubble tension and it could potentially can explain the late time cosmic acceleration by dark energy [112]. The
authors defined a spatial averaging procedure following the Buchert averaging formalism [113]. They found that an
average under density of about 〈δ〉 = −0.3 is enough to explain the discrepant Hubble rate. A more detailed study
of this has shown that this does work [114]. Secondly, the authors did not compute the average values of what is
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observed rather, they calculated the average density on the spatial hypersurface. An observer does not have access
to the entire hypersurface rather it has access only to the screen space (2D surface) due to restriction imposed by the
constant speed of light [115]. Similarly, it has been conjectured that anisotropies in the super-horizon perturbations
could explain the Hubble tension. This approach has some fine-tuning issues to resolve. This simplest model of this
has three free parameters that have to be chosen precisely for it to work [116].

V. CONCLUSION

We have deployed the cosmological fitting approach introduced by Ellis and Stoeger [7, 45] to study how well the
FLRW spacetime fits an inhomogeneous Universe on average. The FLRW model could be characterised by a set of free
parameters such as the Hubble rate, deceleration parameter, etc, we show how to obtain the best-fit Hubble rate and
the deceleration parameter given generalised inhomogeneous models of the following observables: Alcock-Paczyński
parameters, magnitude-redshift relation, the intercept of the distance modules.

We made use of the results of the low redshifts Taylor series expansion of the generalised inhomogeneous expression
of the area distance and luminosity distance developed by Kristian and Sachs in 1966 [25]. Using the 1 + 3 covariant
decomposition formalism, we decomposed these expressions in terms of irreducible observables with respect to a
geodesic observer. In this limit, the only key observables are the rate of expansion (a scalar) and the rate of shear
deformation tensor. The rate of expansion scalar describes the rate at which nearby geodesics expands/contract with
respect to a geodesic observer. It corresponds to the Hubble rate in the FLRW limit. The shear tensor, on the other
hand, describes the rate of change of the spacetime deformation in the neighbourhood of the observer [27]. It vanishes
in the FLRW limit.

Using these tools, we derived the generalised inhomogeneous equations for the Alcock-Paczyński parameters. The
Alcock-Paczyński parameters constrain the imprints of the Baryon Acoustic Oscillation in the galaxy distribution
through the N-point correlation function. These parameters are usually interpreted in terms of the background FLRW
model. We showed how to generalise the two components of the Alcock-Paczyński parameters to an inhomogeneous
spacetime model. By comparing the monopole of the generalised radial component to the corresponding FLRW
counter-part, we find that the inferred Hubble rate is biased by the impact of the tidal deformation tensor at the
observer location. The orthogonal part is proportional to the area distance, hence we compare the monopole of the
generalised area distance to the corresponding FLRW limit. At the leading order in redshift, we find that the Hubble
rate today is biased as well by the scalar invariant of the shear tensor. At second order in redshift, we obtain the
generalised expression for the deceleration parameter which is also biased by the scalar invariant of the shear tensor
and the product of the shear tensor and the electric part of the Weyl tensor.

Furthermore, we considered the magnitude-redshift relation. This is the key observable from which the determi-
nation of the Hubble rate is made from the peak magnitude of the type IA supernovae. We showed that the tidal
deformation tensor that biases the determination of the Hubble rate from the monopole of the Alcock-Paczyński pa-
rameters, impacts the measurement of the supernova absolute magnitude instead. The Hubble rate, in this case, is not
biased, it corresponds exactly to the rate of expansion scalar which describes the rate of volume expansion/contraction.
The deceleration parameter, however, is biased by the same terms as in the case of the orthogonal component of the
Alcock-Paczyński parameter.

We quantified these terms within the cosmological perturbation theory assuming Gaussian and adiabatic initial
conditions. We showed that the expectation value of these biasing terms is proportional to the smoothing scale-
dependent variance in the matter density field. We argued that the most physically motivated smoothing scale
corresponds to the comoving radius (causal horizon) where the spacetime region goes from contracting to expanding
phase. We use the halo model to quantify this exactly. We find that it is slightly greater than the splashback radius
of the host halo. Setting the mass of our local group to about∼ (1011 − 1012)M�, we find the smoothing scale in
the range of R ∼ (0.8 − 1.2)Mpc. This leads to about∼ (8 − 12)% fractional difference in the determination of
the Hubble rate between the local measurements and the Alcock-Paczyński parameters. With the same range of
values for the smoothing scales, we find that it explains the supernova absolute magnitude tension [34, 100] and
the values obtained from recent measurement of the deceleration parameter today using the Pantheon supernova
samples [35]. The interpretation of the inferred values of the deceleration parameters should be taken with caution
because cosmography in the presence of structures at second order in redshift differs from the full expression by more
than 100% at about z ∼ 0.1.

Finally, it is undeniable that the FLRW spacetime has played a big role in our current understanding of the
Universe. Our results show that the tidal deformation of the observer spacetime region due to the gravitational
interaction among nearby structures cannot be neglected. This interaction is characterised by tensors that vanish on
the FLRW background spacetime. We have shown that not taking these into account when using the FLRW model
alone to analyse cosmological observation leads to cosmological tensions. We showed that the determination of Hubble
rate from the analysis of the local distance ladder for the SNIa peak magnitudes takes into account the impact of the
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tidal deformation of the local spacetime consistently.
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Appendix A: Covariant cosmography on the past lightcone

The distance-redshift relation on arbitrary spacetime may be expanded in Taylor series up to any order following
the formalism developed by Kristain and Sachs [25]. The formalism uses the null focusing equation to propagate the
deviation vector, ξa, with the tail on the central ray, L and head on the nearby geodesics from a source with 4-velocity
uas to the observer with 4-velocity uao

d2ξa

dλ2 = −Racbdkckdξb , (A1)

where Racbd is the Riemann curvature tensor, ξa lives on the screen space and ka is the tangent vector to the null
geodesics. The solution to equation (A1) needs to satisfy the following initial conditions at source

(ξa)s = 0,
(

dξa

dλ ua
)
s

= 0,
(

dξa

dλ ka
)
s

= 0, π

(
dξa

dλ
dξa
dλ

)
s

= −(uaka)sdΩ . (A2)

Equation (A1) is valid provided there are no focal points between the observer and the source. Expanding (ξaξb) in
Taylor series in λ up to fifth order, gives

(ξaξb)o = (ξaξb)s +
[

d
dλ (ξaξb)

]
s

λo + 1
2

[
d2

dλ2 (ξaξb)
]
s

λ2
o +O(λ3

o) . (A3)

Using equation (A1) and the boundary conditions (equation (A2)), give

(ξaξb)o = λ2
o

(
dξc

dλ
dξc
dλ

)
s

(
gab −

1
3k

ckdRacbdλ
2
o +O(λ3

o)
)
. (A4)

The area element is defined dA =
√

(ξaξb)odΩ, therefore

dAo = dΩλ2
o(uaka)2

s

(
1− 1

6k
ckjRcjλ

2
o +O(λ3

2)
)
. (A5)

To make contact with observation we expand the redshift in λ

(1 + z) = Es
Eo

= 1
(kaua)0

[
kaua + kakb∇aubλ+ 1

2k
akbkc∇a∇bucλ2 +O(λ3)

]
. (A6)

Using the fact that the area distance is the ratio of the cross-sectional area at the observer to the cross-sectional area
at the source according to

d2
A = dA0

dΩ
(uaka)2

o

(uaka)2
s

. (A7)



20

Using equation (A5) in equation (A7) we find

d2
A = (uaka)2

0λ
2
0

{
1− 1

6k
ckdRcdλ

2
0 +O(λ3

0)
}
. (A8)

Inverting the series is equation (A8) gives the affine parameter in terms of the area distance,

λ0 = dA

[
1 + 1

12K
cKdRcdd

2
A +O(d3

A)
]
, (A9)

where we defined normalised photon tangent vector Ka := ka

(uaka)0
= −ua + na. Then putting equation (A9) in

equation (A6) gives

z = KaKb∇aub
∣∣
o
dA + 1

2
(
KaKbKc∇a∇buc

)∣∣
o
d2
A +O(d3

A) . (A10)

Inverting equation (A10) gives the area distance in terms of the redshift

dA = z

KcKj∇cuj |0

{
1−

[
1
2
KcKjKk∇k∇juc

(KcKj∇cuc)2

]
0

z +O(z2)
}
. (A11)

Using the reciprocity theorem dL = dA(1 + z)2, we find the luminosity distance to be

dL = z

KcKj∇juc|0

{
1 + 1

2

[
4− KcKjKk∇k∇juc

(KcKj∇cuc)2

]
0

z +O(z2)
}
. (A12)
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