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Abstract
Along with the increasing requirement for efficient organic conversions using green chemistry, there is a need to develop
highly efficient and eco-friendly catalytic reaction systems. Gold nanoparticles (AuNPs)-based nanocatalysts are promising
candidates for the reduction of environmental pollutants, such as nitroaromatics and dyes. This study reports on the green
synthesis of AuNPs using Carpobrotus edulis (C. edulis) fruit aqueous extract (CeFE) and their catalytic activities. The CeFE
induced rapid reduction of gold (III) salt to form monodispersed and spherical AuNPs, with a core and hydrodynamic sizes
of 40 and 108.7 nm, respectively. CeFE alone had no effect on 4-nitrophenol, whereas incubation with methylene blue (MB)
caused reduction of the peak at 665 nm. Addition of CeFE-AuNPs in the presence of NaBH4, caused the reduction of 4-
nitrophenol to 4-AP, and MB to leucoMB within 10 min. These reactions followed the pseudo first-order kinetics.
Therefore, biogenic CeFE-AuNPs could be used for the elimination of noxious environmental pollutants.
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Introduction

The high impact of nanotechnology on many important
areas such as medicine, energy, electronics, transport and
space has created a surge in creating greener systems and
approaches to solve major health, environmental and energy
challenges. Nanotechnology is mainly geared towards the
manufacturing of materials that are 10�9 m in size,1 where at
this size they possess unique physical and chemical prop-
erties with novel applications.2 The application of green
chemistry principles in nanotechnology for the synthesis of
biogenic nanomaterials can help resolve the limitations
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associated with the conventional methods of synthesis i.e.
the chemical and physical approaches. Green synthesis has
potential to reduce the use and generation of hazardous
substances during the manufacturing and application of
nanoparticles (NPs) produced through the conventional
methods.3,4 Biogenic NPs are considered to be more safe,
eco-friendly, biocompatible and less toxic when compared
to the chemically synthesized NPs.5

Green synthesis of NPs can be accomplished using plant
extracts (also called phytosynthesis) and microorganisms.
Plant extract-based synthesis has distinctive features such as
a higher rate of NPs formation compared to the synthesis
rate using microorganisms, no additional reagents are re-
quired for synthesis, and the NPs are easy to clean-up, and
up-scale.6–8 In addition, plant extracts contain a wide range
of biomolecules and metabolites, such as terpenoids, vita-
mins, polysaccharides, proteins, alkaloids, phenolic com-
pounds, enzymes, etc.,8 which can act as reducing and
capping/stabilizing agents in the synthesis of NPs.9–12 Plant
extracts-based NPs have a large range of biological prop-
erties, such as antibacterial, antifungal, anticancer, anti-
biofouling, anti-malarial, anti-parasitic, antioxidant 6,13,14

and catalytic activity.14–17

The use of green-synthesized AuNPs in catalysis, es-
pecially for their catalytic reduction of the environmental
pollutants, such as p-nitrophenols, are well studied.14–17

These pollutants are by-products in the production of
herbicides, pesticides and synthetic dyes, and the US En-
vironmental Protection Agency (EPA) has classified them as
priority pollutants due to their toxicity. Green synthesized
biogenic AuNPs have successfully reduced these pollutants
to p-aminophenols in the presence of sodium borohydride
(NaBH4).

16,18,19 Due to the high surface area, AuNPs and
other NPs show greater catalytic activity at lower con-
centrations compared to traditional catalysts.20,21 As cata-
lysts, AuNPs are also easy to recover, can be reused several
times, and the final product is metal free.20 In contrast, the
conventional environmental remediation approaches for the
degradation of nitroaromatic compounds are harmful to the
environment.22,23

In this study, C. edulis, a South African ground cover
succulent plant belonging to the family Aizoaceae,24 was
used for the synthesis of AuNPs. It originated along the
coastline of Namaqualand in the Northern Cape, and south
and eastwards along the coastline of the Western and the
Eastern Cape Provinces.24 From there, members of this
family have been introduced as ornamental plants in
gardens, parks and on roadsides and for erosion control in
many sub-tropical and temperate countries such as Europe,
USA, Australia, New Zealand, South America, North
Africa, and Pacific and Atlantic Islands. This superb water-
wise plant has recognized traditional medicinal properties,
such as antimicrobial,25–27 antioxidant 25,28–30 and anti-
viral 24 properties. The leaf pulp and juice of C. edulis

contain hydrolysable tannins that have a diverse range of
pharmacological properties.31–33 C. edulis bears large
yellow flowers that develop into conical, fleshy fruit
capsules, which turn reddish-brown when ripe, called sour
figs (Figure 1).

The fruit contains an edible sweet-sour slimy pulp with
slimy brown seeds and has a strong, astringent taste. The
common medicinal use of sour figs is for purgation,33 while
the dried fruits are processed into jam or added to curry
dishes. However, huge amounts of this fruit end up as
waste in landfills or are discarded with the dried plants.
Therefore, we explored the potential industrial applica-
tions for this fruit. So far, and to the best of our
knowledge, there is no report on the green synthesis of
AuNPs using the C. edulis fruit extract. Therefore, the
current study reports on the synthesis of CeFE-AuNPs
and an investigation of their catalytic activity against 4-
nitrophenol and MB.

Materials and Methods

Preparation of CeFE

DriedC. edulis fruits (sour figs)were purchased from the local
fruit and vegetable market (Bellville Market, South Africa).
One hundred grams of dried C. edulis fruits were cleaned and
washed with distilled water. Thewashed fruits were steeped in
400 ml of deionized water overnight and cut into halves using
a sterile surgical blade. The soft fruits were homogenized
using a blender. The homogenate was heated to 80°C for
10 min, and thereafter cooled to ambient room temper-
ature. The cooled homogenate was filtered, first using
glass wool, followed by Whatman No. 1 filter paper. The
volume of the filtrate was adjusted to 400 ml, in order to
obtain 0.25 g/ml extract concentration. The pH of the
extract was adjusted from pH of 3 to pH 4 up to 10 by
addition of 1 M NaOH.

HPLC analysis of the polyphenols

Phenolic compounds present in CeFE were identified using
HPLC following a previously published protocol.34–36 The
extract was filtered through a 0.22 µm PTFE filter mem-
brane. The solvents used were water (A) and methanol (B),
acidified with 0.1 % formic acid and served as mobile phase
at a rate of 0.2 ml/min. Gradient elution was applied as
isocratic 5% B from 0 – 3 min, a linear gradient increasing
from 5 % - 100 % B from 3 – 43 min, kept at 100 % B from
43 – 61 min, a linear decreasing gradient from 100 % to 5 %
B from 62 – 70 min. The temperature was kept at 25°C. The
column was combined with a Q-exactive orbitrap mass
spectrometer, and the spectra was recorded in positive and
negative ion mode, respectively.
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Synthesis and optimization of biogenic CeFE-AuNPs

CeFE-AuNPs were synthesized by heating NaAuCl4∙xH2O
to a desired temperature for 5min, and subsequent addition of
CeFE in a 9:1 ratio. The formation of the CeFE-AuNPs was
confirmed by change in colour from light yellow to ruby-red.
Various parameters were tested to obtain the optimum
conditions: temperature (25, 37, 50, 80 and 99°C), pH of
extract (2.9 – 10), concentrations of gold (0.1 0.25, 0.5 and
1 mM) and CeFE (0.25, 0.5 and 1 g/ml). The reaction was
continued for 1 h while shaking in the orbital shaker at 1000
rpm (Eppendorf Thermomixer Comfort, Hamburg, Ger-
many), then cooled to ambient room temperature. The tubes
were centrifuged at 14,000 rpm for 15 min at room tem-
perature. The pellets were washed 3 times with deionised
water before characterization.

CeFE-AuNPs Characterization

UV-Vis Spectroscopy. UV-Vis spectrophotometer was used to
confirm the formation of AuNPs. Exactly 0.03 ml of the
CeFE-AuNPs samples were mixed with 0.27 ml of de-
ionized water in a 96-well flat-bottom microplate. The
absorbance was read in the wavelength range of 300 -
700 nm using the POLARstar Omega microplate reader
(BMG Labtech, Offenburg, Germany).

Size and Hydrodynamic Density. CeFE-AuNPs sample was
diluted 10-times to 1 ml. The particle size distribution,
polydispersity index (PDI) and zeta potential measurements
of the CeFE-AuNPs were analysed using a Malvern
NanoZS90 Zetasizer (Malvern Instruments Ltd., Malvern,
UK) at a scattering angle of 90° at 25°C. The data was
analyzed with Zetasizer software version 7.11.

HRTEM. One drop of the CeFE-AuNPs solution was loaded
onto a carbon coated copper grid. The grids were dried for a
few minutes under a Xenon lamp. The High Resolution
TEM (HRTEM) images were captured using FEI Tecnai G2

20 field-emission gun (FEG) HRTEM operated in bright
field mode at an accelerating voltage of 200 kV. The ele-
mental composition of the AuNPs was characterized using

EDX liquid nitrogen-cooled lithium-doped Silicon detector.
These analyses were performed by the Electron Microscopy
Unit, UWC Department of Physics.

FTIR Spectroscopy. The FTIR analysis was performed using
the PerkinElmer Spectrum One FTIR spectrophotometer
(Waltham, MA, USA) according to the previously reported
method.13 The dried CeFE and CeFE-AuNPs were mixed
with the KBr powder and pressed into a round disk. A pure
KBr disk was used for background correction.

Total phenolic content analysis. The total phenolic content
(TPC) of CeFE was determined using Folin-Ciocalteu re-
agent (Sigma-Aldrich, USA) as described previously.37

Total polyphenols were expressed as milligrams Gallic
Acid Equivalents per ml of extract (mg GAE/ml).

Catalytic Reduction of 4-Nitrophenol and MB

The reduction of 4-nitrophenol and MB was carried out at
room temperature in a 96-well flat-bottom plate as previ-
ously described.16,22,38–40 The reaction mixture consisted of
0.14 ml water, and 0.03 ml of 2 mM 4-nitrophenol or MB,
0.1 ml 0.03 M sodium borohydride and 0.03 ml CeFE-
AuNPs. The absorption spectra were read in the 200 -
750 nm wavelength range using the POLARstar Omega
microplate reader at 1 min intervals from 1 to 10 min,
thereafter at 5 min intervals to 60 min.

Determination of 4-nitrophenol reduction to 4-AP by
HPLC

The conversion from 4-nitrophenol to 4-AP was determined
using reverse phase high performance liquid chromatog-
raphy (RP-HPLC), as previously described.16

Results

Characterization of CeFE

The preparation of CeFE was carried out as described
above. The average pH of the CeFE filtrate was ∼ 2.9 ±

Figure 1. Photographs of C. edulis flower (a), fruit capsules (b) and dried sour figs (c).
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0.56. Increasing the pH of the extract from 3 to 10, was
associated with colour change from a yellow to a deep
brownish colour at pH 10. The increase in pH was further
associated with precipitation of unidentified macromole-
cules, which were removed by centrifugation. The TPC and
the polyphenols in CeFE were determined following the
removal of the precipitate by spectrophotometry and HPLC,
respectively. The TPC content was determined to be 131.6 ±
1.16 mg/g. HPLC analysis revealed the presence of some of
the main polyphenolic compounds in the CeFE, as indicated
in Table 1. Catechin, epicatechin, rutin, myricetin and ep-
igallocatechin gallate (EGCG) were the most abundant
flavonols in the extract. However, ferulic acid was the only
phenolic compound identified in the CeFE, using available
standard compounds. Various compounds have been
identified using an extensive HPLC-ESI-LC-MS/
MS,30,34,41 and corroborated our findings of the five
compounds.

CeFE-AuNPs synthesis and characterization

CeFE-AuNPs were synthesized with CeFE at different pH
conditions (2.5 – 10) by varying one factor at a time,
namely: temperature, gold salt and CeFE concentrations.
These four parameters are known to strongly affect the
hydrodynamic size and shapes of NPs.42,43 The formation of
CeFE-AuNPs was confirmed by both changes in colour
from light yellow to a ruby-red colour and UV-Vis
spectroscopy.

UV-Vis characterization. Temperature and pH have been
shown to have great impact on the synthesis of AuNPs.44 As
shown in Figure 2, the reduction of gold ions into AuNPs by
CeFE was evidenced by the UV-Vis spectra showing
characteristic, well-defined surface plasmon resonance
(SPR) band at around 535 - 540 nm.

This phenomenon is attributed to the excitation of the
SPR of AuNPs. All pH and temperatures tested produced
AuNPs. The pH ranging from 2.5 to 8 produced CeFE-
AuNPs that were approximately 100 nm in size, as deter-
mined by dynamic light scattering (DLS). CeFE at pH 9 and
10 produced redshifted AuNPs, which suggested that larger

AuNPs were produced or that aggregation had occurred.
DLS analysis of pH 9 and 10 samples revealed that the
synthesized AuNPs had a small size range (23.57 –

60.77 nm) and higher PDI range (0.805 – 0.350), thus
indicating polydispersity. Coupled with the blue colour of
the AuNPs at basic pH, the NPs were considered unstable.
This instability could be due to insufficient amounts of
CeFE phytochemicals to cap the AuNPs.

These results confirmed the vital role played by pH in
controlling the shape and size of the AuNPs. It has been
shown that protonation and deprotonation surface reactions
are used to obtain local surface charge which depends on
particle size and pH.45 At higher pH, the large number of
phenolic functional groups available for gold binding
possibly facilitated a higher number of Au+ ions to rapidly
nucleate and subsequently form a large number of AuNPs
with smaller diameters. It was observed that, if the unknown
pH-precipitated material is not removed by centrifugation,
this tended to inhibit the formation of AuNPs, Therefore, the
impact of the removal of these unknown materials, which
could possibly include proteins, amino acids and other
phytochemicals that are pH sensitive, in the synthesis of
AuNPs is currently unknown and will be further
investigated.

Temperature effects were also explored for the synthesis
of CeFE-AuNPs (Figure 2). Lower temperatures (25 –

50°C) favoured the formation of CeFE-AuNPs with higher
yields (Figure 3(a)) which is represented by the peak in-
tensities and the Amax (Figure 3(b)), the higher the ab-
sorbance of the AuNPs the higher the concentration of the
AuNPs formed. These AuNPs had a larger hydrodynamic
sizes and uniform size distribution (Figure 3(c)), which is in
accordance with previous reports.44,46,47 Since the CeFe-
AuNPs produced at lower temperatures had similar prop-
erties, 25°C was selected as an optimal temperature to
fabricate the CeFE-AuNPs. This bodes well for the green
chemistry principles, as no external energy was required for
the synthesis of CeFE-AuNPs. The optimum pH was pH 8
(Figure 3), because the UV-Vis spectrum was narrow and
symmetrical. This suggested that the CeFE-AuNPs were
monodispersed.

Moreover, increasing temperature was associated with
reduced synthesis (yield) of CeFE-AuNPs at pH 8 (Figures

Table 1. Identification of CeFE polyphenols by HPLC analysis.

Polyphenols Type Sample Conc. (mg/g)

Epicatechin Flavanol 0.967 ± 0.062
EGCG Flavanol 0.345 ± 0.083
Catechin Flavanol 1.265 ± 0.051
Ferulic acid Phenolic acid 0.022 ± 0.004
Myricetin Flavonol 0.043 ± 0.003
Rutin Flavonol 0.417 ± 0.073
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Figure 2. UV-Vis spectra for the synthesis of CeFE-AuNPs at different pH and temperature conditions.

Figure 3. The effects of temperature on the synthesis of CeFE-AuNPs using CeFE at pH 8. a) UV-Vis spectra at different temperatures;
b) effect of temperature on the yield (maximum absorbance/Amax and peak intensity) of CeFE-AuNPs; c) effect of temperature on size
and PDI, and d) the rate of synthesis of CeFE-AuNPs.
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3(a) and (b)), and this was further associated with increases
in polydispersity and reduction in the hydrodynamic size of
AuNPs (Figure 3(c)). The synthesis of CeFE-AuNPs
reached saturation within a minimum time of 8 min, and
the synthesis was completed after 15 min (Figure 3(d)).

The results further confirm that temperature is also an
important parameter for the synthesis of CeFE-AuNPs.
Previous studies have shown that lower temperatures favour
the formation of larger AuNPs, and higher temperatures
favour the formation of smaller AuNPs.44,48,49 This is at-
tributed to the fact that increasing the reaction temperature
led to a rapid reduction of the metal precursors, and the
subsequent homogeneous nucleation of gold nuclei, al-
lowing for the formation of smaller spherical AuNPs.
Furthermore, it has been well demonstrated that the syn-
thesis of AuNPs using certain plant extracts require heat
activation, but only to a certain point.50,51 This is because
certain reducing agents in the plant extract gets inactivated
at higher temperatures. This phenomenon is also seen by the
decrease in absorbance at 100°C and the increase in ab-
sorbance or peak intensity at 25 – 50°C.

The concentrations of CeFE and gold solution required
for CeFE-AuNPs synthesis were optimized as shown in
Supplement Figure S1. The NaAuCl4∙xH2O concentration
at 0.1 and 1 mM was either insufficient or too high to
synthesize stable AuNPs at 25°C for all CeFE concentra-
tions, respectively. CeFE-AuNPs with desired optical
properties were synthesized at 0.25 and 0.5 mM of

NaAuCl4∙xH2O at 0.125 – 0.5 g/ml of CeFE. The optimal
conditions were thus selected as 0.25 g/ml of CeFE at pH 8
and 0.5 mM NaAuCl4∙xH2O, because the UV-Vis spectrum
was narrower, and the SPR was higher than that of the
0.5 mM NaAuCl4∙xH2O and 1 g/ml CeFE. The synthesis
was scaled-up using these optimized conditions, and the
UV-Vis of the CeFE-AuNPs is shown in Figure 4, with an
SPR peak at 535 nm, Amax of 2.1 and a peak intensity of
1.3.

Furthermore, the analysis of the absorption maxima for
CeFE-AuNPs at various pH conditions explicitly depicted a
gradual shift towards lower wavelengths with an increasing
pH from 3 to 7, indicating that the sizes of the particles
decreased when pH changed from highly acidic to neutral
i.e., from 3 to 7. When the pH was increased from 7 to 10,
the absorption maxima shifted towards higher wavelengths,
which suggested that the size of the NPs increased when pH
is increased from 7 to 9. Taken together, this suggested that
the synthesis of smaller CeFE-AuNPs can be synthesized
when the pH of the CeFE is around 7. This data is cor-
roborated by Singh & Srivastava.52

DLS and TEM characterization. DLS and TEM were used to
determine the size, shape and morphologies of CeFE-
AuNPs synthesised from CeFE produced at pH 8. The
DLS showed size distribution in the range of 50 to 200 nm,
with an average hydrodynamic size of 108.0 ± 0.2 nm
(Figure 5(a)). It is possible that the NPs were synthesized

Figure 4. UV-Vis spectrum of CeFE-AuNPs synthesized at the optimal conditions. The CeFE-AuNPs were synthesized at 25°C with pH
8 CeFE (0.25 g/ml) and 0.5 mM gold salt.
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from a combination of different phytochemicals. The TEM
images indicated that the CeFE-AuNPs obtained were
mostly spherical in shape, with an average core size of 32.96
± 4.39 nm (Figures 5(b) and (c)). Furthermore, the AuNPs
had a “halo” (Figure 5(b): insert), which is indicative of an
organic capping layer around the NPs surface.53

The mean particle size determined by the TEM analysis
was significantly smaller (33 nm) than that measured by the
DLS (108 nm). The adsorption of organic stabilizers from
the extract on the surface of AuNPs, and the adsorption of
water on the stabilized AuNPs could be responsible for this
discrepancy, which could have had an effect on the average
particle hydrodynamic size obtained by the DLS.54–56

Therefore, CeFE served as a good reducing and a cap-
ping agent in the synthesis of AuNPs and yielded mono-
dispersed AuNPs. Since these analyses were performed for
the optimized CeFE-AuNPs samples, it is unknown whether

AuNPs synthesised at other pH values would give the same
results, as different green synthesis methods have been
shown to synthesize quasi-spherical AuNPs with an average
diameter ranging between 40 and 100 nm.13

EDX spectrum and SAED pattern. The EDX spectrum
showed strong signals for gold atoms, with the strongest
signal peak at 2.3 keV,57 demonstrating that the AuNPs have
been formed (Figure 6(a)). The elements such as C, O and
Cu were also detected. The C and O could be from the
organic compounds present in the extract that played a role
in the reduction and stability of the AuNPs. The Cu in the
spectrum was from the carbon-coated copper grid used for
TEM analysis. As shown in Figure 6(b), SAED pattern
analysis indicated the Miller indices at (111), (200), (220),
(311), and (222), indicating that the synthesized AuNPs
have a phase crystal of face-centred cubic.58 The formation

Figure 5 Size distribution of CeFE-AuNPs as measured by DLS (a) and TEM (b). The core size distribution from the TEM micrograph
was analysed by ImageJ with Gaussian fitting and represented as a histogram (c).

Figure 6. The EDX spectrum (a) and SAED pattern (b) of the synthesized CeFE-AuNPs. These are representative images of 3
independent experiments done in triplicate.
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of AuNPs and their crystal phase was in accordance with the
Joint Committee on Powder Diffraction Standards of Au
(JCPDS number 04-0784).58

FTIR analysis. The FTIR spectroscopy revealed the surface
chemistry of the CeFE-AuNPs compared to CeFE (Figure
7). The band at 3306.15 cm�1 is assigned to the O–H and N–
H stretching vibration of carboxylic acid and proteins from
the extract. The peak at 1631.99 cm�1 corresponds to the
bending vibration of amide I, and this arises due to the
carbonyl stretching vibration in the amide linkage of
proteins.59

Such observations suggest the presence and binding of
proteins with AuNPs, which may be involved in the process
of their formation and stabilization. The bonds that are
assumed to be involved in the formation of CeFE-AuNPs
are shown in Table 2.

The spectrum of the CeFE-AuNPs exhibited absorption
bands at 3287.8, 2907.6, 1615.3, 1432.8, 1054.6 and
776.9 cm�1. These bands are associated with

polyphenols.22 Comparison of the free CeFE and CeFE-
AuNPs polyphenols indicated shifts in the absorption bands
of the carbonyl, hydroxyl and aromatic ring groups (Table
2), which further confirmed that the polyphenols are present
on the surface of CeFE-AuNPs. Since CeFE has high levels
of catechin, epicatechin and EGCG (Table 1) and reducing
sugars, these could play a major role in the AuNPs syn-
thesis, as catechin 60,61 and EGCG 62 have been shown to
produce AuNPs with diverse shapes. The possible mech-
anism of formation of CeFE-AuNPs is shown in Figure 8.

Catalysis
Reduction of 4-nitrophenol. The catalytic activity of green

synthesized AuNPs using various plant extracts have been
reported.38,63–69 CeFE-AuNPs also displayed catalytic ac-
tivity in the reduction of 4-nitrophenol to 4-AP (Figures 9(a)
and (b)) and MB to leucoMB (Figures 9(c) and (d)) by
NaBH4. In this study, CeFE-AuNPs act as a catalyst and
overcome the kinetic barrier of hydrogenation and facilitate
the electron exchange between the donor and acceptor
(Figure 9). Addition of NaBH4 to a light yellow 4-
nitrophenol solution resulted in the formation of a bright
green solution, which showed an absorption peak at 400 nm,
due to the formation of the 4-nitrophenolate anion. The
CeFE did not show any catalytic activity when added to the
4-nitrophenol and NABH4 solution (Supplemental Figure
S2), only the 4-nitrophenol conversion to 4-nitrophenolate
anions occurred but there was no formation of 4AP up to 60
min. In contrast, addition of CeFE-AuNPs resulted in the
reduction of 4-nitrophenol to 4-nitrophenolate anion, with
the concomitant appearance of a peak at 300 nm because of
the 4-AP formation (Figure 9(a)). This reaction was very
rapid and completed within 10 min when using as-
synthesized CeFE-AuNPs, with a reaction rate of 3.3 x
10�3 s�1 (Figure 9(b)). This rate is equivalent to the

Figure 7. FTIR analysis of the CeFE and the CeFE-AuNPs.

Table 2. Shifts of the FTIR spectra bands (cm�1) of major peaks
of CeFE and CeFE-AuNPs.

CeFE CeFE-AuNPs Shift values Functional groups

3306.15 3287.80 +18.35 OH, NH
2924.66 2907.57 +17.09 CH
2126.32 2133.79 - 7.47 C≡C
1631.99 1615.27 +16,72 NH, C=O, C=N
1404.26 1432.76 - 28.5 C=O, CH, OH
1066.74 1054.64 +12.1 C-O/NH, C-O-C/CN
772.93 776.94 - 4.01 CH

Note: The shift values were calculated by subtracting the peak transmit-
tance of the AuNPs from that of the extract.
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Figure 8. Green synthesis of AuNPs by CeFE. Chemical structures of abundant compounds in CeFE, which may be responsible for the
reduction of Au+ ions and synthesis of CeFE-AuNPs.

Figure 9 UV-Vis spectra showing the catalytic reduction of 4-nitrophenol (a) and MB (c) by NaBH4 in the presence of CeFE-AuNPs. Plots
of the pseudo-first order reaction kinetics for the reduction of 4-nitrophenol (b) and MB (d) by CeFE-AuNPs in the presence of NaBH4.

Madiehe et al. 9



catalytic activity of caffeic acid-AuNPs.16 CeFE-AuNPs
completely catalysed the reduction of 0.2 mM 4-
nitrophenol to 4-AP in the presence of NABH4, with no
residual 4-nitrophenol, as confirmed by HPLC.

Reduction of MB. Addition of CeFE to a light blue MB
solution resulted in the formation of a dark blue solution,
which was associated with a decrease in the absorption peak
at 665 nm. Addition of CeFE-AuNPs resulted in similar
characteristics. However, no further reduction of the peak
occurred over time, indicating that, in the absence of
NaBH4, no activity was possible. Addition of NaBH4 to
CeFE+MB resulted in further decrease of the peak at
665 nm. In contrast, addition of CeFE-AuNPs resulted in the
reduction of MB to leucoMB over time (Figure 9(c)). This
reaction was very rapid and completed within 10 min when
using as-synthesized CeFE-AuNPs, with a reaction rate of
1.33 x 10�3 s�1 (Figure 9(d)).

The above reaction kinetics were in good agreement with
the pseudo-first order equation: where At is the absorbance
at different time points, kapp is the apparent rate constant,
and t is the reaction time (in seconds). These results are
consistent with previously published studies on the catalytic
capacity of biogenic/green synthesized AuNPs.70–72 The
possible mechanism of catalytic action of CeFE-AuNPs is
depicted in Figure 10. The role of AuNPs in these reactions
is still not clear, however, studies have speculated that the
NPs as catalysts might possibly overcome the kinetic barrier
of hydrogenation and facilitate electron relay from the donor
to the acceptor.73 In this case, the CeFe-AuNPs speed up the
degradation of the two dyes by facilitating the electron

exchange between NaBH4 and 4-nitrophenol, as well as
NaBH4 and MB dye. The reduction of these compounds
formed 4-AP and leucoMB, respectively. The catalytic
activity and efficiency of AuNPs are dependent on their size,
shape, surface composition and pH 74; and have been re-
ported to have enzyme-like catalytic activities as either
antioxidant or pro-oxidant agents.73

Conclusion

A facile one-step green synthesis protocol that utilizes CeFE
as a reducing, capping and/or stabilizing agent to generate
highly stable CeFE-AuNPs has been developed. This
method produced spherical AuNPs that were characterized
using various techniques. These biogenic AuNPs possessed
high catalytic activity for the reduction of 4-nitrophenol to
4-AP andMB to leucoMB, respectively, and could be useful
in the elimination of these environmental pollutants. If not
consumed, this fruit would have ended up as waste, but
instead was used to produce AuNPs at low cost that can be
used to clean up water pollutants. The synthesised AuNPs
can also be retrieved and used in another catalytic reaction,
further emphasizing their low cost. The eco-friendliness of
these AuNPs will be evaluated in future.
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