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ABSTRACT
Radio interferometer arrays such as HERA consist of many close-packed dishes arranged in a regular pattern, giving rise to a
large number of ‘redundant’ baselines with the same length and orientation. Since identical baselines should see an identical sky
signal, this provides a way of finding a relative gain/bandpass calibration without needing an explicit sky model. In reality, there
are many reasons why baselines will not be exactly identical, giving rise to a host of effects that spoil the redundancy of the array
and induce spurious structure in the calibration solutions if not accounted for. In this paper, we seek to build an understanding
of how differences in the primary beam response between antennas affect redundantly calibrated interferometric visibilities
and their resulting frequency (delay-space) power spectra. We use simulations to study several generic types of primary beam
variation, including differences in the width of the main lobe, the angular and frequency structure of the sidelobes, and the beam
ellipticity and orientation. For all of these types, we find that additional temporal structure is induced in the gain solutions,
particularly when bright point sources pass through the beam. In comparison, only a low level of additional spectral structure is
induced. The temporal structure modulates the cosmological 21 cm power spectrum, but only at the level of a few per cent in
our simulations. We also investigate the possibility of signal loss due to decoherence effects when non-redundant visibilities are
averaged together, finding that the decoherence is worst when bright point sources pass through the beam, and that its magnitude
varies significantly between baseline groups and types of primary beam variation. Redundant calibration absorbs some of the
decoherence effect however, reducing its impact compared to if the visibilities were perfectly calibrated.

Key words: methods: data analysis – methods: statistical – techniques: interferometric – dark ages, reionization, first stars –
diffuse radiation.

1 IN T RO D U C T I O N

Detection of the 21 cm line from neutral hydrogen promises to
probe the dynamics, evolution, and thermal state of the Universe
from the Dark Ages through to the present dark energy-dominated
epoch. At some point in the intervening period, the gas content
of the Universe changed phase from being completely neutral to
almost fully ionized, through a process called reionization. Many
unresolved questions about this process, such as its exact timing
and duration, and which astrophysical sources are responsible for it,
can be answered by studying the evolution and clustering properties
of the 21 cm emission at redshifts between roughly 6 � z � 20
(Furlanetto, Oh & Briggs 2006; Morales & Wyithe 2010; Pritchard
& Loeb 2012; Mellema et al. 2013).

Several ongoing and future experiments are primarily aimed at
detecting the 21 cm clustering signal from the Epoch of Reionization
(EoR), including the Giant Meterwave Radio Telescope (GMRT;1

Swarup et al. 1991; Paciga et al. 2011), the Low Frequency Array

� E-mail: s.choudhuri@qmul.ac.uk
1http://www.gmrt.ncra.tifr.res.in/

(LOFAR;2 van Haarlem et al. 2013; Gehlot et al. 2019; Mertens et al.
2020), the Murchison Wide-field Array (MWA;3 Tingay et al. 2013;
Trott et al. 2020), the Donald C. Backer Precision Array to Probe the
Epoch of Reionization (PAPER;4 Parsons et al. 2010; Kolopanis et al.
2019), the Hydrogen Epoch of Reionization Array (HERA;5 DeBoer
et al. 2017), and the Square Kilometre Array (SKA; Koopmans et al.
2015).

Unfortunately, astrophysical foregrounds that are around 4–5
orders of magnitude brighter than the cosmological 21 cm signal
present a severe challenge for its detection (Santos, Cooray &
Knox 2005; Ali, Bharadwaj & Chengalur 2008; Ghosh et al. 2012;
Choudhuri et al. 2020). Two main approaches have been used to try
and overcome this issue: (i) Foreground removal, which subtracts
model foreground components and uses the resulting residual data
for 21 cm estimation (Jelić et al. 2008; Chapman et al. 2012; Hothi
et al. 2021); and (ii) Foreground avoidance, which discards a wedge-
shaped region in the (k⊥, k‖) plane that the foregrounds should

2http://www.lofar.org/
3http://www.mwatelescope.org
4http://eor.berkeley.edu/
5http://reionization.org/
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be localized within (Datta, Bowman & Carilli 2010; Vedantham,
Udaya Shankar & Subrahmanyan 2012; Thyagarajan et al. 2013; Liu,
Parsons & Trott 2014a, b). In order to accurately model and subtract
these foregrounds, the instrument must first be calibrated precisely.
However, due to a wide variety of instrumental, atmospheric, and
modelling effects, the recovered instrumental calibration always de-
viates from its true values in real observations (e.g. Datta, Bhatnagar
& Carilli 2009; Datta et al. 2010; Barry et al. 2016; Patil et al. 2016;
Ewall-Wice et al. 2017; Gehlot et al. 2018; de Gasperin et al. 2019;
Kohn et al. 2019; Mouri Sardarabadi & Koopmans 2019; Dillon et al.
2020; Kern et al. 2020; Kumar, Dutta & Roy 2020).

In the traditional sky-based calibration approach, where standard
calibrator sources are used to solve for the antenna gains, inaccuracies
in the sky model contaminate the modes outside the foreground
wedge in the power spectrum measurement, potentially causing a
bias in the recovered EoR signal (Barry et al. 2016; Ewall-Wice
et al. 2017; Kumar et al. 2020). It is therefore expected that a sky
model-based calibration precision on the order of ∼10−5 is needed
to conclusively detect the 21 cm signal (Barry et al. 2016), although
baseline weighting schemes can help mitigate this requirement
(Ewall-Wice et al. 2017).

Alternatively, the radio telescope itself can be designed to facilitate
accurate calibration. This is an important motivation for adopting
a highly redundant array design, e.g. for the PAPER and HERA
experiments, as in principle redundancy allows for more accurate
relative calibration of antenna gains (Liu et al. 2010; Dillon &
Parsons 2016). By measuring effectively the same mode on the
sky multiple times, with many baselines, an overconstrained system
of simultaneous equations can be written down that allows one to
solve for the gain parameters and true visibilities without needing a
priori knowledge of the sky brightness distribution. We can write the
observed visibility for a baseline between antennas i and j as

Vij = gig
∗
j V

true
ij + nij , (1)

where gi(ν, t) are the complex gains for antenna i at frequency ν

and time t, V true
ij is the visibility that would be observed with a

perfectly calibrated instrument, and nij is the noise (note that we
have taken the noise to be independent of the antenna gains in
this expression). Importantly, for a perfectly redundant array, all
baselines with the same length and orientation will share the same
true visibility, differing only by their complex gains and noise.
For arrays with a high degree of redundancy, this greatly reduces
the number of degrees of freedom that must be solved for during
calibration, leading to corresponding improvements in estimates of
the gains and true visibilities.

While compelling, the redundant calibration approach cannot be
performed entirely without reference to a sky model (Li et al. 2018;
Dillon et al. 2020; Kern et al. 2020). Several degenerate degrees
of freedom occur within the system of simultaneous equations for
the gains and visibilities that cannot be solved for using redundant
calibration alone, and must therefore be fixed by reference to an
absolute calibration that fixes the overall flux scale, a phase reference,
and several other degrees of freedom related to the orientation of the
array (Dillon et al. 2020). Imperfections in the absolute calibration,
e.g. due to incompleteness of the sky model, can overwhelm the EoR
21 cm signal (Byrne et al. 2019), making this step an important source
of calibration systematics. We will not study absolute calibration
systematics further in this paper however.

More importantly for the purposes of this paper, practical con-
struction and deployment of radio antennae always results in im-
perfections in the array, resulting in small deviations away from
perfect redundancy. For example, feeds can be mis-aligned, rotated,

or displaced from their ideal positions (Joseph, Trott & Wayth 2018;
Orosz et al. 2019), while primary beam patterns of antennae differ due
to slight electronic or mechanical variations (Ansah-Narh et al. 2018).
Even if these imperfections can be kept within reasonably strin-
gent tolerances, environmental effects such as ambient temperature
changes and wind loading can affect each array element differently,
giving rise to additional variations across the array. Close-packed
arrays are also subject to antenna position-dependent effects such
as mutual coupling (or cross-talk) between neighbouring antennas,
which also breaks perfect redundancy since antennas located at the
edge of the array behave differently to antennas at the centre (e.g.
see Fagnoni et al. 2021).

The ultimate impact of non-redundancies depends on the proper-
ties of the calibration method that is applied to the data. A method
that assumes perfect redundancy will necessarily absorb some of
the baseline-to-baseline variations caused by non-redundancy into
the gain and calibrated visibility solutions. Depending on the source
of the non-redundancy, this can cause spurious additional spectral
structure that will interact with bright foregrounds. As shown in
Orosz et al. (2019), this expands the size of the foreground wedge
region, particularly at longer baseline lengths, and therefore reduces
the number of modes available for 21 cm signal detection. In a related
effect, variations in antenna position can also cause a bias in the phase
of the antenna gain solutions (Joseph et al. 2018).

As part of a delay spectrum analysis (Parsons et al. 2012),
redundant visibilities can be coherently averaged before the power
spectrum estimation step (e.g. Ali et al. 2015; Ali et al. 2018).
In a perfectly redundant setting, this would result in significant
improvements in signal to noise as the noise will average down as
the number of baselines, Nbl, rather than the

√
Nbl scaling achieved

by incoherently averaging the power spectra themselves. Gain
errors caused by non-redundancy can lead to decoherence (partial
cancellation) as the visibilities are averaged however, resulting in
a loss of signal power and jeopardizing the interpretation of upper
limits on the EoR power spectrum (Ewall-Wice et al. 2017; Kumar
et al. 2020). Non-redundancies therefore pose a potentially serious
threat to attempts to constrain the 21 cm power spectrum from EoR
and Cosmic Dawn with redundant arrays such as HERA (DeBoer
et al. 2017), and potentially other experiments that use redundant
calibration (e.g. HIRAX; Newburgh et al. 2016).

In this paper, we build on the analysis of Orosz et al. (2019)
to characterize the effects of various types of primary beam non-
redundancy on a hexagonal close-packaged array with similar prop-
erties to HERA. As well as studying variations in the width of the
main lobe of the primary beam, we include a more realistic model
of the primary beam sidelobes and their possible variation across the
array; variations in their ellipticity and orientation; and different
distributions of the deviations from non-redundancy (e.g. purely
random versus distributions with outliers). We apply the redundant
calibration method described in Dillon et al. (2020), without any
reference to a sky model for absolute calibration, and compare
coherent- and incoherently averaged power spectrum estimates for
each type of non-redundancy.

The paper is organized as follows. In Section 2, we describe our
fiducial model for the array layout and primary beam, and set out the
different types of deviation from perfect redundancy that we consider.
In Section 3, we give an overview of our visibility simulations, and
Section 4 describes the synthetic calibration and power spectrum
estimation pipeline applied to them. In Section 5, we analyse the
effects of the different types of non-redundancy on the gain solutions
and the coherent- and incoherently averaged power spectra. Finally,
we summarize and conclude in Section 6.
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2068 S. Choudhuri, P. Bull and H. Garsden

Figure 1. The array layout used in our simulations. There are 10 antennas
in total, each with diameter 14 m and separated by 14.6 m.

2 A R R AY MO D E L A N D T Y P E S O F
N O N - R E D U N DA N C Y

In this section, we describe the layout of our model redundant array;
a simple analytic model for our fiducial primary beam, based on fits
to electromagnetic modelling of HERA antennas; and a series of
models for different types of primary beam non-redundancy, based
on perturbing the fiducial beam in various ways.

2.1 Redundant array layout

A regular, close-packed array layout is generally chosen to ensure a
sufficient number of redundant baselines, and to maximize sensitivity
on the relatively large angular scales that are targeted by EoR
experiments. We consider a hexagonal array layout with similar
properties to a segment of HERA, with 10 receivers in our case
(see Fig. 1). When complete, the full HERA array will comprise 350
dishes, each 14 m in diameter, and arranged into three hexagonally
packed sub-arrays with minimum baseline length 14.6 m, plus several
outrigger antennas to provide longer baselines for imaging. The
position error tolerance between antennas is expected to be 2 cm
or less (Dillon et al. 2020). As with HERA, we assume that our array
operates as a drift scan instrument, pointing at zenith, and located
at −30.7◦ latitude. All receivers are assumed to be coplanar and
regularly spaced, with no significant height variations or position
errors between them.

We chose this array configuration for two reasons. First, our
focus in this paper is on primary beam non-redundancies rather than
baseline non-redundancies caused by position errors; the latter have
been studied elsewhere (e.g. Orosz et al. 2019). Secondly, 10 close-
packed antennas (resulting in 45 baselines in total) is a reasonable
minimum to provide several well-populated redundant baseline
groups with a few different lengths and orientations while keeping the
computational expense of the problem relatively manageable. This
allows us to simulate a wider frequency band and LST range for many
different types of primary beam non-redundancy. The downside of
this choice is that shorter baselines are relatively overrepresented
compared with the real HERA array. This means that our redundant
calibration procedure is more reliant on the baselines that are most
sensitive to diffuse emission, although as shown in Orosz et al. (2019)
these are less severely impacted by some types of non-redundancy
and so may well be up-weighted in a realistic redundant calibration

procedure anyway. In any case, we will present results for simulations
that include only point sources as well as diffuse emission + point
sources, to give some measure of the relative importance of the
diffuse emission.

2.2 Primary beam parametrization

The true (model) visibility for antenna pair (i, j) can be written as

V true
ij (ν) =

∫
�

Bij (θ, ν)I (θ , ν)e2πiuij · θ d2�, (2)

where I (θ , ν) is the specific intensity in the 2D sky plane at position
θ and frequency ν, uij is the baseline vector, and Bij is the primary
beam power pattern corresponding to antennas i and j.

An important simplification that we make in this paper is to only
model the primary beam power pattern for the (pseudo-) Stokes I
polarization for each antenna. In reality, the power pattern for each
baseline is made up of a linear combination of products of electric
field patterns from each polarized receiver of each antenna in the pair,
encoded by the instrumental Mueller matrix (e.g. see Kohn et al.
2019). This accounts for the effects of leakage between different
polarizations, which is expected to be a ∼1 per cent effect for the
HERA Stokes I channel (Kohn et al. 2019).

The individual E-field beams per antenna and polarization are quite
complex and do not have even approximate azimuthal symmetry,
so it would take a concerted effort (and many parameters) to
model them individually. Much of the asymmetry cancels when the
Stokes I power beam is formed however, allowing us to construct a
reasonably accurate azimuthally symmetric representation with far
fewer parameters. This is the approach we take in what follows
– ignoring polarization leakage and most beam asymmetry, and
approximating the power beam for baseline (i, j) as be Bij ≈ √

BiBj ,
where Bi is the power beam for antenna i for the pseudo-Stokes I
polarization only.

A detailed electromagnetic model for the HERA primary beam
was presented in Fagnoni et al. (2021). While the primary beams of
the deployed instrument are likely to deviate from this model due
to various effects (e.g. mis-alignments, dish surface imperfections,
antenna–antenna couplings), we expect this to be a realistic starting
point for our simulations.

Rather than using the simulated beam itself, we fit a purely
axisymmetric parametric model of the form

b(θ, φ) =
√

B(θ, φ) =
nmax∑
n=0

cnTn(xν(θ )), (3)

where for a zenith-pointing drift scan telescope like HERA, θ is
the zenith angle, φ is the azimuthal angle, and Tn and cn are the
Chebyshev polynomials and their coefficients, respectively. Here
xν(θ ) is an appropriate frequency-dependent transformation of the
angular dependence of the beam that is chosen to make the primary
beam pattern easier to fit with a low-order polynomial. We found the
transformation xν(θ ) = 2sin (θ /fν) − 1 to work well with a variety of
polynomial bases, where fν = (ν/ν0)α , with ν0 = 100 MHz, and α =
−0.69. We have not introduced any other frequency dependence in
the non-redundancy perturbation described in Section 2.3, which we
expect to be a reasonable approximation over the small bandwidth
(20 MHz) considered here.

After comparing several different choices of basis expansion, we
found that the Chebyshev polynomials with nmax = 17 match quite
well with the electromagnetic model. Fig. 2 shows the pixelized beam
values in a single frequency channel, compared with the best-fitting
Chebyshev polynomial. We see that it matches to within 10 per cent
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Primary beam non-redundancy in 21 cm studies 2069

Figure 2. Left-hand panel: Square-root of the EM model primary beam, b (filled circles), and azimuthally averaged best-fitting Chebyshev polynomial with
nmax = 17 (black solid line) as a function of zenith angle, θ . Each filled circle denotes a different azimuth angle. (2nd from left): Same as the previous panel,
but with a log scale. (2nd from right): Comparison of the EM model primary beam and square of best-fitting Chebyshev polynomial (B). Right-hand panel:
Fractional (percentage) difference of B between the best-fitting Chebyshev polynomial and the EM model primary beam. The fractional deviation is within
10 per cent at all zenith angles except near the first null.

at all zenith angles (except two values near the first null, where the
primary beam becomes almost zero). The spread in the pixelized
beam datapoints due to asymmetry of the beam is also quite small,
thus justifying our use of an axisymmetric model.

2.3 Models of primary beam non-redundancy

To model antenna–antenna variations in the primary beam, we
introduce a series of different perturbations to the parametric model
from the previous section. While it would be possible to construct
a more general perturbation scheme, for example using a 2D
Zernike polynomial basis, principal component representations, or
similar (e.g. Bui-Van, Craeye & de Lera Acedo 2017; Eastwood
et al. 2018; Iheanetu et al. 2019; Sekhar et al. 2019), our goal
here is to minimize the number of additional parameters that
must be introduced to the beam model, and to directly connect
these parameters to physical effects. Directly perturbing a general
polynomial representation of the beam would typically require the
coefficients to be adjusted in specific, highly correlated ways in
order to model different effects, since small changes to individual
coefficients tend to result in wildly different beam patterns that
do not correspond to realistic beam variations. Hence, we have
developed a set of specific, physically motivated perturbations,
which are defined as follows (see Table 1 and Figs 3 and 4 for a
summary).

2.3.1 Case 1: Sidelobe-only perturbations

In this case, we study the effects of antenna–antenna variations
in the sidelobe pattern only, leaving the mainlobe unmodified. In
conjunction with Case 2 (which perturbs the mainlobe only), this is
intended to allow the relative importance of sidelobe versus mainlobe
variations to be compared.

Underlying the model for this case is the assumption that sidelobe
variations can be quite complex, potentially shifting the location and
depth of nulls in the beam. We use a low-order Fourier series (N =
8) with randomly chosen coefficients to modulate the fiducial beam
pattern beyond a zenith angle θML that defines the ‘edge’ of the

Table 1. The different types of primary beam non-redundancy considered
in this study, along with the parameters used to define the corresponding
primary beam perturbations.

Perturbation type Perturbation level

Case 1 Sidelobe (a) σ SL = 0.05, 0.2
(b) σ SL = 0.2, σ freq = 0.1

Case 2 Mainlobe σ ML = 0.01, 0.02

Case 3 Stretched beam (a) Gaussian, σ m = 0.01, 0.02
(b) Uniform, 
m = 0.02
(c) Outlier antenna 2
(d) Outlier antenna 7

Case 4 (a) Ellipticity σ m,x/y = 0.01, 0.02
(b) Ellipt. + rotation σ m,x/y = 0.01, 0.02 and

Rotation α ∼ Uniform[0◦, 360◦]
(c) Fixed ellipt., rotation: (i) α ∼ Uniform[0◦, 360◦]

(ii) α ∼ Gauss.(μ = 0, σ = 10◦)

mainlobe. We write the perturbed beam as

b̃(θ, φ) = b(θ, φ)

(
1 + cSLσSL�(θ )

∑
m

am sin(2πmθ/L)

)
, (4)

where the period L = π /2 corresponds to the angle between zenith
and horizon. We normalize the modulation by cSL = [max(y) −
min(y)]−1, where y is the summation term in equation (4). This
rescales the summation term to span [ − 1, +1] regardless of the
chosen values of the coefficients {am}. The parameter σ SL then
controls the overall amplitude of the modulation. We consider two
sub-cases in this paper, with amplitudes σ SL = 0.05 and 0.2.

We draw the coefficients {am} randomly from a Gaussian distri-
bution with mean zero and unit variance, using a different set of
coefficients for each antenna. The separation between mainlobe and
sidelobes is enforced by using a smooth transition of the form

�(θ ) = 1

2

(
1 + tanh

[
θ − θML


θ

])
, (5)

where 
θ = 3◦ determines the sharpness of the transition and θML ≈
2 θFWHM = 18◦ sets its location. This prevents sharp artefacts from
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2070 S. Choudhuri, P. Bull and H. Garsden

Figure 3. Representative HEALPIX maps of the perturbed primary beams in an alt/az coordinate system for different cases, as explained in Table 1. The upper
left-hand panel shows the log10 of the power beam for the unperturbed case. All other plots show the ratio of perturbed models to the fiducial model on a log10

scale, clipped to the range [−0.5, +0.5], and for a randomly chosen pair of antennas, Bij. Note that these beam patterns will be different for different pairs of
antennas.

Figure 4. The perturbed primary beam as a function of zenith angle for different types of non-redundancy as explained in Table 1. The left-hand and right-hand
panels show the axisymmetric and asymmetric perturbed beam, respectively. In the right-hand panel, each point, for a fixed zenith angle, is the value of the
perturbed beam for different azimuth angle. The solid black line in both panels show the non-perturbed beam for a perfectly redundant array. The ellipticity +
rotation curve has been multiplied by a factor of 5 for ease of comparison with the ellipticity-only case.

appearing in the beam model. An example realization of this kind of
perturbation is shown in Figs 3 and 4.

2.3.2 Case 2: Mainlobe-only perturbations

The mainlobe of the HERA primary beam approximately follows
a Gaussian. We perturb the mainlobe by subtracting a Gaussian
function with the same width as the mainlobe of the fiducial model,
and then adding another Gaussian with a modified width. The former
Gaussian has width (standard deviation) θML, while the latter has

γ θML, where γ controls the width of the perturbed main lobe. When
γ is greater than 1, the width of the perturbed primary beam is larger
compared with the fiducial model (and vice versa). The mathematical
expression for the perturbed primary beam is

b̃(θ, φ) = b(θ, φ) + (1 − �(θ )) [q(θ ; γ ) − q(θ ; γ = 1)] (6)

q(θ ; γ ) = exp

(
−1

2

θ2

γ 2θ2
ML

)
. (7)

MNRAS 506, 2066–2088 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/2/2066/6309319 by U
niversity of W

estern C
ape user on 14 O

ctober 2022



Primary beam non-redundancy in 21 cm studies 2071

Figure 5. Waterfall (frequency-zenith angle) plots of different models of the primary beam, B(θ , ν). Left-hand panel: Azimuthal average of the full EM-
simulation beam of Fagnoni et al. (2021). (2nd from left): Unperturbed Chebyshev polynomial fit to the EM-simulated beam (equation 3). (2nd from right):
Chebyshev model plus a sidelobe perturbation with σ SL = 0.4. Right-hand panel: Chebyshev model with the same sidelobe perturbation, but now with a large
additional frequency modulation with σ freq = 0.99. The two white dashed lines show the positions of the first and second nulls in the Chebyshev model (at ∼18◦
and ∼36◦, respectively at 100 MHz).

We draw γ , the width perturbation parameter, from a Gaussian
random distribution with mean unity and standard deviation σ ML.
Since this can be larger or smaller than unity, the perturbed mainlobe
can be larger or smaller than the fiducial one. We consider two
different cases here, with σ ML = 0.01 and 0.02.

2.3.3 Case 3: Stretching the primary beam

This case models changes in the overall angular size of the beams
from antenna to antenna. Similar kinds of non-redundancy might
arise if the height of the receiver above the dish varies slightly
between antennas for example. For simplicity, the beam pattern is left
unchanged, preserving the structure of the mainlobe and sidelobes,
except for an overall stretching factor that varies between dishes.
This is achieved by performing a remapping of the zenith angle, θ

→ θ /m, where m is the stretch factor. We consider three different
cases:

(i) For each antenna, m is drawn from a Gaussian distribution with
mean unity and standard deviation σ m = 0.01 or 0.02.

(ii) For each antenna, m is drawn from a Uniform distribution
between [−0.02, +0.02] (roughly comparable in width to the σ m =
0.01 case above).

(iii) A perfectly redundant array with m = 1 for all antennas except
a single outlier, which has a 10 per cent stretch factor applied. We
consider cases with the outlier antenna in the middle of the array
(Ant. 2), and on the outskirts (Ant. 7); see Fig. 1.

Because each visibility depends on the product of the square roots of
the individual antennas’ power beams, this type of non-redundancy
can generate complex deviations from the fiducial model, as can be
seen from Fig. 3. In essence, the primary beams of each antenna
in the pair modulate one another, generating substantial additional
structure, especially in the sidelobes.

2.3.4 Case 4: Ellipticity and rotation of the primary beam

While the basic beam model is axisymmetric, we also allow per-
turbations in ellipticity and rotation to model beam squint and feed
rotation effects. We do this by transforming the axisymmetric beam

through a simple coordinate remapping,

x = θ cos φ; y = θ sin φ

x → (x cos α − y sin α)/mx

y → (x sin α + y cos α)/my,

where mx and my are stretch factors in the E–W and N–S directions
and α is the rotation angle of the ellipse semimajor axis away from
the E–W direction. When mx �= my, ellipticity is generated in the
perturbed beam.

The shape of the perturbed primary beams for different cases are
shown in Figs 3 and 4. The former shows a HEALPIXmap (Górski et al.
2005) of the perturbed beam in an alt/az coordinate system, in which
most of the visible structure can be attributed to an axisymmetric
perturbation due to the stretch factors deviating from unity. Fig. 4
more clearly shows the asymmetry as a function of zenith angle.

We consider three different cases for ellipticity and rotation:

(i) We draw two different Gaussian random numbers for mx and
my for each antenna, with σ m = 0.01 and 0.02. This results in either
N–S or E–W-aligned elliptical beams, with no rotation.

(ii) Same as (i), but also drawing a random rotation angle α for
each antenna from a Uniform distribution over [0◦, 360◦].

(iii) We fix the ellipticity (mx = 1.02, my = 0.98), but draw a
rotation angle for each antenna from either a Uniform distribution
in the range [0◦, 360◦], or a Gaussian distribution with mean 0◦ and
standard deviation 10◦.

The functional forms of the different types of non-redundancy
discussed so far do not have an explicit frequency dependence of
their own. The perturbed beams can still have differing, non-trivial
frequency structures, however. This is because most of the types of
non-redundancy are implemented as modulations of the unperturbed
beam model, which has a simple power-law frequency scaling as
described by equation (3), and so the beam shape as a function of
frequency does differ between antennas.

Fig. 5 compares the resulting (mildly) frequency-dependent struc-
ture for an example of the sidelobe perturbation model with the
unperturbed model and the full EM simulation model of Fagnoni et al.
(2021). While the zenith angle-dependent modulation clearly dom-
inates the perturbed sidelobe structure, the underlying frequency-
dependence of the unperturbed model is still visible, and will be
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2072 S. Choudhuri, P. Bull and H. Garsden

Figure 6. Left-hand panel: The distribution of the number of sources per pixel in a HEALPIX map with nside = 32 from the GLEAM catalogue. Middle:
Same as the left-hand panel but for a modified GLEAM catalogue where the blank pixels are replaced with a random pixel from the filled regions. Right-hand
panel: The modified pixels are shown with value 1. An equatorial coordinate system and Mollweide projection have been used.

affected in different ways for different realizations of the perturba-
tions (i.e. between different antennas).

For completeness, we also include a test case with an explicitly
frequency-dependent sidelobe model, which is listed in Table 1 as
Case 1(b), and an extreme example of which is shown in the right
most panel of Fig. 5. We implement the frequency dependence
by promoting the sidelobe perturbation amplitude parameter to a
function of frequency,

cSL → cSLσfreq

∑
n

cn sin

(
2πν

100 MHz

)
+ dn cos

(
2πν

100 MHz

)
, (8)

where random coefficients cn and dn are chosen for a low-order
Fourier series using a similar method as in equation (4), with σ freq

now controlling the size of the perturbation. For the extreme case
of σ freq = 0.99 shown in Fig. 5, the additional frequency-dependent
modulation gives rise to features such as an increased number of
sidelobes at around 120 MHz. We will study the less extreme case of
σ freq = 0.1 in Section 5.4.

3 SI M U L AT I O N S

In this section, we describe our suite of visibility simulations for
the array layout and set of primary beam models described in the
previous section. For all simulations, we use a bandwidth of 100–
120 MHz with 120 frequency channels, and a total observation time
of about 6.7 h with an integration time per sample of 40 s. Our
simulations cover the LST range 9.2–15.8 h. This range is chosen
to be almost disjoint with recent seasons of HERA data (covering
∼0–11.5 h), as the modelling presented here is not yet suitable for
a direct comparison. The whole analysis presented here is for the
pseudo-Stokes I polarization only.

We use the hera sim6 and healvis (Lanman & Kern 2019)
packages to perform the simulations for point sources and diffuse
emission, respectively. Both implement the visibility equation (equa-
tion 2), but with different ways of converting between sky and
antenna coordinates and different ways of modelling the beams. We
modified the hera sim package to use a fast approximation to the
angle conversions in the astropy package (Astropy Collaboration
2018), which produces results that accurately match those from the
pyuvsim high-precision reference simulator (Lanman et al. 2019)
at significantly less computational expense. We also modified the
packages to evaluate the primary beams directly, using the analytic
model to avoid any additional interpolation or pixelization steps.

6https://github.com/HERA-Team/hera sim/

3.1 Point sources

The target EoR signal is several orders of magnitude fainter than
typical foreground emission, and so we expect foregrounds to be
the dominant contributor to any systematic errors in the calibration
solutions due to non-redundancies. We therefore neglect the EoR
component, and instead generate our initial sky model from point
source foregrounds only. We base our sky model on the GLEAM
catalogue (Hurley-Walker et al. 2017), as shown in Fig. 6. GLEAM
contains 307 455 sources over a total sky area of 24 831 deg2, with
variable depth and completeness (representative completeness of
50 per cent complete at 55 mJy). Each source has flux density
measurements in 20 sub-bands in the range 72–231 MHz, making
it well-matched to our simulated frequency range of 100–120 MHz.

The GLEAM catalogue excludes the region north of +30◦ dec-
lination, Galactic latitudes within 10◦ of the Galactic plane, and a
handful of localized areas such as the Magellanic Clouds. To ensure
a realistic sky brightness distribution even in the far sidelobes of
the primary beam for the entire LST range of our simulations, we
fill in the excluded regions in the catalogue with sources drawn
from elsewhere in the catalogue. We assign all the sources to pixels
within a HEALPIX pixelization with nside = 32. We then choose
a random pixel from the observed region (see the left-hand panel of
Fig. 6) and duplicate the sources within that pixel in an empty pixel
elsewhere in the map. We repeat until all empty pixels are filled,
randomly selecting a new observed pixel each time to ensure a fair
sampling of the catalogue.

The modified source distribution is shown in the middle panel of
Fig. 6, with the right-hand panel showing the pixels that have been
populated using this filling process. It can be seen from the source
distribution map that the filled pixels do not reproduce the large-scale
clustering properties of the regions that were included in the actual
catalogue, and that artefacts remain towards the edges of the survey
region due to the diminishing depth of the real survey. We make no
attempt to correct for these issues, as we expect the brightest sources
to be the dominant contributors to non-redundancy effects, and these
are treated separately (see below). The overall luminosity function
of these fainter sources across the whole sky is consistent with that
within the GLEAM survey, and there are no unrealistic empty regions
in the sky brightness distribution, and so we consider this treatment
sufficiently realistic for our purposes.

We include the brightest sources that were peeled from GLEAM
catalogue itself (see table 2 of Hurley-Walker et al. 2017), as well
as Fornax A, which is not present in that table. Fig. 7 shows the
tracks as a function of LST of the 20 brightest sources for the
whole observation through the primary beam of our simulated array.
Five other bright sources with fluxes ∼30–60 Jy that pass through
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Primary beam non-redundancy in 21 cm studies 2073

Figure 7. Tracks of the brightest 20 point sources through the primary beam
as a function of LST. Tracks for a few other important sources (A to E) are
also shown; see Table 2 for a listing. Note that the tracks of D and E have
been shifted slightly for clarity. The blue circles denote the first (inner) and
second (outer) nulls in the primary beam, at around 18◦ and 36◦, respectively,
while the grey dashed circles are placed at 30◦ and 60◦.

Table 2. The position and flux (at 100 MHz) of the dominant sources in our
simulations. The common name or GLEAM identifier is given for each source;
source B is actually a randomly drawn source used to fill in a blank region,
as discussed in Section 3.1. The tracks and the effective (beam-modulated)
fluxes of these sources are shown in Figs 7 and 8, respectively.

Name RA (◦) Dec (◦) Flux (Jy)

J090147-255516 (A) 135.447 − 25.921 40.9
B 125.2 − 30.0 36.2
J131139-221640 (C) 197.914 − 22.277 53.7
J102003-425130 (D) 155.015 − 42.858 34.3
J153014-423146 (E) 232.558 − 42.529 67.5
Centaurus A 201.3 − 43.0 1937.4
Hydra A 139.5 − 12.1 544.7

the beam are also included, as summarized in Table 2. Not all of
these bright sources rise above the horizon within the simulated 6.7 h
observing time. The blue circles in this figure denote the first (inner)
and second (outer) nulls in the primary beam pattern, at around
18◦ and 36◦, respectively (cf. Fig. 2). We see that Hydra A (545 Jy
at 100 MHz) is present near the first null at the beginning of the
observation, while Cen A (1937 Jy at 100 MHz) is present within the
mainlobe from around 13 h.

In Fig. 8, we show the flux of the 100 brightest sources as a
function of LST after multiplying with the analytic primary beam
(square of equation 3). The red lines are for the top 20 brightest
sources, while the grey lines are for the next 80 brightest sources.
The brightest sources mostly dominate the effective flux level for the
entire LST range, except at LSTs of around 9–10 h where sources
A and B (fluxes of ∼41 Jy and 36, respectively) form the dominant
contribution. Sources C and E (fluxes of ∼54 and 68 Jy, respectively)
also contribute significantly at around 13 and 15.5 h due to their
position within the mainlobe at those times, although Cen A is still
by far the dominant source from around 11 h onwards.

As mentioned previously, not all of the 100 brightest sources
are present in the plot due to the limited LST range considered
here. The effective flux (flux times primary beam) of each source
changes with LST in a characteristic way depending on how exactly it

Figure 8. The effective flux (flux S times primary beam B) as a function
of LST for the 100 brightest sources. The red lines are for top 20 brightest
sources (cf. Fig. 7), while the grey lines are for remaining 80 sources. Not all
of the sources are present in the plot due to the limited LST range considered
here. Sources that were found to have an important effect on the gain solutions
are labelled (see Table 2).

transits through the beam pattern. Most of the bright sources show an
oscillatory pattern with LST as they pass through different sidelobes
and nulls, while a handful of sources transit directly through the
mainlobe and so are particularly conducive to empirically mapping
the beam pattern (Nunhokee et al. 2020).

Note that we do not include any bright extended sources in our sky
model, other than the Galactic diffuse emission (see below). Given
the comparatively low angular resolution of our simulated array, we
expect extended sources to be adequately modelled as point sources
for our purposes.

3.2 Diffuse emission

In addition to point sources, we also include diffuse emission in some
of our simulations. This is simulated separately using the healvis
package, with the same simulation properties and primary beam
models as for the point sources. The resulting visibilities are then
added to the point source simulations, followed by noise and gain
fluctuations (see below). Note that the addition of diffuse emission
significantly alters the sky temperature, and therefore increases the
noise rms of the simulations compared with the point source-only
case.

We use the Global Sky Model (de Oliveira-Costa et al. 2008) as
our model of the diffuse Galactic radio foregrounds, as implemented
by the PyGSM package (Price 2016). GSM is based on a three-
component principal component analysis fit of a large set of multifre-
quency data sets, spanning 10 MHz to 94 GHz. At low frequencies,
these components roughly correspond to the Galactic synchrotron
and free–free emission that are the dominant contributors to the
sky temperature around 100 MHz. The model comes in the form
of HEALPIX maps as a function of frequency, which we pass to
healviswith a map resolution of nside=64. We also performed
a test simulation with nside=128, finding little change in the
model visibilities for a significant increase in computational expense,
hence our choice of the lower resolution. Note that the diffuse
emission simulations represent the dominant computational cost in
this study.
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2074 S. Choudhuri, P. Bull and H. Garsden

3.3 Gains and noise

In addition to the sky and beam models, we also introduce a simple
model for the bandpass, by generating complex gains for each
antenna that vary smoothly in frequency (but not in time). The gains
are generated from a complex sine series,

gi(ν, t) = (1 + i)√
2

+ f

nmodes−1∑
m=0

(am + ibm)
sin(πmν)

m + 1
, (9)

where am, bm are Gaussian random variates with mean zero and
unit variance, and nmodes = 8 is the number of sinusoidal modes
used to generate the gain variation along the frequency. Different
coefficients are drawn for every antenna. The value of f determines
the amplitude of the bandpass fluctuations, which we set to f = 0.1
in all simulations.

For the noise part, we add uncorrelated Gaussian random noise to
each frequency channel and time sample according to

nij (ν, t) = σij

(a + ib)√
2

, (10)

where σ 2
ij is the desired noise variance and a and b are unit Gaussian

random variates. The noise variance is modelled using the simulated
autocorrelation visibilities, according to

σ 2
ij = ViiVjj


t
ν
, (11)

where 
t = 40 s is the time resolution and 
ν = 166 kHz. This
ensures that the noise level tracks the sky temperature, which we
assume to dominate the system temperature at these frequencies.

Note that we do not model more complex instrumental effects such
as RFI, polarization leakage, or cross-talk in these simulations.

Finally, we apply the gains and noise to the true simulated
visibilities according to equation (1), and store the results in the
standard UVData format used by the HERA analysis pipeline. Our
simulation pipeline is available from https://github.com/philbull/no
n-redundant-pipeline/, and includes configuration files that can be
used to regenerate the simulated data for each type of primary beam
non-redundancy.

4 A NA LY SIS PIPELINE

In this section, we describe a simplified analysis pipeline that
we apply to each simulated data set, based on the HERA data
analysis and power spectrum estimation pipelines. Our simplified
pipeline consists of a redundant calibration step to solve for the
gains (Section 4.1), followed by an artificial absolute calibration
to fix degeneracies in the gain solutions, then an optional coherent
averaging of the visibilities, and finally delay spectrum estimation
(Section 4.2).

We compare two different approaches to estimating the delay
power spectrum:

(i) Incoherent averaging: Estimate the delay spectra for pairs of
baselines within each redundant group, and then average the resulting
spectra to form an incoherently averaged power spectrum.

(ii) Coherent averaging: Average together the visibilities for all
pairs of baselines within each redundant group and then estimate the
delay spectrum for the average to form a coherently averaged power
spectrum.

For a set of delay-transformed visibilities {Ṽa(τ, t)} within a redun-
dant baseline group, where a labels the baseline, the incoherently

averaged autospectra and coherently averaged (auto- and cross-)
delay spectra are given by, respectively,

Pinco(τ, t) = 1

Nbl

∑
a

Ṽa(t) Ṽ ∗
a (t + 
t) (12)

Pco(τ, t) = 1

N2
bl

(∑
a

Ṽa(t)

)(∑
b

Ṽ ∗
b (t + 
t)

)
, (13)

where Nbl is the number of baselines within the redundant group, t
labels the LST bin of the visibility observation, and 
t is the LST
bin width, so that the spectra are calculated from neighbouring time
samples to avoid a noise bias.

The two approaches should give equivalent results in the ideal case,
up to a difference in their noise levels. Cancellations due to phase
errors in the gain solutions, caused by non-redundancy, can cause a
systematic decoherence effect in the coherently averaged visibilities
however, leading to the possibility of signal loss. In contrast, the
incoherently averaged autospectra should not be susceptible to this
form of signal loss (HERA Collaboration, in preparation), as the
phase error cancels exactly in the 
t = 0 case, and should remain
small (for autobaseline spectra) when 
t is much smaller than the
beam-crossing time. We will study this effect in Section 5.

4.1 Redundant gain calibration

As we will show, the effect of non-redundancy is to induce spurious
spectral and temporal structure in the antenna gain solutions. How
this arises depends strongly on the calibration method being used; an
algorithm that assumes perfect redundancy of baselines or makes
strong assumptions about the primary beam of each antenna is
likely to be more sensitive to different types of non-redundancy
for example.

We use the redundant calibration method described in Dillon
et al. (2020) implemented in the hera cal package7 to derive a
redundant calibration from each of our simulations. The stages of
this method are as follows:

(i) Approximate solutions for the phase of the gains are first
derived using an iterative calibration that assumes perfect array
redundancy (firstcal);

(ii) A single iteration of the logcal algorithm is applied, based
on taking the logarithm of equation (1) to linearize it, and then solving
for the free gain and model parameters;

(iii) Repeated iterations of the omnical algorithm, which jointly
solves for the complex gains and redundant model visibilities up to
a set of degeneracies.

This procedure estimates the gains for each frequency channel and
time sample independently, and we do not apply any smoothing to
the solutions to account for the fact that they are expected to have
some degree of smoothness.

Because the data break the assumption of baseline redundancy that
the algorithm is based on, we expect the redcal solver to absorb
some of the deviations from perfect redundancy into the gain and
visibility model solutions, while leaving an additional unmodelled
residual per baseline that cannot be fit by a redundant calibration
model. The way that these errors manifest is sensitive to the details of
the redundant calibration process, such as which antennas/baselines
are included in the fits or not, and how convergence criteria (e.g.
χ2 fitting statistics) are handled. For example, previous work on

7https://github.com/HERA-Team/hera cal/
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Primary beam non-redundancy in 21 cm studies 2075

non-redundancy due to antenna position errors by Orosz et al.
(2019) found that gain errors could be reduced by excluding the
longest baselines from the redcal calibration process, since they
are more strongly affected by chromatic errors introduced by the non-
redundancy. Given the relatively small size of our simulated array,
we have effectively incorporated this recommendation automatically
in this paper.

After redcal has run, we find a small number of outliers in our
gain solutions, where the fitting procedure seems to have failed. The
outliers tend to affect all frequency channels for the duration of a
few time samples, and are characterized by a clear discontinuity in
the otherwise smoothly varying phase of the gain solutions (with
no such discontinuity visible in the amplitude, and a normal χ2

statistic for the affected solutions reported by the algorithm). This
issue is thought to be peculiar to relatively small arrays, where
there are fewer constraints on each calibration degree of freedom,
making instabilities of this kind more likely (J. Dillon, private
communication). To address this issue, we first identified the outliers
in the gain solutions across the time and frequency axes in turn, for
all antennas, by using a median absolute deviation (MAD) filter. Any
data point d that satisfies the condition (d − median(d))/MAD(d) >

20 after the gain calibration has been applied is flagged as an outlier
(where the median is calculated over the time and frequency axes
in turn). We then replace the outlier gain solutions with the mean
of their nearest unflagged neighbour points. Since there are only a
few outliers for any given data set, we expect this replacement to
only have a small effect on the final delay spectra, whereas leaving
in the outliers would have caused a substantial amount of ringing.
A handful of smaller outliers do remain following this process in
some cases, which we have not addressed. They can be seen as
localized (in time) spikes in some of our results (e.g. see the Outlier
Ant2). We do not expect them to change our conclusions however,
and note that in real-world scenarios, these would likely either not
arise (due to the array being larger) or would be removed by gain
smoothing.

Following redundant calibration, a final absolute calibration step,
based on a sky model, is typically applied to fix the small number of
degenerate parameters that cannot be determined through redundant
calibration. These include an overall amplitude and phase offset,
and tip-tilt parameters related to the overall orientation of the array
(Kern et al. 2020). We must also fix these degrees of freedom in
our analysis, but wish to do so without adding the complication of
a sky model-based absolute calibration step, which may introduce
additional gain errors beyond the kind we are studying here. Instead,
we fix the degenerate degrees of freedom to their values from the
true, simulated gains, using no other information from the true gains
to inform the gain solutions.

As a final step, we apply the redundantly calibrated and
degeneracy-fixed gain solutions to the simulated data in order to
recover an estimate of the true visibilities, which we refer to as the
calibrated visibilities, V cal

ij . We use the calibrated visibilities for each
baseline in our subsequent analysis, rather than the redundant model
visibilities that are also output by the redcal algorithm.

4.2 Power spectrum estimation

We use the hera pspec8 package to estimate the power spectrum
of the visibilities. hera pspec uses the optimal quadratic estima-
tor (OQE) formalism under the delay approximation. The delay-

8https://github.com/HERA-Team/hera pspec

transformed visibility is the Fourier transform along the frequency
direction, and can be written as (Parsons et al. 2012)

Ṽij (τ ) =
∫

dνe2πiντW (ν)Vij (ν), (14)

where the delay τ = �bij · n̂/c is defined for the baseline vector �bij

between two antennas, and a direction on the sky n̂. The taper,
W(ν), is chosen as a Blackman–Harris window, which is applied
in the frequency domain to make the visibility periodic within the
bandwidth. This has the effect of reducing ringing, while effectively
correlating neighbouring Fourier (delay) modes.

The optimal quadratic estimator formalism requires a data weight-
ing matrix R and power spectrum normalization matrix M to be
specified. In the optimal case, we would weight the data by the inverse
covariance, R = C−1. The true covariance of the data is hard to model
for 21 cm experiments however, and using empirical estimates can
induce disastrous signal loss in the OQE (Ali et al. 2018). Instead, we
choose a sub-optimal but conservative (and lossless) set of identity
weights, R = I. The choice of normalization matrix determines the
window function for each bandpower, and can be used to trade off
the size of the errorbars against the degree of correlation between
the bandpowers. We choose an intermediate case of M = I. More
information on OQE and the notation used here can be found in Ali
et al. (2015).

We form power spectra between all pairs of baselines within each
redundant group, including for each baseline with itself. As noted
above, in order to avoid a noise bias, each baseline pair is actually
formed from neighbouring time samples, which have independent
noise but essentially the same sky signal (
t = 40 s, compared with
a primary beam crossing time of ∼40 min). Both incoherent and
coherent power spectra are calculated for each redundant group.

5 R ESULTS

In this section, we examine the effects of each type of primary beam
non-redundancy on the calibrated visibilities (Section 5.1), the gain
solutions (Section 5.2), the delay spectra (Section 5.3), and finally the
recovered EoR power spectrum (Section 5.6). We also consider the
effects of additional frequency-dependent sidelobes in Section 5.4,
and the smoothing of the gain solutions in Section 5.5, as well as the
effect of a larger array size (Section 5.7).

5.1 Variance of visibilities within a redundant group

In this section, we investigate the size and structure of the additional
intrabaseline variance introduced by different kinds of primary beam
non-redundancy.

Following calibration, the visibilities within a redundant baseline
group are typically also averaged together, either before or after
forming power spectra, to improve the signal-to-noise on the final
power spectrum. A perfectly calibrated, perfectly redundant array
would be expected to have visibilities within a redundant group
that differ only due to instrumental noise, which integrates down
rapidly as more redundant baselines are included in the average.
One of the effects of non-redundancy is to introduce additional
visibility variations between baselines however. These are in part
due to gain errors introduced by the redundant calibration, and
partially due to the intrinsic differences between baselines due to the
differing primary beams. At a minimum, this is expected to contribute
additional variance in the averaged power spectrum, over and above
the instrumental noise. Redundant calibration methods necessarily
combine information from all baselines within each redundant group
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2076 S. Choudhuri, P. Bull and H. Garsden

Figure 9. The variance of the real part of the calibrated (columns 1, 2, and 4) and true (column 3) visibilities for a redundant group with baseline length 14.6 m
and angle 0◦ (from the E–W direction), containing seven baselines. The results for different types of non-redundancy are shown in each row, and for different
combinations of foregrounds in each column. The third column shows the variance for the true (simulated) visibilities, without any gain factors or calibration
applied; it is a measure of the intrinsic variance in visibilities caused by the primary beam variations. Also note the important effect of bright sources on the
variance – when Centaurus A (flux 1937 Jy at 100 MHz) passes through the mainlobe at LSTs between 13 and 14 h, the variance increases by two orders of
magnitude in the point source only case for most types of non-redundancy (second column).

however, and so some level of correlation in these variations is also
to be expected. This can potentially introduce spurious additional
structure in the averaged power spectrum.

Fig. 9 shows the variance as a function of time for the calibrated
visibilities in a single redundant baseline group, calculated across
all baselines in the group, but for a fixed frequency of 110 MHz.
The upper row of this figure shows different levels of sidelobe and
mainlobe perturbations, the middle row is for beams with a stretch
factor applied, and the lower row is for elliptical/rotated primary
beams. The columns show different combinations of foregrounds
that were included in the simulation: diffuse Galactic emission +
point sources (first column); point sources only (second and third
columns); and points sources only, but with the 20 brightest sources
removed (fourth column). Each case shows the variance of the
visibilities following redundant calibration and degeneracy fixing,
apart from the third column, which shows the variance for the
true (simulated) visibilities, without any gain factors or calibration
applied. This is a measure of the intrinsic variance in visibilities
caused by the primary beam variations only, separate from any
calibration errors. The results for a perfectly redundant simulation
are shown in black in each panel.

First, we note the structure of the variance in the perfectly
redundant ‘no perturbation’ case. This is noise-like, as expected,
and variations as a function of LST are caused only by the variations
in sky brightness, which change Tsys and therefore the instrumental
noise level. The noise level is significantly higher in the diffuse +
point source case, as diffuse emission dominates the sky brightness.

In the case where there are no bright sources in the simulation
(fourth column), we see that the variance is also mostly noise-like,
with typical values on the order of 0.1 Jy2 for the whole range of
LST and for all types of non-redundancy. There is some excess
variance over the perfectly redundant case however, including some
structure that corresponds to the brighter of the remaining point
sources passing through the primary beam. These structures are
most evident in the cases where there are outlier antennas, and also
when the mainlobe perturbation is largest (the 2 per cent case). This
suggests that the large numbers of fainter sources on the sky do not
induce strong non-redundancy effects, although there is clearly still
some additional variance that contributes at a level of a few times the
instrumental noise level.

The second column of Fig. 9 shows the results after adding the
brightest sources back into the simulation. We see a substantial
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Primary beam non-redundancy in 21 cm studies 2077

increase in the variance for most types of non-redundancy, with
an almost two orders of magnitude change in the LST range 13–
14 h for all cases except the sidelobe perturbations. This is caused
by the very bright source Centaurus A (Cen A; flux 1937 Jy at
150 MHz) transiting through the mainlobe in this LST range, as
illustrated in Figs 7 and 8. The brightness of this source means that
it contributes a large fraction of the total flux for each visibility,
dominating over other contributions such as fainter point sources or
noise, and therefore highlighting any differences in the primary beam
patterns between antennas at specific (localized) zenith angles as a
function of LST. As such, bright sources can be used specifically to
map the primary beams (Pober et al. 2012; Nunhokee et al. 2020), and
so it is understandable that the additional variance due to primary
beam non-redundancy should be maximized when such a source
transits.

Most of the different types of non-redundancy result in a repeated,
oscillating structure in the variance around the time of the Cen A tran-
sit, corresponding to when the source passes through the sidelobes,
nulls, and then through the mainlobe and out the other side. The
exception is in the sidelobe perturbation cases, where the variance
is only enhanced in the LST ranges around 11–12 h and 15–16 h.
Effects of other bright sources can also be seen at a lower level,
such as the feature in the variance for the Outlier cases around
10 h, presumably related to the presence of sources A and B in the
mainlobe.

For comparison, the third column of Fig. 9 shows the intrinsic
variance of the true (simulated) visibilities in the point source-only
case. Here, we see that the variance is enhanced by almost two orders
of magnitude compared with the calibrated data at LSTs of around
13–14 h, where bright sources Cen A and source C are passing close
to/through the mainlobe, but practically no enhancement at all other
LSTs. This is true for most types of non-redundancy, and suggests
that the redundant calibration procedure is able to absorb some of
the effects of primary beam non-redundancy – but only when the
visibility model is dominated by a single bright source. In fact, it can
be seen from equations (1) and (2) that variations between the primary
beams can be absorbed exactly into the gains in the special case where
the sky model, V true

ij , contains only a single point source. A fictitious
perfectly redundant visibility model can therefore be obtained for
all redundant groups in this case, assuming no other sources of non-
redundancy are present. We also inspected the intrinsic variance for
the diffuse + point source simulations, finding a similar behaviour
when the brightest point sources are transiting, albeit with a smaller
level of enhancement, and with no enhancement in the variance
otherwise.

Finally, the left-hand column of Fig. 9 shows the variance after
adding diffuse emission. We see that the overall noise level increases
by around two orders of magnitude. However, the features due to
the strong source Cen A, and the fainter sources A and B, are still
present in those LST ranges, albeit not quite as prominently. An
additional trend with LST is also observed as the Milky Way rises,
with a substantial increase in variance seen from 15.5 h onwards as
the plane of the Galaxy approaches the mainlobe (it would cross the
mainlobe at an LST of around 17–18 h).

5.2 Temporal and spectral structure of the gain solutions

In this section, we study the temporal and spectral variations of the
antenna gain solutions, {gcal

i }, output by the redundant calibration
process. It is first useful to define the fractional gain error as the
fractional deviation from the true (input) gain, δi = (gcal

i /gi) − 1,
where gi is the true input gain, and i labels the antenna.

Fig. 10 shows δ as a function of LST and frequency for antenna 1,
which is located at the centre of the array. Each panel of Fig. 10 shows
δ for one of the 15 different types of non-redundancy considered in
this study, except the top left-hand panel which shows the amplitude
of the visibility autocorrelation for the antenna, V11, shown on a
different colour scale, to give some idea of the total sky brightness
as a function of LST and frequency.

We see that δ largely varies between −5 per cent to +5 per cent,
with only a few scenarios briefly saturating the colour scale when
Cen A transits through the mainlobe at around 13–14 h. In the
majority of cases, the maximum deviations are associated with the
Cen A transit, with significant variations in the behaviour of δ from
case to case. For example, the uniform random rotation case shows δ

cross from positive to negative during the transit, while the Ellipticity
+ Rotation 2 per cent case shows a consistent negative signature.

In comparison, the Side (sidelobe) cases show considerably more
structure as a function of LST, and in fact exhibit the lowest level of
δ during the Cen A transit. This is to be expected as Cen A leaves the
sidelobes (which are non-redundant) and enters the mainlobe (which
is almost perfectly redundant in this case). Judging by this behaviour,
it seems that much of the gain error at other times must be caused by
Cen A in this case, as δ only reduces when the source is safely inside
the mainlobe.

There is also a notable difference in the pattern of the gain errors
depending on which distribution the primary beam non-redundancies
are drawn from. There are significant differences between the Stretch
Gaussian 1 per cent and Stretch Uniform 1 per cent cases for
example, while the more coherent Gaussian random rotation case
is significantly more redundant than the uniform random rotation
case.

To summarize the gain errors across all antennas, we also show
the standard deviation of δ over all 10 antennas in Fig. 10 (lower
panel), defined as σδ = √

Var(δ). It can be seen that the structure
of this plot is very similar to Fig. 10, and so our conclusions from
above continue to hold. The values of σ δ largely vary between 0 and
0.1, corresponding to a maximum 10 per cent gain error, with only a
couple of cases saturating the colour scale during the Cen A transit.

To further analyse the temporal variation of the gain solutions, in
Fig. 11 we show the temporal power spectrum of the redundant gain
solutions output by redcal (and, as above, following degeneracy
fixing and outlier removal). The temporal gain power spectrum is
calculated by first taking the Fourier transform of the gain solution in
the LST direction for a particular antenna and frequency channel after
multiplying by a Blackman–Harris taper, and then squaring the result.
Here, we average the temporal gain power spectrum incoherently for
all frequency channels and antennas. Different panels in Fig. 11 are
for different types of non-redundancy and foreground simulations, as
mentioned in Section 5.1. The vertical black dashed line shows the
approximate time-scale (∼40 min) for a source to cross the mainlobe
of the primary beam, while the black solid line in each panel shows
the gain power spectrum for the perfectly redundant case.

In all cases, we see that there is essentially identical temporal
structure above 100 min. This is caused by the modulation of the
mean of the gain solutions (1) by the taper, and is present even
in the perfectly redundant case. For perfect redundancy, there is
essentially no structure on shorter time-scales however, with only a
flat thermal noise floor present. The floor rises when diffuse emission
is included due to the corresponding increase in Tsys.

In the presence of primary beam non-redundancy, the gain so-
lutions exhibit correlated structure on shorter time-scales, typically
of the order of the beam crossing time. In our simulations, the true
gains are constant over time, so any structure present in the final gain
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2078 S. Choudhuri, P. Bull and H. Garsden

Figure 10. Upper panel: Fractional deviation of gain solutions after redundant calibration with respect to the true (input) gains, (δi = (gcal
i /gi ) − 1), for antenna

i = 1 in the point source-only case. The different panels are for different types of non-redundancy except the top left-hand panel, which shows the visibility
autocorrelation on a different colour scale. Lower panel: Same as above but now showing the standard deviation of δ over all 10 antennas. Note the glitches at
∼13 h in the Main 2 per cent and Outlier Ant2 panels; these are caused by outlier gain solutions that were not detected by the filter (see Section 4.1).
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Primary beam non-redundancy in 21 cm studies 2079

Figure 11. The gain power spectrum as a function of LST. The panels represent the same scenarios as in Fig. 9. Here, we average the gain power spectrum
incoherently for all frequency and antennas. The vertical line show the 40 min time-scale which is roughly the beam crossing time. The black solid line is for
the perfectly redundant case. But, the non-redundancy generates the structures in temporal solution which manifest as a bump in the gain power spectrum. This
temporal correlation increases when we increase the level of non-redundancy in the simulation. The noise floor in the gain power spectrum increases by an order
of magnitude when we add the diffuse emission in the simulations.

solutions (beyond the noise and the taper effect mentioned above) is
due to the effect of primary beam non-redundancy.

The amount of additional structure in the temporal gain power
spectrum increases when we increase the level of non-redundancy,
as expected. The behaviour is quite similar for all types of non-
redundancy and the three different foreground models considered
here, with the main difference being the increased noise floor when
diffuse emission is added, although an enhancement in ∼100 min
timescale structure (just before the taper feature) can be seen in
going from the point source only case with no bright sources
versus the one with bright sources. Otherwise, the structure of
the gain power spectrum between cases seemingly only differs
in detail. (N.B. The Main 2 per cent case in the middle panel
has an increased noise floor due to an unaddressed outlier gain
solution.)

Finally, in Fig. 12 we show the spectral power spectrum of the gain
solutions as a function of delay, incoherently averaged over LST and
antenna. In contrast to Fig. 11, there is little difference in the spectral
gain power spectrum between the different types of non-redundancy.
The main low-delay structure in the gains is almost identical between
the different cases, with only small differences observed in the noise
‘floor’ at higher delay for the two outlier antenna cases.

5.3 Decoherence of the delay power spectrum

Finally, we compare the coherently and incoherently averaged power
spectra within each redundant group as a way of studying possible
signal loss due to gain errors induced by the primary beam non-
redundancies. Figs 13, 14 and 15 show the results for the point source-
only and point sources + diffuse emission simulations, respectively.
Fig. 14 shows the same point source-only simulation but now using
delay spectra calculated from the true (intrinsic) visibilities, with
no gains or calibration applied. We plot the fractional difference
between the coherently and incoherently averaged delay spectra,


χ (τ, t) = Pco(τ, t) − Pinco(τ, t)

〈Pinco〉t (15)

at delay τ = 0 and LST t, where Pco and Pinco are the coherently and
incoherently averaged delay spectra within a particular redundant
group (equations 12 and 13), and 〈Pinco〉t is the power spectrum
averaged incoherently over the entire LST range of the simulated
observations as well. Recall that Pinco is formed from the autobaseline
spectra only.

The rationale for studying this statistic is as follows (HERA
Collaboration, in preparation). In principle, the coherent average
should provide a measurement of the power spectrum with improved
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2080 S. Choudhuri, P. Bull and H. Garsden

Figure 12. The gain power spectrum as a function of delay, τ , in this case for only the Point Source + Diffuse scenario, following incoherent averaging of the
power spectra for all LSTs and antennas. In comparison with the temporal power spectrum shown in Fig. 11, there is little difference in structure between the
different non-redundant cases.

Figure 13. Fractional power spectrum decoherence statistic 
χ (τ = 0, t), shown as a percentage, for the different types of non-redundancy in the point
source-only case. Different redundant groups are shown with different colours; only redundant groups with at least 10 baselines are included. In all cases, the
most substantial deviations from perfect correlation between the coherent and incoherent power spectra appears in the LST range ∼13–14 h, where the brightest
source in the data, Cen A, transits the mainlobe.
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Primary beam non-redundancy in 21 cm studies 2081

Figure 14. Same as Fig. 13, but for power spectra calculated from the true (simulated) visibilities, without any gain factors or redundant calibration applied to
them. This is a measure of the intrinsic decoherence caused by the variations in the primary beam between antennas. Note the substantially increased range on
the y axis.

signal-to-noise, as the noise from each visibility will coherently
average down. Gain errors induce both phase and amplitude errors in
the calibrated visibilities however. The amplitude errors effectively
act as an additional source of noise, and are also expected to
average down as more baselines are included in the coherent average,
albeit slower than for thermal noise because the amplitude errors
are correlated. The phase errors on the other hand can destruc-
tively interfere, effectively causing signal loss by decohering the
signal.

By comparing the coherently averaged power spectrum to the inco-
herently averaged one (which does not suffer from this decoherence
effect), we can get a handle on the magnitude of any signal loss in
the power spectrum. It is particularly instructive to do this for the τ

= 0 mode, as this is where most of the foreground power resides,
and it therefore has a very high SNR. Any signal loss would be most
noticeable for this mode. Plotting the decoherence statistic 
χ as a
function of LST allows us to see how any signal loss varies as different
foreground structures pass through the beams. The denominator in
equation (15) is chosen as a time average over the whole observation
range to provide a stable baseline level as a reference (and to avoid
zero crossings), but it should be noted that the quantitative results

depend on the length of the time averaging domain (S. Singh, private
communication).

Turning to Fig. 13 (for the point sources-only sky model), it can
be seen that practically all non-redundant cases exhibit appreciable
decoherence at ∼13–14 h, when Cen A is transiting the mainlobe. The
size (and shape) of the effect differs between baselines and different
types of non-redundancy, with the longer baselines exhibiting values
of 
χ as large as −2.5 per cent. There appears to be a significant
orientation effect, which can be seen by comparing the 14.6 m
baseline groups with three different orientations – the 180◦ group
(perfectly E–W aligned) tends to produce a larger (more negative)
value of 
χ that peaks at earlier LST, while the 120◦ group reliably
shows a less negative 
χ that peaks later. A similar orientation-
dependent effect is seen in other groups, with the 25.3 m 150◦ group
almost always exhibiting a significantly more negative 
χ than the
30◦ group. Interestingly, this is reversed in a couple of cases, e.g.
Uniform Random Rotation.

Another notable feature of Fig. 13 is that in some cases, all baseline
lengths and orientations are affected by decoherence during the
Cen A transit (e.g. Mainlobe 2 per cent, Outlier Ant. 2), whereas
in others (e.g. Ellipticity 2 per cent) certain orientations are more
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2082 S. Choudhuri, P. Bull and H. Garsden

Figure 15. Same as Fig. 14, but now with diffuse emission and point sources included in the simulations.

or less unaffected. This suggests the possibility of performing a
rough identification of which forms of primary beam non-redundancy
are likely to be in operation by comparing the LST dependence
of the decoherence statistic between redundant groups as a bright
source transits. Also notable is the very low level of decoherence
in the Sidelobe perturbation cases, as well as the reduced level of
decoherence in the Gaussian Random Rotation case compared with
the uniform random rotation case.

Finally, it can be seen that only the brightest source, Cen A,
appears to generate any appreciable decoherence. Even the bright
source A (see Figs 7 and 8), which peaks at around 9 h, induces little
decoherence, even in the most extreme cases.

Fig. 14 shows the decoherence statistic for the true visibilities,
without any gain factors or redundant calibration applied to them.
This gives us a handle on the intrinsic decoherence caused by
the different types of primary beam non-redundancy, before any
correcting factors or complications due to the gain solutions are taken
into account. We see that the features appear in the same LST range
as Fig. 13, around 13–14 h, where the bright source Cen A is close to
the mainlobe. They are smoother and more symmetric however. The
maximum deviation is also significantly larger, reaching a level of
decoherence as great as −14 per cent in the Outlier cases, compared
with −2.5 per cent for the same data when gains are included and

the redundant calibration solutions are applied. As discussed in
Section 5.1 and shown in Fig. 9, the intrinsic variance due to the
primary beam non-redundancies can be quite large when the brightest
sources are passing close to the mainlobe. There is a substantial
reduction in the size of this effect when the redundant gain calibration
is applied however, since the effect of the variations between the
primary beam values at the location of the dominant point source
can be partially absorbed by the gain solutions, effectively making
the calibrated visibilities more redundant than they really are.

A similar behaviour is also seen in real HERA data, for example
in fig. 10 of Dillon et al. (2020), where the χ2 values of the gain
solutions are markedly lower when the bright source Fornax A
is moving through the mainlobe – suggesting greater redundancy
of the solutions. A double-peaked structure is also observed when
Fornax A passes through the sidelobes, which we also see in most
of the cases in Fig. 13 after the redundant calibration solutions have
been applied. In comparison, in the same LST range we see only a
single, symmetric peak for the intrinsic decoherence (see Fig. 14),
where no gains or calibration have been applied. This suggests that
the redundant calibration is able to find solutions that are artificially
more redundant (i.e. more redundant than the intrinsic visibilities)
when a bright source is in the mainlobe, but less so when it is in the
sidelobes.
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Primary beam non-redundancy in 21 cm studies 2083

The behaviour of the decoherence in presence of diffuse emission
as well as point sources (now for the calibrated data again) is shown
in Fig. 15. This is qualitatively quite similar to the results in the
point source-only case, but the detailed shapes of the curves are
different, with more fluctuations, and the minima are much deeper
(
χ ∼ −10 per cent) in the most extreme cases. There is generally
more low-level structure across the LST range, particularly for the
two Outlier cases, and to some degree for the Stretch Gaussian cases
too. Similar observations hold about the orientation-dependence of
the decoherence statistic as in Fig. 13. Additionally, several of the
cases now exhibit additional structure in 
χ at the top end of the
LST range, as the Galactic plane begins to rise.

5.4 Frequency-dependent sidelobe perturbations

Next, we study the effect of an explicitly frequency-dependent
sidelobe perturbation of the form given in equation (8), which is
listed as Case 1(b) in Table 1. The red and blue lines in Fig. 16 show
the decoherence statistic 
χ (τ = 0) with and without the additional
frequency dependence of the sidelobe perturbation, respectively.
Illustrative waterfall plots of the primary beams for both cases was
shown in the two rightmost panels of Fig. 5), albeit for a more extreme
version of Case 1(b).

From Fig. 16 (left-hand panel), we can see that the amount of
decorrelation increases slightly after adding the additional frequency
dependence to the beam model. The curve for Case 1(b) is also
somewhat noisier, and reaches a minimum at an earlier LST value
around the bright source Cen A. This is likely a result of additional
(non-redundant) structure being introduced into the visibilities due
to the increased complexity of the non-redundant primary beams, a
difference that can also be observed in the variance of the visibilities
within each redundant group (see Fig. 16, right-hand panel). This
additional structure causes a reduction in the effectiveness of the
decoherence-suppressing effect of redundant calibration when a
bright source is in the field of view, which was discussed in the
previous section. Note that there is also a spurious positive spike in
the value of 
χ at around 14.5 h, which is unphysical (due to an
outlier).

Introducing a significant additional frequency dependence to the
sidelobes has only modified the decoherence effect slightly in this
case. Different types of added frequency dependence, e.g. that affect
the mainlobe instead, may cause more significant differences, as
might different functional forms for the frequency dependence. The
increased noisiness of the decoherence statistic may also be mitigated
if a larger redundant baseline group is averaged over. A thorough
investigation of these questions is deferred to future work. We point
out that this will need to find a constrained set of (ideally more
realistic) frequency-dependent perturbations however, as otherwise
the number of different combinations of possible zenith angle-,
antenna-, and frequency-dependent non-redundancies will become
unwieldy.

5.5 Temporal smoothing of gain solutions

We now study the effect of smoothing the gains on the decoherence
effect. Temporal gain smoothing is used to reduce spurious structure
in the gain solutions produced by redundant calibration; apart from
some short time-scale variations due to a hardware cooling cycle,
the HERA gains are expected to be essentially stationary over time-
scales of a few hours (Kern et al. 2020), and so removing structure
with faster variations than this is expected to result in more accurate
gain solutions. Given a typical beam-crossing time of ∼40 min, this

should also reduce gain errors caused by non-redundancy as bright
sources pass through the field of view.

To reproduce this treatment, we smooth the gain solutions from our
pipeline over a time-scale of 2.2 h. We do not apply any smoothing
in the frequency direction however. Fig. 17 shows the values of the
decoherence statistic, 
χ , after smoothing the antenna gains (red
line) for the particular case of the Stretch Gaussian 2 per cent non-
redundant primary beams. The blue line shows the corresponding
result without gain smoothing, and the green line shows the ‘intrinsic’
decoherence when the true gains are applied to the visibilities instead.

We see that after smoothing, 
χ tends towards the intrinsic (true)
curve, which is due to the gain solutions becoming closer to their
true values, as expected. Interestingly, this increases the level of
decoherence however. This fits with our finding from Section 5.3,
that redundant calibration erroneously absorbs some of the non-
redundancy of the true visibilities; smoothing the gains reduces this
effect, although it does not remove it altogether.

5.6 Modulation of the EoR power spectrum

Gain errors caused by primary beam non-redundancy ultimately
cause a modulation of the cosmological 21 cm signal from Cosmic
Dawn/EoR. To study this effect, we used healvis to generate a model
EoR signal with a flat (white noise) power spectrum. The same array
configuration, gains, and non-redundant primary beams were used as
in the rest of this paper, but noise and foregrounds were not applied to
the simulations. Instead, we took the calibration solutions that were
derived from the simulations with noise and foregrounds (but no
EoR) and applied them directly to the EoR simulations. We did not
repeat the entire calibration process with all components included,
as the EoR signal is small in comparison with the foregrounds and
so should change the gain solutions only by a negligible amount.

After applying the gain solutions to the simulated EoR visibilities,
we then calculated their power spectra within each redundant group.
Fig. 18 shows the fractional difference between the true (input) EoR
power spectrum and the estimated power spectrum after gain cali-
bration for a particular 14.6 m redundant baseline group. Noticeably,
the deviations from the true (input) EoR power spectrum are seen
to be almost constant in delay, varying significantly only with LST.
This matches the mostly frequency-independent structure of the gain
solutions, as shown in Fig. 10.

The typical deviation from the input EoR spectrum is a couple of
percent in the most extreme cases, with a few (previously identified)
outliers noticeable in isolated LST bins around 15 h. The modulation
of the EoR power spectrum can be both positive and negative,
so the effect of these calibration errors is different from signal
loss/decoherence. The effect is small enough in this case that it is
unlikely to have a significant impact on current or near-future upper
limits on the EoR signal, although the modulation is likely to induce
a spurious component in bispectrum measurements (cf. Watkinson,
Trott & Hothi 2021). Importantly, because the effect does not depend
strongly on delay, there is no unaffected window in delay space where
the power spectrum can be extracted without being affected by this
modulation.

We observe that the modulation of the EoR power spectrum is
dependent on baseline group in essentially the same way as the gain
errors, with groups that suffer larger typical gain errors resulting
in stronger modulations of the EoR. The gain power spectrum at
the beam crossing time-scale (see Fig. 11 for the point source +
diffuse case) appears to be a reasonably good predictor of the size
of the modulation; for example, the Sidelobe 20 per cent case has
the highest gain power spectrum on this time-scale, and also one
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2084 S. Choudhuri, P. Bull and H. Garsden

Figure 16. Left-hand panel: Comparison of the decoherence statistic 
χ (τ = 0) for the standard sidelobe perturbation (Case 1a, σ SL = 0.2; red line), and the
same case with an additional frequency dependence (Case 1b; grey line), for point source-only simulations. The statistic is shown for the 14.6m, 120◦ redundant
baseline group. Note the increased noisiness of the grey curve, which is also slightly deeper and has an earlier onset around the bright source Cen A. Right-hand
panel: The variance of the visibilities for the same two cases, calculated as in Fig. 9.

Figure 17. Comparison of the decoherence statistic 
χ (τ = 0) for un-
smoothed gain solutions (blue), and gain solutions smoothed on a time-scale
of approximately 2.2 h (red), for the 14.6m, 120◦ redundant baseline group (6
baselines) in the Stretch Gaussian 2 per cent case, for point source+diffuse
simulations. The green line shows the intrinsic decoherence that occurs when
the visibilities are redundantly averaged after the true gain solutions are
applied. Gain smoothing brings the gain solutions closer to their true values,
but results in increased decoherence.

of the strongest modulations in Fig. 18. Finally, we note that the
difference between the coherently and incoherently averaged EoR
power spectra is small, and that the isolated ‘spike’ structures in
Fig. 18 are caused by near-zero crossings in the true (input) power
spectrum, and so can largely be ignored.

5.7 Impact of array size

So far in this paper, we have used a relatively small array configura-
tion with 10 antennas. This has limited the maximum baseline length
and the number of baselines per redundant group, and has also given
rise to some outlier calibration solutions that we would expect to
be less common when running the redundant calibration algorithm

on larger array configurations. Longer baselines are more chromatic
and, according to Orosz et al. (2019), it is the longer baselines that
lead to stronger non-redundant effects on the gain solutions if they are
included in the redundant calibration fitting procedure. In this section,
we examine some of these issues for two example simulations of a
much larger array with 309 antennas.

Our original motivation for restricting our study to a small array
was twofold. First, Orosz et al. (2019) found that limiting the
redundant calibration procedure to only short baselines significantly
reduced the impact of different kinds of non-redundancy. In the
preceding analysis we have effectively incorporated this finding
into our calibration strategy by default, as only short baselines are
available. Secondly, we have used more complex models for the
beams and the sky for our simulations, and a relatively large number
of frequency channels and time samples, making the simulation of
much larger arrays computationally challenging.

Our large array simulations use the same number of times and
frequency channels as before, but now only include the brightest
510 point sources and no diffuse emission. The array specification
uses the same dish size and minimum baseline length, but now with
309 dishes arranged into a close-packaged hexagonal pattern. We
have considered two different cases: a perfectly redundant array with
the fiducial Chebyshev polynomial fit beam (‘No perturbation’),
and a non-redundant array corresponding to the Stretch Gaussian
2 per cent case. We have not included noise in these simulations,
in order to allow a direct comparison of the baseline-dependent
spectral structure in each case. We have also included all baselines
in the redundant calibration procedure, including the longest, most
chromatic ones.

Fig. 19 shows a comparison of the 2D delay spectra for the
two cases, following coherent averaging of the visibilities across
redundant baseline groups, and incoherent averaging over LST. We
have plotted the delay spectra in cosmological units, using the
same beam model to calculate the normalization factor in both
cases.

First, we note the structure of the foreground wedge in the
‘no perturbation’ case (left-hand panel). As anticipated, there is
a ‘pitchfork’ structure that is characteristic of receivers with dish
reflectors, with the worst foreground contamination localized to three
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Primary beam non-redundancy in 21 cm studies 2085

Figure 18. Fractional deviation of the EoR power spectrum from its true value, η = (P/Ptrue) − 1 (shown as a percentage), after redundant calibration solutions
from the point source + diffuse simulations have been applied. This figure shows the results for the real part of the incoherently averaged delay spectra for the
14.6m, 180◦ redundant group. The different panels are for different types of non-redundancy. The localized spikes are mostly caused by zero-crossings in Ptrue.

Figure 19. The 2D delay spectrum of the visibilities coherently averaged within each redundant baseline group for a perfectly redundant array with Chebyshev
beams (left-hand panel) and a non-redundant array corresponding to the Stretch Gaussian 2 per cent case (middle). The absolute value of the difference between
the two is shown on the right. All plots are shown for the 309-dish array configuration with no noise, a greatly reduced number of point sources, with no diffuse
emission. An incoherent average over all LSTs has also been performed. The white lines show the horizon limit, which approximately defines the edge of the
foreground wedge.

forks at τ ≈ 0 and the positive and negative horizon lines. There is
some leakage outside the horizon into the so-called ‘buffer’ region
due to the intrinsic spectral structure of the foregrounds, which is
more extensive for the shortest baselines, but there is otherwise little
notable structure outside the wedge region, where the amplitude of
the power spectrum is very low.

The middle panel of Fig. 19 shows the same quantity, but now
for the Stretch Gaussian 2 per cent case. The resulting 2D power
spectrum is quite similar, but differs in small details, as shown
more clearly by the difference plot on the right of Fig. 19. There
is a small difference between the two cases across the wedge and
buffer regions, owing to the slightly different spectral structure and
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2086 S. Choudhuri, P. Bull and H. Garsden

beam solid angles in the two cases. Most relevant for our purposes
however is the small amount of excess power outside the wedge
and buffer region, which extends furthest at short and long baseline
lengths. This is qualitatively similar to the features seen by Orosz
et al. (2019) in their most analogous case (0.1◦ beam size error,
shown in their Fig. 7), although in our case the leakage appears more
suppressed at intermediate baseline lengths. The amplitude of the
leakage is comparable to the fiducial EoR power spectrum used by
Orosz et al. (2019), although note the higher effective redshift of
our simulations (z ≈ 12, versus z ≈ 8.5). As discussed in Orosz
et al. (2019), this leakage can be effectively suppressed by excluding
longer baselines from the redundant calibration procedure, which
is effectively achieved by default in the smaller (10-antenna) array
simulations discussed in previous sections. This leaves the major
effect of primary beam non-redundancy on the recovered EoR power
spectrum seen in our study as the few-percent modulation effect
discussed in Section 5.6.

Finally, we also note the low-level cross-hatched pattern visible
outside the wedge region in the three panels of Fig. 19. We anticipate
that this is either numerical noise or low-level ringing caused by a
discontinuity in our beam or sky model. The effect is small, below the
level of any features that we have studied in this paper, and certainly
below the noise level in the 10-antenna simulations. Nevertheless, it
can be considered a limitation of these simulations.

6 D I S C U S S I O N A N D C O N C L U S I O N S

Precise calibration of radio interferometric data is required to detect
the 21 cm signal from the EoR in the presence of strong foreground
contamination. Redundant calibration is a powerful method for
solving for the antenna gains and true (calibrated) visibilities by
measuring the same sky mode multiple times, with many baselines
of almost-identical length and orientation. Various real-world imper-
fections in the array, such as positional inaccuracies of the antennas
and non-identical primary beams, result in deviations from perfect
redundancy. These errors propagate into the redundant calibration
solutions, causing gain errors that eventually affect the estimated
21 cm power spectrum.

In this paper, we used a suite of visibility simulations to study
various types of non-redundancy by perturbing the primary beam of
each antenna in a small, close-packaged, hexagonal array with similar
properties to the HERA telescope. We considered variations in the
mainlobes, sidelobes, and overall stretch, ellipticity, and rotation of
each antenna beam, as summarized in Table 1, all based on an analytic
fitting model to realistic EM simulations of the HERA primary beam.
We compared several different sky models, including a modified
GLEAM point source catalogue that covers the whole sky (with
and without the brightest sources), and a diffuse foreground model
using GSM. To make the simulation more realistic, we also included
simple gain fluctuations and an instrumental noise model based on
the true sky. With simulations in hand, we then applied a mildly
idealized calibration and analysis pipeline to the simulated data to
perform a redundant calibration, remove outliers and fix degeneracies
in the gain solutions, and finally estimate the delay-space power
spectrum.

We presented several different diagnostic quantities in the presence
of primary beam non-redundancy, each concerning data products
at a different stage of the analysis pipeline. In Section 5.1, we
measured the variance of the calibrated visibilities within each
redundant baseline group following redundant calibration. We saw
that the variance increases significantly compared with the perfectly
redundant case when the brightest sources are within the field of view,

especially if they transit through the mainlobe. For our simulations,
the dominant bright source was Centaurus A, which passes through
the mainlobe at LSTs of around 13–14 h. We saw that the variance
was significantly enhanced for the true visibilities (where no gain
factors and calibration solutions had been applied) during the transit
of Cen A, but that much of this variability was absorbed by the
gain solutions to give the illusion of greater redundancy. For the
calibrated data, the intra-redundant group variance was nevertheless
significantly higher within this LST range for all types of non-
redundancy except for the sidelobe-only perturbation case, when a
variance increase was observed between 11–12 h and 15–16 h instead
(when Cen A was passing through the sidelobes). There was a broad
increase in the variance over the whole LST range when diffuse
emission was included in the simulation, but this did not lead to a
notable increase in LST-dependent structure; the bright point sources
remained the principal cause of such structure.

In Section 5.2, we studied the temporal and spectral structure of
the gain errors induced by non-redundancy. The calibration solutions
become correlated in time, partially following structure on the sky.
This additional correlation appears as a characteristic excess in the
temporal power spectrum of the gain solutions on time-scales of
approximately 20 to 100 min, which is comparable to the beam
crossing time. This feature in the gain power spectrum is quite similar
for all types of non-redundancy, while the gain errors themselves
exhibit more characteristic structure between different cases. The
errors associated with the transit of Cen A showed a variety of
different behaviours in different cases, for example.

In Section 5.3, we studied a decoherence effect in the power
spectrum of coherently averaged visibilities within a particular
redundant group. We defined a decoherence parameter, 
χ (equa-
tion 15), that calculates the fractional difference between coherently
and incoherently averaged power spectra as a function of LST,
with reference to the time-averaged incoherently averaged power
spectrum. We found that 
χ deviates most significantly from zero
when the brightest source, Cen A, is passing close to the mainlobe
(at LSTs of around 13–14 h), and for some types of non-redundancy
can be as large as −2.5 per cent. In comparison, the maximum
value was −14 per cent when the true (simulated) visibilities were
considered, which suggests that the redundant calibration reduces the
decoherence effect due to the intrinsic non-redundancy of the data in
some circumstances.

Other bright sources appear to have comparatively little effect
on this statistic, although we do see an increase in LST-dependent
fluctuations in 
χ when diffuse emission is included in the sim-
ulations. There was also a significant baseline orientation effect in
the observed decoherence, with differences in the timing of peak
decoherence between baselines of the same length but different
orientations. This suggests a possible route towards identifying
different types of primary beam non-redundancy in real data, based
on how the decoherence statistic evolves with LST as a very bright
source transits. Longer baselines were also more strongly affected by
decoherence, although the small size of our simulated array prevented
us from studying more than a handful of different baseline lengths.

Finally, in Section 5.6 we applied the redundantly calibrated gain
solutions to a simulated EoR component, finding that the recovered
EoR power spectrum was modulated as a function of LST, but that
no significant additional structure was induced as a function of delay.
This conclusion is based on the delay spectrum approach given in
Parsons et al. (2012). However, the effect of the calibration error
might change depending on the choices of other power spectrum
estimator (Morales et al. 2019). While this effect is relatively small
in the cases we studied, and so is not likely to significantly affect
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current and near-future upper limits on the EoR power spectrum, we
do expect it to contaminate measurements of the signal bispectrum.

Taking all of these diagnostic quantities together, we found that
the type of non-redundancy where there is a single outlier antenna
with a significantly different primary beam sustains the most severe
gain errors. A similar study of broken MWA dipole antennas showed
that this introduces a bias in the cylindrical power spectrum of the
order of ∼103 mK2 h−3 Mpc3 (Joseph et al. 2020). This suggests
the possibility of making relatively easy improvements in redundant
calibration quality by identifying and excluding the antennas with
the most discrepant primary beams. Non-redundancy in the sidelobes
did not generally cause severe gain errors, although it did result in
stronger modulations of the recovered EoR spectrum. Differences in
ellipticity between antennas caused substantial gain errors, although
this depends on the distribution of ellipticity and rotation; relatively
small rotations of the beam result in quite minor errors, for example.

Overall, the most severe effects were associated with the brightest
sources that pass close to the field of view, suggesting that a focus
on modelling these sources and the primary beam response to them
should be sufficient to disentangle the worst effects of primary beam
non-redundancy. We further found that diffuse emission (away from
the Galactic plane) does not impart significant additional structure in
the gain errors in most cases aside from increasing the overall noise
level, although noticeable effects did start to creep in as the Galactic
plane began to rise.

In many ways, these results are reassuring – our findings suggest
that relatively modest additional modelling and data cuts should
be enough to mitigate the worst effects of non-redundant primary
beams. This is only part of the picture for real instruments however,
which also suffer from (e.g.) antenna position and polarization non-
redundancies that we did not study here. These can give rise to effects
that couple in different ways to the sky, different dependencies on
baseline length and orientation, different frequency dependencies
etc. We also used a reasonably small array with only 10 antennas
for reasons of computational efficiency, and so are missing effects
that predominantly affect longer baselines, such as those identified
by Orosz et al. (2019).

In another simplification, we did not incorporate a realistic sky-
based absolute calibration step in our simulated pipeline, which
would have likely substantially altered the characteristics of the gain
errors. Finally, we did not include the effects of polarization leakage,
which will also couple the redundant gain solutions to the sky in
complex ways.

To alleviate some of these caveats, we investigated a couple of
illustrative examples of larger (309-dish) arrays in Section 5.7,
and studied an extended primary beam model with frequency-
dependent non-redundant sidelobe perturbations in Section 5.4. We
also examined the effects of temporal gain smoothing in Section 5.5,
which more closely mirrors how redundant calibration is applied to
real data when combined with an absolute calibration step (cf. Kern
et al. 2020). For the frequency dependence of the perturbations in
particular, we note that there are very many possible combinations of
ways to perturb the angle, frequency, and antenna dependence of the
primary beams. In order to keep the number of scenarios tractable,
future studies will need to use more specific and realistic functional
forms for these perturbations than we have considered here.
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