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Abstract. In this work, we explore the possibility of using probabilistic learning to identify
pulsar candidates. We make use of Deep Gaussian Process (DGP) and Deep Kernel Learning
(DKL). Trained on a balanced training set in order to avoid the effect of class imbalance, the
performance of the models, achieving relatively high probability of differentiating the positive
class from the negative one (roc-auc ∼ 0.98), is very promising overall. We estimate the
predictive entropy of each model predictions and find that DKL is more confident than DGP
in its predictions and provides better uncertainty calibration. Upon investigating the effect of
training with imbalanced dataset on the models, results show that each model performance
decreases with an increasing number of the majority class in the training set. Interestingly,
with a number of negative class 10× that of positive class, the models still provide reasonably
well calibrated uncertainty, i.e. an expected Uncertainty Calibration Error (UCE) less than
6%. We also show in this study how, in the case of relatively small amount of training
dataset, a convolutional neural network based classifier trained via Bayesian Active Learning
by Disagreement (BALD) performs. We find that, with an optimized number of training
examples, the model — being the most confident in its predictions — generalizes relatively
well and produces the best uncertainty calibration which corresponds to UCE = 3.118%.
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1 Introduction

The detection of a pulsar PSR 1913+16 in a binary system by [1] and its subsequent mon-
itoring [2] pointed toward the existence of gravitational radiation, an energy loss which is
consistent with the decrease of the orbital period of the system. A couple of decades later,
gravitational waves from a binary black hole merger were directly detected using the Laser In-
terferometer Gravitational-Wave Observatory (LIGO) experiment [3], confirming Einstein’s
prediction. PSR 1913+16, described as “an accurate clock moving at high velocity in the
strong gravitational field of its unseen companion” in [2], was utilized as a laboratory test
for gravity. Their results confirmed Einstein’s General Relativity (GR) theory at 0.2% level.
Further tests using PSR B1534+12 [4] and PSR J0737-3039A/B [5] put constraints on GR
at 0.7% and 0.05% level respectively [6], using ten binary systems,1 also investigated the
viability of Screened modified gravity by constraining the Post-Keplerian Parameters of the
theory. These examples highlight the important role that pulsars play when addressing the
validity of Einstein’s GR and other alternative theories in highly non-linear regime.

In nuclear physics, [7] demonstrated the correlation between the inner crust composition
of neutron star and its observed spin period, placing some constraints on the latter. Ref. [8]
listed some tests in fundamental physics where pulsars can be used as tools. Ref. [9] showed

15 neutron star - neutron star and 5 neutron star - white dwarf systems.
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that Pulsar Timing Arrays (PTAs) will help further our understanding of dark matter, are
great probes for the detecting cosmic superstrings, and will be used to place constraints on
gravitational wave spectrum in the inflationary universe. NANOGrav Collaboration [10, 11]
is spending a great amount of effort in an attempt to detect stochastic gravitational-wave
background using PTAs.

With the advent of upcoming big survey like SKA, a considerable increase of the num-
ber of detected pulsars is expected. Ref. [12] estimated that SKA experiment would detect
14000 pulsars. At the time of writing, MeerKAT, a precursor of SKA-Mid, has observed
1005 pulsars [13]. The huge amount of data from experiments requires an automated way
to identify pulsar candidates. Ref. [14], for instance, trained an Artificial Neural Network
(ANN) by considering 12 predictors as inputs2 to search for candidates and discovered a new
pulsar using the method. Similar approaches, using 22 and 6 features as inputs to train an
ANN, were adopted in [15] and [16] respectively. Following [16, 17] selected the same fea-
tures (6 of them) to train neural network and tree based algorithms. The Pulsar Image-based
Classification System (PICS) prescribed by [18] was more involved. Having highlighted the
potential bias induced by the score based systems which use the predictor variables as in-
puts to the algorithms, [18] opted for methods that extracted the features directly from the
diagnostic plots. In other words, they fed the summed pulse profile (1D), time vs phase plot
(2D image), frequency vs phase plot (2D image) and Dispersion Mesure (DM) curve (1D) to
PICS, yielding an instance comprising 4 different inputs. The innovative approach consisted
of two stages. In the first stage, each type of inputs was fed to two different methods, giving
a total of 8 output scores which were then passed through a logistic regression for predictions
in the second stage. They used convolutional neural network (CNN) combined with SVM
to learn the features from the images and ANN (with dense layers) combined with SVM to
extract features from 1D inputs.

Deep neural network classifiers tend to be “overconfident” in their predictions which
are point estimates by construction. It was shown in [19, 20] that neural network classifiers
are likely to classify an input, regardless of the fact that the latter is drawn from an out-of-
distribution sample, with high probability (Softmax output). By estimating uncertainties,
it is possible to assess how confident the classifier predictions are. Given a model with
good uncertainty calibration, predictions associated with high predictive uncertainty can
be discarded as they indicate what the model doesn’t know. To estimate uncertainties in
classification task, one can resort to probabilistic learning such as Bayesian Neural Network
and Monte-Carlo (MC) Dropout model [21].

In this work, we make use of Deep Gaussian Process (DGP) and Deep Kernel Learning
(DKL) for pulsar classification. We also demonstrate the use of Bayesian Active Learning by
Disagreement (BALD) to train a CNN classifier in the case where a relatively small amount
of labeled data is available for training. Our aim is twofold: highlighting the predictive power
of probabilistic models and estimating predictive uncertainty, which is done for the first time
in pulsar classification, to the best of our knowledge. The paper is structured as follows: we
present the dataset used in this work in section 2 and the methods we consider in section 3.
The performance of the classifiers is presented in section 4. In section 5, we provide the
details of the predictive uncertainty estimation and assess the calibration of the uncertainties
produced by the models. We investigate the effect of the imbalanced training dataset on how
the models perform and the resulting prediction uncertainties in section 6. We show the use
of BALD to classify pulsars in section 7 and finally conclude in section 8.

2See their table 1.
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Dispersion measure Sub-Bands Sub-Integrations

Figure 1. Example of pulsar in the dataset we consider in this study. Left panel shows the 2D
dispersion measure (DM), middle panel represents Sub-band and Sub-integration is shown on the
right panel. Each input is composed of these three channels, mimicking RGB channels.

2 Data

We consider pulsar data, named HTRU Medlat Data, which were collected by [22] and [16].
The HTRU1 batched data, a subset of HTRU Data, contains 50000 labeled images for training
and 10000 images for testing.3 The imbalance ratio in both the training and testing dataset
is about 1:49. Each input has three channels which are Dispersion Measure (channel 0),
Sub-band (channel 1) and Sub-integration (channel 2). Each channel, which is a 2D image,
has a resolution of 32× 32 pixels. In our approach, we select all the channels — Dispersion
Measure, Sub-bands, Sub-integrations. As an example, we present in figure 1 the 2D map
of each channel of a pulsar. Our task is a binary classification in which the positive class is
pulsar and the negative class is non-pulsar (rfi). The target is categorical; 0 for non-pulsar
and 1 for pulsar.

3 Algorithms

In this section, we give an overview of the methods that are used in our analyses. We first
present the approach used to find an optimal solution for each algorithm. In a probabilistic
model inference, one can consider a sampling strategy such as Metropolis-Hastings algo-
rithm [23–25] which is more accurate but time consuming as it fully explores the parameter
space or a faster method known as variational inference [26] but less accurate. We adopt the
latter in our analyses.

3.1 Stochastic Variational Inference (SVI)
The approximation of the posterior probability emerges out of attempting to maximize the
log marginal likelihood

log p(y) = log
∫

dθ p(y,θ), (3.1)

which, in general intractable, consists of averaging out all parameters in a model. Introducing
a known variational distribution qγ in eq. (3.1) gives

log p(y) = log
∫

dθ qγ(θ)p(y,θ)
qγ(θ) . (3.2)

3Data can downloaded from https://github.com/as595/HTRU1.
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By using Jensen’s inequality which states that log E[f(x)] ≥ E[log f(x)] and introducing the
posterior distribution yield

log p(y) ≥
∫

dθ qγ(θ)log p(y,θ)
qγ(θ) , (3.3)

where the right-hand side is known as the evidence lower bound (ELBO(qγ)) [27]. We have
that

log p(y)− ELBO(qγ(θ)) = log p(y)−
∫

dθ qγ(θ)log p(θ|y)p(y)
qγ(θ) . (3.4)

Rearranging the integral term gives

log p(y)− ELBO(qγ(θ)) = log p(y)−
∫

dθ qγ(θ)log p(θ|y)
qγ(θ) −

∫
dθ qγ(θ) log p(y). (3.5)

Exploiting the fact that qγ is a probability density function (i.e.
∫

dθqγ(θ) = 1) and simpli-
fying the right-hand side of eq. (3.5) finally give

log p(y)− ELBO(qγ(θ)) =
∫

dθ qγ(θ)log qγ(θ)
p(θ|y) , (3.6)

where the right-hand side is the Kullback-Leibler divergence (KL(q(θ)||p(θ|y)) , which mea-
sures the dissimilarity between two distributions. KL-divergence is both asymmetric4 and
positive, and as it gets closer to zero, the variational distribution (qγ(θ)) approaches the true
posterior distribution. To approximate the latter, one chooses to either minimize the KL-
divergence or maximize the evidence lower bound by varying the variational parameters γ in
a stochastic gradient descent (or ascent) manner. In all our analyses, we opt for maximizing
the evidence lower bound.

3.2 Deep Gaussian Process (DGP)

As prescribed in [28], DGP consists of chaining up GP layers such that the outputs (latent
spaces) of an intermediate layer are the inputs of the following one. Assuming we have two
GP layers for simplicity, we have that

y = fy(t) + εo, (3.7)
t = f t(X) + εi, (3.8)

where εi and εo are Gaussian noise at the hidden layer and output layer respectively, t is
a noisy realization of the intermediate latent function f t(X) ∼ GP(0,Kt(X,X′)) and the
observation y is also a noisy realization of the latent function fy(t) ∼ GP(0,Ky(t, t′)). We
refer the interested reader to [28] for full details of the theory. In practice, we consider a
DGP composed of two layers of variational sparse GPs (see appendix A for more details),
each with a radial basis function (RBF) kernel. For the training we select: Adam optimizer,
learning rate = 0.02, batch size = 256 and number of inducing points = 64. The algorithm
is trained by maximizing the ELBO via variational inference for 31 epochs. It is noted that
due to the stochastic nature of the prediction, owing to the hidden layer, we sample 100

4KL(q||p) 6= KL(p||q).
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Layer (in channel, out channel, kernel, stride)
1 Convolutional Layer (3, 16, 3×3 , 2)
2 ReLU Activation –
3 Convolutional Layer (16, 16, 3×3 , 1)
4 ReLU Activation –
5 Convolutional Layer (16, 32, 3×3 , 2)
6 ReLU Activation –
7 Convolutional Layer (32, 32, 3×3 , 1)
8 ReLU Activation –
9 Convolutional Layer (32, 32, 3×3 , 2)
10 ReLU Activation –
11 Convolutional Layer (32, 32, 3×3 , 1)
12 ReLU Activation –
13 Flatten –
14 Fully Connected Layer (512, 1024, –, –)
15 ReLU Activation –

Table 1. The architecture of the feature extractor that is considered in this study.

predictions in each forward pass. Both the predictive mean f̂ and standard deviation σ̂ of
the latent function (logit) are defined as

f̂ = 1
N

N∑
i=1
fi, (3.9)

σ̂ = 1
N

N∑
i=1
σi, (3.10)

where fi and σi are the mean and standard deviation in each sample respectively and N is
the sample size in each forward pass. The implementation of this method is achieved with
Pyro library [29].

3.3 Deep Kernel Learning (DKL)

For inputs with high dimensional features, e.g. 2D image with 256× 256 pixels, using simple
kernel based classifier such as GP might be a challenge. Ref. [30] exploited the capacity of
a deep neural network and the flexibility of a GP to arrive at a probabilistic deep network
which they named Stochastic Variational Deep Kernel Learning. The salient features from
the image (input) are first extracted via a neural network model. The extracted features
are fed into a Gaussian process which in turn outputs the predictive mean f̂ and standard
deviation σ̂ of the latent function. Predicting a class label5 is done by feeding a sample
f ∼ N (f̂ , σ̂) to a sigmoid function. The weights of the network together with the GP

5In the case of classification.
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f1-score recall precision roc-auc specificity
DGP 0.955 0.924 0.989 0.992 0.989
DKL 0.969 0.954 0.984 0.992 0.984

DCGAN-L2-SVM-2 [31] 0.964 0.963 0.965 — —
DCNN-S [32] 0.962 0.962 0.963 — —

BALD 0.947 0.914 0.983 0.987 0.984

Table 2. Performance metrics used to assess the performance of the classifiers.

hyperparameters are learnt by maximizing ELBO using variational inference. In this study,
we consider the architecture presented in table 1 as our feature extractor and the base kernel
of the GP layer is also RBF. For the training we choose: Adam optimizer, learning rate =
0.001, batch size = 256 and number of inducing points = 64. The training converges over
200 epochs. We also use Pyro for the model implementation.

4 Model performance

As a way to mitigate the effect of imbalance on the training, we consider a representative
sample which is composed of all positive instances in the original training dataset6 and
the same number of randomly drawn negative instances, giving a balanced dataset of 1990
instances in total. That latter is split into training set (80%) and validation set (20%).
The original testing dataset7 has 199 positive instances (pulsar) which are combined with
randomly drawn negative instances (rfi) from the same testing dataset to get a balanced
test set with 398 examples in total. It is worth noting that, although we investigate the
effect of imbalanced training dataset on the predictions in the following section, we defer a
thorough investigation on dealing with imbalance classification for future work. To assess
the performance of each method, we use various metrics

• recall (also known as sensitivity or completeness) encodes the minimization of the num-
ber of false negatives which are positive instances misidentified as negative ones.

• specificity indicates how well the number of false positives, which are negative instances
incorrectly classified as positive instances, is minimized.

• precision (also known as purity) denotes how well the positive class is identified.

• f1-score is simply the harmonic mean of the recall and precision.

• roc-auc is the degree of separability which indicates how good a classifier performs in
terms of making the distinction between the two classes in our case which is a binary
classification.

We refer the interested reader to [33] for a more explicit summary of the metrics mentioned
above. Table 2 shows the results corresponding to each algorithm. Overall, the values of the
metrics are > 0.92 indicating a relatively good performance of all the methods. DKL, with

6Which has 50000 examples in total.
7Which has 10000 examples.
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its higher recall, is more sensitive than DGP. However comparing the values of recall with
those of specificity suggests that all learners are more likely to misclassify pulsars. This can
be explained by the fact that the salient features of pulsar candidates can be challenging to
extract due to the strength of the signal for instance. Results also show that the models
exhibit similar performance in terms of identifying the positive class, as evidenced by the
values of their precision. In pulsar candidate search, provided the relative scarcity of the
object, the idealized scenario is a classifier that has high sensitivity and a great capability of
detecting the positive class (high precision). However, the precision/recall tradeoff which is
known as the effect of optimizing one to the detriment of the other, may be challenging to
overcome. Therefore, even though optimizing recall is the main objective, it can only be done
at a fixed value of tolerable precision.8 A very useful metric that encodes the effect of that
tradeoff is f1-score which is in favour of a method that optimizes both precision and recall.

Apart from roc-auc score, the other metrics considered in this work are all based on a
single value of a threshold which can be a score (e.g. logit) or a probability. The predicted
class label is positive or negative whether the predicted probability/score is above or below
the threshold respectively. In our case, the value of that threshold, which is a probability,
is 0.5.9 Therefore, depending on the problem, the value of the threshold can be adjusted to
meet a target value of a metric particularly chosen for the task. In general, the roc-auc score,
which is the area under the curve of the true positive rate10 against the false positive rate,11

is commonly used to compare how well different methods generalize in a given classification
task. The reason is that the curve highlights the tradeoff between recall and false positive
rate, in other words the value of the former that corresponds to that of the latter at all
possible values of the threshold. Therefore roc-auc can be viewed as the mean value of the
recall at different values of the threshold. High values of roc-auc (∼ 0.99) indicate that the
capability of the models to distinguish pulsars from non-pulsars is promising.

In table 2, we show some results from previous studies. Ref. [31] made use of the features
extracted from a generative model (Deep Convolutional Generative Adversarial Network)
trained on the HTRU dataset as inputs to a support vector machine (SVM). They fed the
Sub-bands and Sub-Integrations maps into their model for the learning process and achieved
good performance as suggested by their chosen metric values all above 0.96. Ref. [32], who
also selected Sub-bands and Sub-Integrations maps as inputs, resorted to data augmentation
to train their CNN and obtained a performance similar to the model used in [31]. Overall
our methods, although slightly less sensitive (especially DGP), perform comparably to those
of [31] and [32]. However, since we consider different inputs for our models and use slightly
different dataset, the idea behind this comparison is to check that our results are consistent
with those of previous studies.

5 Quantifying uncertainty

Uncertainty in deep learning was shown to have two main components [34, 35]. Epistemic un-
certainty, also referred to as model uncertainty, describes the uncertainty in the model param-
eters and is propagated through to the model predictions. The model ignorance is encoded in
this type of uncertainty and decreases with more data for the training. The other component

8And vice versa.
9It is the default value in most cases.

10Another name for recall.
11This is defined as false positive/(false positive + true positive).
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is aleatoric uncertainty which encodes the inherent noise in the observed data. The aleatoric
uncertainty which cannot be mitigated with more data, can be dependent (heteroscedastic)
or independent (homoscedastic) of the inputs. In our analyses, we estimate the predictive
entropy (total uncertainty) which is the sum of the epistemic and aleatoric uncertainties.

5.1 Predictive uncertainty

We make use of the prescription described in [34, 35] and also followed by [36] in their in-
depth investigation of deep learning uncertainty in radio galaxy classification. At a test point,
the predictive entropy is given by

H(y∗|X∗,D) = −
C−1∑
c=0

p(y∗ = c|X∗,D) log p(y∗ = c|X∗,D), (5.1)

where C is the number of classes and the predictive probability is given by

p(y∗ = c|X∗,D) = 1
N

N∑
i=1

Softmax(fi(X∗)) (5.2)

where fi(X∗) is a sample that can be obtained from a stochastic forward pass in the case
of MC Dropout model [21]. In the case of Bayesian Neural Network, fi(X∗) is a prediction
obtained by sampling from the posterior distribution of the model weights. In our case,12

provided that our models output posterior mean and uncertainty of the logit (f̂ , σ̂), fi
can be sampled from the distribution N (f̂ , σ̂). In information theory, the unit of entropy
depends on the base of logarithm which is used in equation (5.1). We use natural logarithm
throughout, therefore the unit is natural unit (nat). The entropy is maximum (corresponding
to maximum uncertainty) if predicting rfi and predicting pulsar are equally likely.13

We show the distributions of predictive uncertainty obtained from each model in fig-
ure 2. The red and blue boxes correspond to the uncertainty distribution of DKL and DGP
respectively. Each box indicates the first quartile (Q1), the median, the third quartile (Q3).
The minimum and maximum14 are given as a function of the interquartile range (IQR), and
the dots denote the outliers. The results suggest that DKL model has more confidence in its
predictions compared to DGP. This is evidenced by both its lower median value of entropy
(DKL: 0.046 nats, DGP: 0.114 nats) and its smaller IQR. This can be explained by the
capacity of DKL model which uses convolutional layers to capture the relevant features of
the input, unlike the DGP model whose kernel is built from high dimensional data.15

5.2 Uncertainty calibration

The uncertainty estimated from our models which are trained via variational inference can
be miscalibrated. As defined in [37], the uncertainty is perfectly calibrated if

P(ŷ 6= y|H(y|X,D) = q) = q, ∀q ∈ [0, 1]. (5.3)

In other words, the test error16 in a test set (X, y) is strongly correlated with the
predictive uncertainty in the case of perfect calibration. To assess the calibration of the

12Both DGP and DKL.
13In that case, p(y∗ = 0|X∗) = p(y∗ = 1|X∗) = 0.5, hence H = 2× log(0.5)× 0.5 = 0.693147.
14Which are denoted by the whiskers.
15Each input has to be flattened to get a one dimensional array with length 3× 32× 32.
16Or top-1 error in the case of multi-class.
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Figure 2. Distribution of the predictive uncertainty. Red denotes the uncertainty distribution
corresponding to DKL model, whereas blue corresponds to that of DGP model.
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Figure 3. Test error in each bin as a function of average of predictive uncertainties in the same bin.
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uncertainty obtained from our model, we compute the expected Uncertainty Calibration
Error (UCE), which was prescribed by [37], and is given by

UCE =
M∑
m=1

|Bm|
n
|err(Bm)− uncert(Bm)|, (5.4)

where M is the number of bins, Bm denotes all the instances in a given bin, n is the total
number of instances, err(Bm) indicates the average error in each bin which is defined as

err(Bm) = 1
|Bm|

∑
i∈Bm

1(ŷi 6= y), (5.5)

and the average uncertainty in each bin uncert(Bm) is given by

uncert(Bm) = 1
|Bm|

∑
i∈Bm

uncerti. (5.6)

uncerti is the predictive entropy in our case. Due to the relatively small number of examples
in the test set, we set the number of bins to 7. We present in figure 3 the variation of test error
as a function of the average of predictive entropy. Red squares and blue circles are the errors
(see equation (5.5)) obtained respectively from DKL and DGP in each bin. It is noticed
that there are only 5 data points for each model. This is due to the fact that some bins
are empty. Using equation (5.4), we obtain UCE = 4.897% and UCE = 12.728% with DKL
and DGP respectively. This suggests that DKL produces good uncertainty calibration and
the uncertainty from DGP model is not well calibrated. Ref. [37] obtained UCE < 10% on
classifying CIFAR dataset [38] after calibrating the uncertainties generated from deep network
with MC Dropout. Despite the relatively small test set, to some extent it can be inferred
that the uncertainties produced by DKL are good enough for our purpose. To quantify the
miscalibration of the uncertainty, it is also possible to assess the strength of the correlation
between the error and the predictive entropy (shown in figure 3) by computing the Pearson’s
correlation coefficient but due to the relatively small amount of data, that quantity is highly
dependent on the number of bins selected and hence will not be considered in our analyses.

Another approach, which was considered by [39] to check whether a model can produce
reliable uncertainty, is to compare the variance of the ratio of true positive/true negative
(σ2
TP/TN ) with that of the ratio of false positive/false negative (σ2

FP/FN ). A model produces
good uncertainty if σ2

FP/FN � σ2
TP/TN . The ratios TP/TN and FP/FN are computed for

one prediction on the balanced test set. To compute the variances σ2
FP/FN and σ2

TP/TN for
each model, 200 predictions are sampled. As presented in table 3, σ2

FP/FN is about two order
of magnitude greater than σ2

TP/TN for all models, suggesting that the classifiers give good
uncertainty estimation. The results in table 3 also indicate that uncertainty estimation from
DKL model is more reliable.

6 Imbalance classification

In this section, although dealing with imbalance is outside the scope of this study, we address
the effect of the imbalanced training dataset on both the performance of the classifiers and
the uncertainty estimation. To this end, we consider three different imbalance ratios of the
training set ρ = 1:1, 1:10, 1:49.17

17This is the imbalance ratio of the original training set.
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σ2
TP/TN σ2

FP/FN

DGP 9.110× 10−5 7.189× 10−3

DKL 5.107× 10−5 4.626× 10−3

Table 3. Variance of the ratio of true positive/true negative, and that of false positive/false negative
for each model.
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Figure 4. Effect of training with imbalanced dataset on sensitivity, and test error.

6.1 Effect on prediction

In order to check the effect of the imbalance on the performance of the classifiers, they are
tested on the same balanced test set as in section 4 after being trained on three different
datasets, each with a specific ρ. To obtain the results in figure 4, we sample 200 predictions for
each instance of the balanced test set (396 instances) in each scenario.18 We first investigate
the influence of ρ on the recall of the learners. The sensitivity of the models decreases with an
increasing imbalance ratio as shown in the left panel in figure 4. This can be accounted for by
the fact that the larger number of negative classes in the training dataset causes the models to
be biased against the positive ones at test time. The bias gets stronger with larger number of
the majority class. For DGP model, the standard deviation of the predictions increases with
ρ. Whereas the standard deviation of the DKL predictions is less sensitive to the increasing
number of the majority class in the training sample. Similar trend is also observed with the
test error as a function of the imbalance ratio (see right panel in figure 4). Both models are
more prone to error in their predictions with higher imbalance ratio. The standard deviation
of the test error from DGP predictions is more impacted by the bias of the training set.

18Training with a dataset with a specific imbalance ratio.
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Figure 5. Effect of training with imbalanced dataset on the predictive entropy. Left: distribution of
the predictive entropy related to each model for each imbalance ratio. Right: uncertainty calibration
UCE corresponding to each model as a function of the imbalance ratio.

6.2 Effect on uncertainty

In a similar way, we also analyze the effect of the bias on the predictive uncertainty by
considering the three cases19 with different imbalance ratios. The left panel of figure 5 shows
the variation of the distribution of the uncertainty as a function of ρ, and the resulting
uncertainty calibration for each case is presented on the right panel of figure 5. Using the
same balanced test set, it appears that the uncertainty produced by DKL model improves as
the number of majority class increases in the training data. This is indicated by smaller IQR
and lower median value as ρ increases. However, the uncertainty calibration obtained from
DKL model degrades as a function of an increasing imbalance ratio of the training dataset.
This implies that although the uncertainty seemingly gets better with the increasing number
of majority class in the training data, its calibration gets worse. When considering the whole
dataset (50000 instances, with ρ = 1:49) to train DKL model, the resulting UCE on the
balanced test set reaches 10%.

For the DGP model, the median value of the distribution of its corresponding predictive
entropy decreases as the number of the negative classes in the training set increases but the
IQR gets smaller when the imbalance ratio of the training data is 1:10 and is the largest when
the model is trained on the whole dataset (1:49) (see left panel in figure 5). Interestingly, the
uncertainty produced by DGP is well calibrated (UCE = 5.044%) when the bias ρ = 1:10,
but the calibration relatively degrades (UCE = 6.342%) when the DGP model is trained on
the entire dataset.

19Training set with ρ = 1:1, 1:10, 1:49.
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7 BALD

In general, in order to achieve good generalization in the case of image classification, neural
network needs to be trained with a substantial amount of the data, e.g. MNIST dataset [40]
has 60000 instances. In production, labeling examples that will be used to train neural
networks for a given task, may be expensive and active learning can be used to train the
models with an optimized number of instances while achieving good generalization. In this
section, we demonstrate the use of active learning approach to classify pulsar candidates,
given the relatively small size of the training set.

Assuming there is a relatively large dataset with only a small number of labeled data
points. In active learning, the training starts with that small amount of data. At the
end of one step, which amounts to training a model for a specific number of epochs, an
acquisition function selects a number of unlabeled data points from the pool20 and asks an
“oracle” to label them. The newly labeled data points are added to the training set used
in the previous active learning step and a new step starts with the updated training set.
The amount of training set increases at each step until convergence. There are many active
learning approaches but we make use of Bayesian active learning [41, 42] which is scalable to
both high dimensional data and large dataset.

In general, the “oracle” that is requested to label the queried data points from the pool
is a human expert, but in our work the data points are already labeled such that they are
retrieved from the pool using the indices which are selected by the acquisition function. To
query new data points from the pool, we consider Bayesian Active Learning by Disagreement
(BALD) [43] as acquisition function. The new points that are selected are those for which the
mutual information between predictions and model posterior are maximized, according to

X∗ = argmaxX∈DpoolI[y,θ|X,Dtrain], (7.1)

where Dpool and Dtrain are the sets of points in the pool and a training set at a given step
respectively. The mutual information is given by [43]

I[y,θ|X,Dtrain] = H[y|X,Dtrain]− Eθ∼p(θ|Dtrain)[H[y|X,θ]]. (7.2)

The mutual information in equation (7.2) can also be used to estimate the epistemic uncer-
tainty [34], such that the selection criterion in equation (7.1) can be interpreted as a way to
seek for X∗ that maximize the epistemic uncertainty.

In our setup, we split the balanced data (1990 examples) into 80% and 20% which
constitute the pool and validation set respectively. The initial dataset for the first active
learning step is composed of 100 instances from the pool and at each subsequent step 30
points with the maximum mutual information are queried by the acquisition function from
the pool and added to the training set for the next step. At each step, the model is trained
for 20 epochs and we consider a batch size of 16. The number of active learning steps is 5,
such that the total number of data points used for the training is 22021 which amounts to
only about 14% of the pool data. The model considered for the active learning process is
similar to the feature extractor used in DKL model, but batch normalization is added after
each convolutional layer before ReLU activation and another dense layer is added to output
the predictions. Another key component is the dropout layer with a probability of 0.2 before

20The large set of unlabeled data.
21This is given by 100 + 4× 30.
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Figure 6. Comparing the predictive entropy obtained from all models.

UCE [%]
DGP 12.728
DKL 4.897
BALD 3.118

Table 4. Uncertainty Calibration Error obtained from all models.

the output layer as it plays a crucial role in computing the uncertainty during the training
(MC Dropout model [21]). It is worth mentioning that, for illustration, the choice of the
dropout rate is based on the value used in [21] and is likely to be suboptimal for this specific
task. However, for future work, we will optimize the hypeparameters for the active learning
by using Bayesian optimization. For the implementation, we use Baal library [42].

The results obtained from using the BALD method to train the neural network based
classifier is shown in table 2. Overall the performance of the BALD method is comparable
with those of DGP and DKL models, although its sensitivity is relatively lower. However,
provided the amount of data used to train the model, the results look very promising. By con-
struction, the uncertainty can be estimated using the dropout layer during test time. To ob-
tain the predictive entropy distribution, shown in figure 6, we also run 200 forward passes. As
indicated in figure 6, the model trained with BALD is more confident about its predictions, i.e.
lower median value and smaller IQR compared to DGP and DKL, and its corresponding UCE,
which is the lowest (see table 4), indicates that the model produces well calibrated uncertainty.
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8 Conclusion

This work has demonstrated the use of deep probabilistic learning to identify pulsars based
on its features composed of 2D dispersion measure, sub-bands and sub-integrations. To this
end, we have made use of a Deep Gaussian Process (DGP) which comprises two layers of
Gaussian Process, a Deep Kernel Learning (DKL) which utilizes a neural network capacity
to extract the features to be fed to the kernel of a Gaussian Process layer. Apart from
highlighting the predictive power of the probabilistic methods used in this study, we have
also estimated the uncertainty in their predictions and shown how good the calibration of
the uncertainty is. The original dataset is strongly biased against the positive class with an
imbalance ratio of ρ = 1:49. To deal with the potential impact of the bias on the models,
we have performed undersampling on the majority class (via random sampling) and the
models have been trained using well balanced dataset. Nevertheless, we have analyzed the
effect of the imbalance ratio on the performance of the classifiers and the resulting predictive
uncertainty. Provided that the number of pulsars available for training is relatively small in
general, which can pose an issue for deep network to generalize well, we have explored the
possibility of using a convolutional neural network based classifier which is trained via active
learning whose acquisition function is Bayesian Active Learning by Disagreement (BALD).

The two models, DGP and DKL, exhibit great capability of differentiating pulsars from
non-pulsars as indicated by their roc-auc > 0.98. The small difference in their recall suggests
that DGP is more likely to misclassify the positive class but overall the classifiers generalize
well. The performance of our methods is comparable to that achieved in previous stud-
ies. The lower median value of its predictive uncertainty distribution (0.046 nats) and the
smaller interquartile range (IQR) indicate that DKL shows more confidence in its predic-
tions compared to DGP model which has larger IQR and higher median value of predictive
entropy distribution (0.114 nats). This can be attributed to DKL’s higher capacity, which is
achieved by utilizing convolutional neural network (CNN) based feature extractor to encode
the salient features from the inputs. To assess the calibration of the uncertainty produced by
the models, the expected Uncertainty Calibration Error (UCE) has been used. Results show
that the uncertainty produced by DKL model, achieving UCE = 4.897%, is better calibrated
than that estimated by DGP with UCE = 12.738%. The comparison between the variance of
the ratio of true positive/true negative σ2

FP/FN with that of the ratio of false positive/false
negative σ2

FP/FN is also considered to evaluate the quality of the uncertainty. For all models,
σ2
FP/FN is larger than σ2

TP/TN by about two orders of magnitude overall, indicating that
reliable uncertainty can be obtained from the models.

By considering three scenarios, each with a given bias ρ = 1:1, 1:10, 1:49 of the training
dataset, we have found that the predictive power of the models (DKL and DGP) degrades
with an increasing imbalance ratio of the training dataset, as shown by a decreasing recall
and an increasing test error with an increase in the imbalance ratio. It has been found that
as the number of majority class in the training dataset increases, DKL model becomes more
confident in its predictions (lower median value of predictive entropy distribution and smaller
IQR), whereas the resulting uncertainty calibration gets poorer (increasing UCE). Interest-
ingly, DGP model appears to produce well calibrated uncertainty with a relatively small
imbalance ρ = 1:10 in the training dataset. However with ρ = 1:49, the IQR of the resulting
predictive uncertainty distribution is the largest, and the corresponding UCE reaches 6.324%.
It can be argued that both DKL and DGP can still perform reasonably well when trained
on dataset in which the number of majority class is less than 10× that of the minority class.
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Using BALD method, a CNN based classifier with a dropout layer is trained with only
using 220 instances in order to achieve generalization. This optimized number of training
data points results from the learner requesting, via the acquisition function, data points
with maximum mutual information (or epistemic uncertainty) to be included in the training
dataset for the next active learning step. As a whole, the performance of the CNN model
obtained via the BALD approach is comparable to that of the other two models (DKL and
DGP). Its recall, which is relatively lower (0.914), denotes that it is more likely to misclassify
the positive class. Compared to the other models, the CNN model trained via BALD is the
most confident in its predictions, as shown by the median value (the lowest) and IQR (the
smallest) of its predictive entropy distribution, and its lowest UCE (3.118%) suggests that
its uncertainty prediction is best calibrated.

Despite the good performance of DGP to identify pulsars in this work, a potential
constraint that it may suffer from, within the context of image classification, is the dimension
of the inputs. In our case for instance, the dimension is 32× 32, as opposed to 64× 64 in [31]
and [32]. As the resolution of an image gets smaller, more information is lost. It would
then be interesting to investigate in a future work whether the results presented here can be
recovered with an image resolution of 64×64. It should give us some insights into the impact
of the resolution of the inputs on the performance of DGP. However, as shown by [30], Deep
Kernel Learning, apart from its scalability, can outperform CNN in classification on dataset
like MNIST and CIFAR-10. This is owing to the capacity of the feature extractor (CNN
based) it uses, combined with a GP layer. Depending on a given task, the capacity of the
model can be adjusted by simply adding or removing convolutional layers.
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A Gaussian Process (GP)

Known as a non-parametric model, the main assumption in a Gaussian Process is that a
finite set of real-valued function f — random variables — evaluated at inputs X has a joint
Gaussian distribution. A Gaussian Process is fully described by the mean µ(X) and the
covariance K(X,X′) such that [44]

µ(X) = E[f(X)]
K(X,X′) = E[(f(X)− µ(X))(f(X′)− µ(X′))]. (A.1)

A GP prior is then defined as

f(X) ∼ GP(µ(X),K(X,X′)), (A.2)

and setting the mean function to zero for convenience, we have that p(f) = N (0,K(X,X′)).
In reality, the observed functions y are noisy realizations of the latent functions f such that

y = f + ε, (A.3)

– 16 –



J
C
A
P
1
0
(
2
0
2
2
)
0
1
6

where ε is a Gaussian noise with a variance σ2, therefore by adding the variance in quadrature
the distribution of the observed functions reads

p(y) = N (0,K(X,X′) + σ2I). (A.4)

Given that any subset of a collection of random variables which is jointly Gaussian distributed
is also a Gaussian distribution, we have the joint distribution of the observations and some
test functions f∗ at some test inputs X∗ [44][

y
f∗

]
= N

(
0,
[
K(X,X) + σ2I) K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
, (A.5)

where K(X,X∗) and K(X∗,X∗) are the cross-covariance matrix between training points and
test points and the covariance matrix of the test points respectively. Exploiting the property
of Gaussian conditionals, we obtain the predictive distribution conditioned on the training
data and the test points

p(f∗|y,X,X∗) = N (µ∗, K̃), (A.6)

where
µ∗ = K(X∗,X)[K(X,X) + σ2I]−1 y, (A.7)

and
K̃ = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗). (A.8)

There is a variety of kernel functions that can be chosen to build the covariance matrix
K(X,X′) but in our analyses we opt for the widely used radial basis function (RBF), given by

k(x, x′) = σ2
fexp

(
−(x− x′)2

2`

)
, (A.9)

in which the free parameters σ2
f and ` are the signal variance and the length-scale respectively.

The latter denotes the scale over which the function f significantly changes. These hyperpa-
rameters are chosen in such a way as to optimize the log marginal likelihood given in eq. (A.4)

log p(y) = −1
2yT [K(X,X) + σ2I]−1y

−1
2log|K(X,X) + σ2I| − n

2 log(2π), (A.10)

where n is the number of training data points. Ref. [44] provides a practical implementation
of a GP regression. In a classification task, the objective is to predict a category of a given
input. Therefore, using GP for classification amounts to squashing the latent functions f
over which the GP prior is defined with a logistic function such as

p(yi = 1|fi) = 1
1 + exp(−fi)

, (A.11)

where we assume we only have two classes, 0 and 1. In a noise-free GP, the predictive distri-
bution which is conditioned on the training data and the input at some test point is given by

p(y∗ = 1|X∗,X,y) =
∫

df∗ p(y∗ = 1|f∗)p(f∗|X∗,X,y), (A.12)
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where the latent function evaluated at the test point f∗ is averaged out. The second term
in eq. (A.12) is the distribution over the latent functions at a test point and is computed by
marginalizing over the latent functions f at the training data

p(f∗|X∗,X,y) =
∫

df p(f∗|X∗,X,y,f)p(f |X,y), (A.13)

where the second term p(f |X,y) is the posterior distribution. Unfortunately, unlike GP re-
gression where the likelihood is Gaussian, the posterior distribution in eq. (A.13) is intractable
due to the logistic likelihood. The methods, fully described in [44], consist of approximating
the posterior distribution by a Gaussian distribution, namely Laplace Approximation [45]
and Expectation Propagation [46]. The predictive distribution in a GP involves a matrix
inversion of the covariance matrix K(X,X′). This operation has a cubic complexity O(n3).
Therefore, given the nonscalability, dealing with large dataset using GP is quite challeng-
ing. To circumvent the issue with the computational complexity, [47] proposed a sparse GP
method by using “inducing points” Z which can be points in the input space corresponding
to real valued functions u. The central idea is to select Z (the number of these inducing
variables is m < n) , which are fewer than the original data X, such that they capture
the characteristics of the functions. Computation of the predictive distribution, by using Z,
scales as O(m3). Ref. [47], in their approach, approximated the marginal likelihood by

p(y) ∼ N (0, Qnn + σ2I), (A.14)

where Qnn = diag[Knn −KnmK
−1
mmKmn] +KnmK

−1
mmKmn is low-rank approximation of the

original kernel function Knn. The overfitting that the setup is prone to, due to the fact that
the inducing variables Z are now part of the hyperparameters to be optimized, led [48] to
adopt a different approach which approximates the posterior with a variational distribution
which has Z as part of the variational parameters. Ref. [48] then prescribed a lower bound
on the marginal likelihood

log p(y) ≥ N (0, Qnn + σ2I)− 1
2σ2 tr(Knn −Qnn), (A.15)

where the second term involving the trace is known as a regularizer preventing from overfit-
ting. In [49], they improved on the prescription in [48] by proposing a more scalable bound
such that stochastic variational inference is applicable to infer the hyperparameters.
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