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Abstract

A tightly correlated star formation rate (SFR)–stellar mass relation of star-forming galaxies, or star-forming
sequence (SFS), is a key feature in galaxy property-space that is predicted by modern galaxy formation models. We
present a flexible data-driven approach for identifying this SFS over a wide range of SFRs and stellar masses using
Gaussian mixture modeling (GMM). Using this method, we present a consistent comparison of the z=0 SFSs of
central galaxies in the Illustris, Evolution and Assembly of GaLaxies and their Environment, and MUFASA
hydrodynamic simulations and the Santa Cruz semianalytic model (SC-SAM), alongside data from the Sloan
Digital Sky Survey. We find, surprisingly, that the amplitude of the SFS varies by up to ∼0.7 dex (factor of ∼5)
among the simulations with power-law slopes ranging from 0.7 to 1.2. In addition to the SFS, our GMM method
also identifies subcomponents in the SFR–stellar mass plane corresponding to starburst, transitioning, and
quiescent subpopulations. The hydrodynamic simulations are similarly dominated by SFS and quiescent
subpopulations unlike the SC-SAM, which predicts substantial fractions of transitioning and starburst galaxies at
stellar masses above and below M1010 , respectively. All of the simulations also produce an abundance of low
mass quiescent central galaxies in apparent tension with observations. These results illustrate that, even among
models that well reproduce many observables of the galaxy population, the z=0 SFS and other subpopulations
still show marked differences that can provide strong constraints on galaxy formation models.

Key words: galaxies: evolution – galaxies: halos – galaxies: star formation – galaxies: statistics – methods:
statistical

1. Introduction

Large galaxy surveys of the past decade, such as the Sloan
Digital Sky Survey(SDSS; York et al. 2000), have firmly
established the major trends of galaxies in the local universe.
Galaxies broadly fall into two populations: quiescent galaxies
with little star formation that are red in color with elliptical
morphologies and star-forming galaxies with significant star
formation that are blue in color with disk-like morphologies
(Blanton et al. 2003; Kauffmann et al. 2003; Baldry et al. 2006;
Taylor et al. 2009; Moustakas et al. 2013; see Blanton &
Moustakas 2009 and references therein). Star-forming galaxies,
furthermore, are found to have a tight relationship between
their star formation rates (SFR) and stellar masses placing them
on the so-called “star-forming sequence” (hereafter, SFS; e.g.,
Daddi et al. 2007; Noeske et al. 2007; Salim et al. 2007, see
also Figure 1).

In fact, this sequence of star-forming galaxies is found in
observations well beyond the local universe out to z>2
(Wang et al. 2013; Leja et al. 2015; Schreiber et al. 2015). But

more than its persistence, the SFS plays a crucial role in
characterizing the evolving galaxy population. Although its
importance is contested(Kelson 2014; Abramson et al. 2016),
the most dramatic transformations of galaxies over the past
10 Gyr can be described by the SFS. For instance, the decline
in the number density of massive star-forming galaxies and the
accompanying growth in number density of quiescent galaxies
reflects the cessation of star formation in star-forming galaxies
migrating off of the SFS(Blanton 2006; Borch et al. 2006;
Bundy et al. 2006; Moustakas et al. 2013). Similarly, the
cosmic decline in star formation (Hopkins & Beacom 2006;
Behroozi et al. 2013b; Madau & Dickinson 2014) reflects the
overall decline of star formation of the SFS(Schreiber et al.
2015).
Galaxy formation models qualitatively reproduce the SFS

and similar global relations of galaxy properties at z∼0 and
provide insights into the key physical processes governing those
relations (e.g., Genel et al. 2014; Vogelsberger et al. 2014;
Schaye et al. 2015; Somerville et al. 2015; Davé et al. 2017a;
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for a recent review, see Somerville & Davé 2015). These
hydrodynamic and semianalytic simulations each seek to
capture the complex physics of gas heating and cooling, star
formation, stellar feedback, chemical evolution, black hole
formation and evolution, and feedback from active galactic
nuclei (AGNs) using their distinct subgrid model prescriptions.
Many works have already compared the simulations considered
in this paper to observations of, for example, galaxy masses,
colors, and SFRs(e.g., Genel et al. 2014; Torrey et al. 2014;
Vogelsberger et al. 2014; Schaye et al. 2015; Somerville &
Davé 2015; Sparre et al. 2015; Bluck et al. 2016; Davé et al.
2017a). These works, however, primarily focus on comparing
one specific simulated galaxy sample to one or a few
observational data sets. Extending such comparisons to include
multiple simulations, observations, and a consistent framework
for comparing the data sets would allow us to make a detailed
comparison of the different subgrid models and thereby provide
key constraints on the physics that govern galaxy formation and
evolution.

The SFS, given its prominence, naturally presents itself as a
key feature in the data-space of galaxy properties to compare
across both observations and simulations. Moreover, with the
important role it plays in characterizing the evolving galaxy
population, the SFS provides a way to interpret and understand
the different galaxy subpopulations and the processes that
create them. Two main challenges lie in conducting a
meaningful comparison of the SFS. First is the lack of a
flexible and data-driven method for identifying the SFS across
different data sets. In fact, inconsistencies in how the SFS is
identified have incorrectly led to agreement among simulations
and observations (e.g., Somerville & Davé 2015; see
Appendix A). The other challenge is the difference in
methodology for deriving and tracers of galaxy properties
(such as SFR, M*), which even for the same data set
dramatically impacts the SFS(e.g., Speagle et al. 2014). In
this paper we address the first challenge by presenting a

flexible, data-driven method for identifying the SFS. We then
use this method to compare the z=0 central galaxy
populations of the Illustris, Evolution and Assembly of
GaLaxies and their Environment (EAGLE), and MUFASA
hydrodynamic simulations and the Santa Cruz Semianalytic
Model (SC-SAM), alongside observations from SDSS.
In Section 2, we describe the data sets from simulations and

observations and how we specifically select our galaxy sample.
Then, in Section 3, we describe how we identify the SFS with a
data-driven approach using Gaussian mixture modeling. We
present the resulting SFSs from the simulations and observa-
tions in Section 4 and compare the galaxy populations of the
simulations and observations. Finally, we conclude and
summarize the results of our comparison in Section 5. This
paper is the first in a series, initialized by the IQ (Isolated &
Quiescent)-Collaboratory, which aims to improve our under-
standing of quenching processes by comparing isolated
star-forming and quiescent galaxies in simulations and
observations. This first project in the IQ-Collaboratory focuses
on the star-forming and quiescent galaxy populations at z∼0.
Additional projects will focus on galaxy populations at
0.5<z<3 during the peak of cosmic star formation (E. Choi
et al. 2019, in preparation), and the gas content of star-forming
and quenched galaxies (A. Emerick et al. 2019, in preparation).
In the subsequent paper of this project (IQ 1.2), we will
address the challenges in measured galaxy properties by
forward modeling mock spectra of simulated galaxies and
measuring their properties in the same manner as observations
(T. K. Starkenburg et al. 2019, in preparation).

2. The Galaxy Samples

In this work, our main focus is to compare simulated central
galaxies from four large-scale cosmological simulations: three
hydrodynamic (Illustris, EAGLE, and MUFASA) and one
semianalytic (SC-SAM). A consistent comparison requires
consistently defined galaxy properties across the simulations.
For all of the simulated galaxies we derive their stellar masses
using the same definition and their SFRs on two timescales:
instantaneous and averaged over 100Myr. SFR on these
timescales approximately correspond to Hα and UV based SFR
measurements, which represent the formation of young stars
with ages 10Myr and star formation in the last ∼100Myr,
respectively(e.g., Kennicutt & Evans 2012). We use instanta-
neous SFR, instead of SFR averaged over 10Myr, to minimize
resolution effects in hydrodynamic simulations on such short
timescales (Appendix C).
In the hydrodynamic simulations, we derive the instanta-

neous SFRs from the rate of star formation in the dense and
cold gas for all the gas gravitationally bound to the host halo,
and the 100Myr averaged SFRs from the ages, or formation
times, of all star particles bound to the host halo (excluding
stellar particles bound to subhalos). For the semianalytic
model, we derive the instantaneous SFR using the Kennicutt–
Schmidt relation for molecular hydrogen(based on Bigiel et al.
2008) and the derived H2 surface density in radial bins. We
derive the SC-SAM 100Myr averaged SFRs from the total
stellar mass formed in the galaxies, which is outputted from the
model every 10Myr.
For the stellar masses of all simulated galaxies, we use the

total stellar mass within the host halos, discounting the stellar
mass in any subhalo within the halo. Although stellar masses
within some effective radius are better suited for comparison to

Figure 1. Star-forming central galaxies in the SDSS have a well-defined
relationship between their SFRs and stellar masses, placing them on the “star-
forming sequence.” Our SDSS central galaxy sample is derived from a volume-
limited sample from Tinker et al. (2011) at * > M M109.7 (blue) and a low
luminosity sample from Geha et al. (2012) at * < M M109.7 (gray) described
in Section 2.5.
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observations (especially *  M M1011 galaxies), they are
significantly impacted by the galaxy size predicted by the
different subgrid models of the simulations. Since we primarily
focus on comparing only simulations, we use the total stellar
mass within the halo, which is easy to consistently define.
Furthermore, we test using the EAGLE simulation that our
analysis (i.e., the SFSs we identify) is not significantly
impacted whether we use the total stellar masses within the
halo or stellar masses within 70, 50,or30 kpc. We reserve a
more careful comparison to observations in the next paper of
the series: T. K. Starkenburg et al. (2019, in preparation).

From the SFRs and stellar masses, we derive the specific-
SFRs of the galaxies as *= – Mlog SSFR log SFR log . Due to
the numerical and resolution effects a significant number of
galaxies in the hydrodynamic simulations have 100Myr
averaged “SFR=0,” when their SFRs are below the resolution
limit of the simulations. We consider these galaxies to have
“unmeasurably low SFRs.” For the instantaneous SFRs and
both SFRs for the SC-SAM, we analogously consider

< - -
Mlog SFR 4 yr 1 as “unmeasurably low SFR.” We

discuss in Appendix C how we treat the effect of spatial,
mass, and temporal resolution of the simulations, which can
impact SFR and M*, in further detail.

In the rest of this section we provide a brief description of
the Illustris, EAGLE, MUFASA, and SC-SAM simulations and
each of their key subgrid and feedback prescriptions. A
summary of their properties can be found in Table 1. In
addition, we briefly describe the SDSS galaxy sample, which
we include for reference, in Section 2.5. Lastly, we describe
how we consistently identify central galaxies among the
simulations and observations in Section 2.6.

2.1. Illustris

The Illustris simulation17(Genel et al. 2014; Vogelsberger
et al. 2014; public data release Nelson et al. 2015) evolves a
cosmological volume of (106 Mpc)3 with a uniform baryonic
mass resolution of ´ M1.26 106 using the AREPO moving-
mesh code(Springel 2010). It employs subgrid models for star

formation(Springel & Hernquist 2003), Bondi-like super-
massive black hole (SMBH) accretion, a phenomenological
model for galactic winds(inspired by Oppenheimer &
Davé 2006), and two main modes for energy injection from
SMBHs(see Vogelsberger et al. 2013). When gas accretion
onto the SMBH occurs at Eddington ratios >0.05, thermal
energy is injected continuously in the local environment of the
SMBH. At lower accretion rates, the energy injection occurs in
bursts at large distances from the SMBH, generating hot
bubbles in the intracluster medium(Sijacki et al. 2007). The
z=0 stellar mass function (SMF) and the cosmic SFR density
as a function of redshift were used to tune parameters for
Illustris. In addition, a parameter was introduced that controls
the metallicity of the galactic winds, which was tuned to the
normalization of the z=0 stellar mass–gas metallicity relation
of galaxies. Previous works discussing aspects of the SFS and/
or quenching in Illustris include Genel et al. (2014),
Vogelsberger et al. (2014), Sparre et al. (2015), Bluck et al.
(2016), and Terrazas et al. (2017).

2.2. EAGLE

The Virgo Consortium’s EAGLE project18 (Crain et al.
2015; Schaye et al. 2015) is a publicly available(McAlpine
et al. 2016) suite of cosmological, hydrodynamic simulations of
a standard Λ cold dark matter universe. Of the simulations, we
use L0100Ref, which has a volume of (100 comovingMpc)3

and baryonic mass resolution of ´ M1.81 106 . It uses
ANARCHY (D. Vecchia et al. 2019, in preparation; see also
Appendix A of Schaye et al. 2015 and Schaller et al. 2015),
which is a modified version of the Gadget 3 N-body/
SPH code(Springel 2005) that includes modifications to the
SPH formulation, time stepping, and subgrid physics. The
subgrid model for feedback from massive stars and AGN is
based on thermal energy injection in the interstellar matter
(ISM; Dalla Vecchia & Schaye 2012). The subgrid parameters
for stellar feedback and BH accretion are calibrated to
reproduce the SMF and reasonable galaxy sizes at z=0. The
AGN feedback efficiency is constrained by the central black

Table 1
Upper Table: The Volume, Dark Matter and Baryonic Mass Resolutions (mDM and mb respectively), and Softening Lengths (ò) at z=0 of the Illustris, EAGLE,
MUFASA, and SC-SAM Simulations Described in Section 2. Bottom Table: Purity and Completeness of Central Galaxies Identified by our Group Finder, And

Cosmic Star Formation Rate Densities Using Either Instantaneous and 100 Myr averaged Star Formation Rates

Simulation Volume mDM mb ò (z=0)
(Mpc3) ( )M106

( )M106 (kpc)

Illustris 106.53 6.26 1.26 0.71 (baryons); 1.42 (DM)
EAGLE 1003 9.7 1.81 0.7
MUFASA 73.53 96 18.2 0.735
SC-SAMa 147.53 221 L 1.475

Simulation Group finder Group finder ρSFR (instantaneous) ρSFR (100 Myr)
purity completeness - -

( )M yr Mpc1 3 - -
( )M yr Mpc1 3

Illustris 99% 86% 10−1.66 10−1.68

EAGLE 93% 89% 10−2.22 10−2.20

MUFASA 84% 91% 10−1.87 10−1.91

SC-SAMa 97% 85% 10−1.94 10−1.94

Note.
a The SC-SAM is run on eight subboxes from the Bolshoi–Planck dark-matter-only N-body simulations. The dark matter particle mass and softening length quoted are
for the Bolshoi–Planck simulations, and the volume quoted is for the eight combined subboxes.

17 http://www.illustris-project.org 18 http://www.eaglesim.org

3

The Astrophysical Journal, 872:160 (19pp), 2019 February 20 Hahn et al.

http://www.illustris-project.org
http://www.eaglesim.org


hole–galaxy mass relation. The simulation resolves galaxies
above * > M M108 . The SFR–M* relation and quiescent
fractions in EAGLE have been previously discussed in Furlong
et al. (2015), Trayford et al. (2015), and the passive fraction
based on mock observations in Trayford et al. (2017).

2.3. MUFASA

MUFASA is a hydrodynamic simulation with a box size of
(50 h−1 Mpc)3 and particle masses of ´ M9.6 107 and

´ M1.82 107 for dark matter and baryons, respectively. It
uses GIZMO, a code built on GADGET that uses the Meshless
Finite Mass hydrodynamics method(Hopkins 2015) rather
than SPH. MUFASA includes star formation via a Kennicutt–
Schmidt law based on the molecular hydrogen density as
computed using the subgrid recipe in Krumholz & Gnedin
(2011). It also includes two-phase kinetic outflows with
scalings as predicted in the Feedback in Realistic Environments
simulations(Muratov et al. 2015). Finally, it quenches massive
galaxies by keeping all non-self-shielded gas within halos
above a mass of > + ( )M z M1 0.48 10q

12 near the halos’
virial temperature(Gabor & Davé 2015; Mitra et al. 2015).
MUFASA is mainly calibrated using the SMF. The primary
variable calibrated for the star formation feedback was the
outflow velocity relative to the circular velocity. There was no
substantial calibration of the quenching model, with the key
free parameter taken directly from Mitra et al. (2015). The
SMF, gas and metal content of galaxies, and color-mass
diagram of MUFASA have been previously discussed in Davé
et al. (2016, 2017a, 2017b).

2.4. Santa Cruz Semianalytic Model

The “Santa Cruz” SAM (SC-SAM) is a semianalytic model
run on merger trees from a (147.5 comoving Mpc)3 subvolume
of the Bolshoi–Planck dark-matter-only N-body simulations
(Rodríguez-Puebla et al. 2016). The Bolshoi–Planck simula-
tions have particle masses of ´ M2.21 108 . The model
includes schematic prescriptions for gas heating and cooling,
multiphase gas partitioning, star formation, chemical evolution,
feedback from stars, supernovae and SMBHs, the sizes of
galactic disks and bulges, and merger-induced star-bursts and
structural transformations. The SC-SAM was first presented in
Somerville & Primack (1999) and Somerville et al. (2001),
with significant updates described in Somerville et al. (2008a,
2008b, 2012), Porter et al. (2014), Popping et al. (2014), and
Somerville et al. (2015). In this work, we use the version of the
SC-SAM described in Popping et al. (2014) and Somerville
et al. (2015), which includes the Gnedin & Kravtsov (2011)
recipe for partitioning multiphase gas into H I, H2, and H II
based on the dark matter resolution limit, we focus our analysis
on halos with > M M10h

11 . Since this roughly corresponds to

* ~ M M108.5 at z∼0, we impose a conservative cut of

* > M M108.8 . The SC-SAM are calibrated based on the
stellar mass–halo mass relation and the SMF as well as the
normalizations of the black hole mass–bulge mass relation,
the stellar mass–stellar metallicity relation, and the cold gas
mass–stellar mass relation. The properties of the SC-SAM
galaxy population, such as the quiescent fraction have been
previously discussed in Brennan et al. (2015), Somerville et al.
(2015), Somerville & Davé (2015), Brennan et al. (2017), and
Pandya et al. (2017).

2.5. Observed SDSS Galaxies

As a reference to our comparison of the simulated galaxies,
we include SDSS galaxies from two samples: a * > M M109.7

Data Release 7(DR7; Abazajian et al. 2009) sample and a

* < M M109.7 Data Release 8(DR8; Aihara et al. 2011)
sample (blue and gray in Figure 1). At high masses, we use the
volume-limited galaxy sample from Tinker et al. (2011)
constructed from the NYU Value-Added Galaxy Catalog
(Blanton et al. 2005). It has - < -( )M h5 log 18r and is
complete for M*>109.7Me. For further details, we refer
readers to Tinker et al. (2011), Wetzel et al. (2013), and Hahn
et al. (2017).
At lower stellar masses, we use the isolated dwarf galaxy

sample of Geha et al. (2012) from the NASA Sloan Atlas
(NSA), a reprocessing of SDSS DR8. The NSA is optimized
for low luminosity objects and relies on the improved
background subtraction technique of Blanton et al. (2011).
The catalog extends to z≈0.055 and includes recalibrated
spectroscopy(Yan 2011; Yan & Blanton 2012) with much
smaller errors.19

For both SDSS subsamples, the stellar masses are estimated
using the Blanton & Roweis (2007) kcorrect code, which
assumes a Chabrier (2003) IMF. The SFRs are from the current
release of Brinchmann et al. (2004),20 where they are derived
using the Bruzual & Charlot (1993) model with the Charlot &
Fall (2000) dust prescription and CLOUDY (version C90.04;
Ferland 1996) emission line modeling. For galaxies classified
as having an AGN or a composite spectrum, the SFR is
measured from the Dn4000 index(Balogh et al. 1998).
Additionally, for star-forming galaxies that have low S/N
spectra, the SFR is derived from the Hα luminosity(Brinchmann
et al. 2004). We emphasize that SSFRs10−12 yr−1 should
only be considered upper limits to the true value(Salim et al.
2007). Given the disparate methods used for the SFR
measurements, the SFRs in the SDSS sample do not entirely
correspond to either the instantaneous or 100Myr averaged
SFRs of the simulations. Consequently, in this work, we
compare the simulations on both timescales and refrain from
detailed comparisons to SDSS.

2.6. Identifying Central Galaxies

Measurements of the quiescent fraction(e.g., Baldry et al.
2006; Peng et al. 2010; Hahn et al. 2015) and star formation
quenching timescale(Wetzel et al. 2013; Hahn et al. 2017)
suggest whether a galaxy is a satellite or a central galaxy
influences its SFR. There may also be significant differences
between the SFSs of central versus satellite galaxies(Wang
et al. 2018). In this paper we focus solely on the central
galaxies, which constitute the majority of massive galaxies
( * > M M109.5 ) at z∼0.
Central classification, despite its importance, is often

heterogeneously defined in the literature. Among simulations,
the classification depends on the definition of halo properties,
and thus on the underlying halo finders. EAGLE and Illustris
use SUBFIND (Springel et al. 2001), where halos are defined as
locally overdense, gravitationally bound (sub)structures within
a connected region selected through a friends-of-friends(FOF;
Davis et al. 1985) group finder. MUFASA and SC-SAM,

19 This recalibration, however, is mostly relevant only at small equivalent
width values and hence does not largely affect galaxies on the SFS.
20 http://www.mpa-garching.mpg.de/SDSS/DR7/
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meanwhile, use ROCKSTAR (Behroozi et al. 2013a), which
defines halos using a hierarchical phase-space based FOF
technique and seeks to maximize the consistency of the halo
through time. In addition, these central classifications also use
information of the underlying dark matter—information not
available in observations. Therefore, we identify central
galaxies in all simulations consistently using the Tinker et al.
(2011) group finder, designed to identify satellite/centrals in
observations.

The Tinker et al. (2011) group finder is a halo-based
algorithm that uses the abundance matching ansatz to
iteratively assign halo masses to groups. It assigns a tentative
halo mass to each galaxy by matching the abundance of the
objects. Then starting with the most massive galaxy, nearby
lower mass galaxies are assigned a probability of being a
satellite. Once all the galaxies are assigned to a group, the halo
masses of the central galaxies are updated by abundance
matching with the total stellar mass in the groups. This entire
process is repeated until convergence. In the resulting catalog,
every group contains one central galaxy, which by definition is
the most massive, and a group can contain zero, one, or many
satellites. For a detailed description we refer readers to Tinker
et al. (2011) and Wetzel et al. (2012).

Overall, we find good agreement between the central
classifications of the group finder with respect to that of the
simulations with purities of 99%, 93%, 84%, and 97% and
completenesses of 86%, 89%, 91%, and 85% for the Illustris,
EAGLE, MUFASA, and SC-SAM simulations respectively
(Table 1). Differences in the purity and completeness for the
simulations are likely due to the different halo finders used in
the simulations. We find no significant stellar mass dependence
in the purities. As expected from the high purity and
completeness, when we perform our analysis using the centrals

identified by the dark matter halos, we find no significant
differences. In the next section, we proceed to fitting the SFS of
simulated central galaxies.

3. Identifying the SFS

We present the SFR–M* relation of central galaxies from the
observations and simulations of Section 2 in Figures 1 and 2.
For both instantaneous and 100Myr SFRs (top/bottom), in
both simulations and observations, and over four orders of
magnitude in SFR and stellar mass, the SFR and M* of star-
forming galaxies lie on a well-defined SFS. Despite its
universality, in detail, the different data sets give rise to
different SFR–M* distributions, which makes the SFS difficult
to consistently and meaningfully quantify. So far in the
literature, a wide variety of fitting methods has been applied to
data—even in a single comparison (see Appendix A). For
example, in Lee et al. (2015) and some of the fits in Somerville
& Davé (2015) the SFS is fit using median log SFRs of
galaxies after some color–color or SSFR cut to the sample.
Other SFSs in Somerville & Davé (2015) are fit using the
median log SFRs of the entire sample. Bluck et al. (2016) fit
the SFS using median log SFRs of low mass galaxies
( * < M M1010 ) and extrapolate to higher masses. Other recent
works in the literature have opted for more sophisticated
methods such as fitting a three-component Gaussian(Bisigello
et al. 2018) or a zero-inflated negative binomial
distribution(Feldmann 2017).
All of these methods require arbitrary assumptions or hard

cuts to the sample. More importantly, for such methods,
different assumptions or cuts produce different SFSs and
inconsistent assumptions and cuts can result in misleading SFS
comparisons (Appendix A). Identifying the SFS also requires

Figure 2. SFR–M* relations of central galaxies from the Illustris (green), EAGLE (red), and MUFASA (purple) hydrodynamic simulations and the SC-SAM (brown) at
z=0. The top panels use instantaneous SFRs while the bottom panels use SFRs averaged over 100 Myr. The contours in each panel mark the 68% and 95%
confidence intervals of the SFR–M* distribution. We describe the simulations and how we derive consistent SFRs and stellar masses in Section 2. The SFR–M*
relations reveal star-forming sequences in all of the simulations.
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flexibility in accounting for the different features in the galaxy
property space over a wide SFR or M* range and in different
simulations and observations. In an effort to better fit the SFS
from a wide variety of SFR–M* distributions and to relax the
assumptions and cuts imposed on the data, we present a flexible
and data-driven method for identifying the SFS that makes use
of Gaussian Mixture Models.

3.1. Using Gaussian Mixture Models

Gaussian mixture models (hereafter GMM), and mixture
models in general, provide a probabilistic way of describing the
distribution of a population by identifying subpopulations from
the data(Press et al. 1992; McLachlan & Peel 2000). Besides
their extensive use in machine learning and statistics, GMMs
have also been used in a wide range of astronomical
analyses(e.g., Bovy et al. 2011; Lee et al. 2012; Taylor et al.
2015). Since identifying the subpopulation of star-forming
galaxies from the overall galaxy population is equivalent to
identifying the SFS, GMMs provides a well-motivated, data-
driven, and effective method to tackle the problem.

A GMM, more precisely, is a weighted sum of k Gaussian
component densities

åq qp=
=

ˆ ( ) ( ) ( )p x x; ; , 1
i

k

i i
1

which can be used to estimate the density. The weights, πi,
mean, and variance q m s= { },i i i of the components are free
parameters. For a given data set {x1, ..., xn}, these parameters are
most commonly estimated through the expectation-maximiza-
tion algorithm(EM; Dempster et al. 1977; Neal & Hinton 1998).

Starting with randomly assigned qi
0 to the k GMM

components, the EM algorithm iterates between two steps.
First, for every data point, xi, the algorithm computes for a
probability of xi being generated by each GMM component.
These probabilities act as assignment weights to each of the
components. Next, based on these weights, qi

t of the
components are updated to q +

i
t 1 to maximize the likelihood

of the assigned data. πi are also updated by summing up the
assignment weights and normalizing the sum by the total
number of data points. These steps are repeated until

q({ } )p x x,..., ;n t1 converges. Instead of starting with randomly
assigning qi

0, we initiate our EM algorithm using a k-means
clustering algorithm(Lloyd 1982), more specifically we use the
k-means++ algorithm(Arthur & Vassilvitskii 2007).

For actually identifying the SFS, we first divide the galaxy
sample into stellar mass bins of some width *D Mlog . In this
paper we use bins of *D =Mlog 0.2 dex; however, this choice
does not significantly impact the final SFS. For each stellar
mass bin, if there are more than Nthresh=100 galaxies in the
bin, we fit the SSFR distribution using GMMs with k=1 to 3
components with parameters determined from the EM algo-
rithm described above. For the SDSS galaxy sample and all the
simulations, even when we allow for more than three
components, the best-fit GMMs have k�3. Hence, the choice
of k�3 does not significantly impact the results of this work.
Out of the three (k�3) GMMs, we select the one with the
lowest Bayesian Information Criteria(BIC; Schwarz 1978) as
our “best-fit” model. BIC is often used in conjunction with
GMMs(e.g., Leroux 1992; Roeder & Wasserman 1997; Fraley
& Raftery 1998; Steele & Raftery 2010) and also more
generally for model selection in astronomy(e.g., Liddle 2007;

Broderick et al. 2011; Vakili & Hahn 2016). In addition to the
likelihood, BIC introduces a penalty term for the number of
parameters in the model:

= - + ( )N NBIC 2 ln ln . 2par data

Npar is the total number of GMM parameters (m s,i i, and πi) and
Ndata in our case is the number of galaxies in each stellar mass
bin. With more components (and parameters), GMMs in
principle can better fit the data; however, the BIC is lower only
if the higher component GMM improves the likelihood term
more than the increase in the second term of Equation (2). In
this way, using BIC for our model selection not only finds a
good fit to the data, but it also addresses the concern of
overfitting.
Given the best-fit GMM, we next identify the SFS

components in each *Mlog bin. We start from the lowest

*Mlog bin, where we take the component with the largest weight
as the SFS component. Then in the next higher *Mlog bin we
identify the component with the largest weight. If this
component has a mean within 0.5 dex of the previous lower

*Mlog bin SFS component mean, we identify this component as
the SFS. Otherwise, we discard it and determine whether the
component with the next highest weight is within 0.5 dex of the
previous SFS component mean. We repeat this until we either
identify an SFS component or, if no component is within 0.5 dex
of the previous SFS component mean, conclude that no SFS
component is in the *Mlog bin. We repeat this procedure
recursively for all the *Mlog bins. This scheme takes advantage
of the bimodality in the SSFR distributions and has as its only
assumption that the SFS forms a relatively continuous sequence.
We choose 0.5 dex in order to relax any assumptions on the
slope of SFS and also to avoid misclassifying the quiescent
population as SFS at the high mass end. However, within the
range 0.2–0.9 dex, the SFSs that we identify are not significantly
impacted. In Appendix B, we present a detailed comparison of
the GMM fits to the SSFR distributions of the simulations and
discuss the advantages of our method in further detail.
In Figure 3, we illustrate our GMM based method for

identifying the SFS of the Illustris central galaxies in two stellar
mass ranges highlighted in the left panel: *< <M10.4 log 10.6
(center) and *< <M11.0 log 11.2 (right). For the two stellar
mass bins, we compare the SSFR distributions of the bins to the
components of the best-fit GMMs derived from our method.
The SFS components of the best-fit GMMs are plotted in blue.
The SSFR distribution of the center panel is best described by a
GMM with three components while the SSFR distribution in the
right panel is best described by a GMM with only two
components. These comparisons highlight the flexibility and
effectiveness of our method in identifying the SFS for different
SSFR distributions. Our code for identifying the SFS makes use
of the following software: astroML(Vanderplas et al. 2012),
astropy(Astropy Collaboration et al. 2013; Collaboration et al.
2018), matplotlib(Hunter 2007), numpy(Van Der Walt et al.
2011), scipy(Jones et al. 2001), and scikit-learn(Pedregosa
et al. 2011). The code is publicly available athttps://github.
com/changhoonhahn/LetsTalkAboutQuench.

4. Results

4.1. SFS of Simulated Galaxies

Now using our GMM based method from above, we can
identify the SFSs of the simulated central galaxies from
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Section 2. We present the best-fit SFSs of the simulated
galaxies from the Illustris, EAGLE, MUFASA, and SC-SAM
simulations for the instantaneous and 100Myr SFR timescales
in Figures 4 and 5, respectively. In each simulation, for both
SFR timescales, the best-fit SFS is in good agreement with the
underlying SFR–M* distribution as described by the contour
and 2D histogram. However, when we compare the best-fit
SFSs of the simulations to each another, we find that they have
significantly different slopes and their amplitudes vary by up to
∼0.7 dex (factor of ∼5) for both the instantaneous and

100 MyrSFR timescales (bottom right panels of Figures 4
and 5).
The uncertainties for the best-fit SFSs in Figures 4 and 5 are

derived from bootstrap resampling(Efron 1979) in each stellar
mass bin. These uncertainties do not account for cosmic
variance. Also, they correspond to the uncertainties of the
means of the SFS GMM component, which is only one of the
parameters in the GMM, and do not account for the correlations
of other parameters of the GMM in Equation (1). Our SFS
uncertainties are estimated similarly to the cluster red sequence

Figure 3. We illustrate our GMM based method for identifying the SFS of Illustris central galaxies in two stellar mass bins highlighted on the SFR–M* relation of the
left panel: *< <M10.4 log 10.6 and *< <M11.0 log 11.2. We compare the SSFR distributions, ( )p log SSFR , in the two stellar mass bins to their best-fit GMMs
(right panels). The ( )p log SSFR in the center panel is best described by a GMM with three components (orange, green, and blue) while the ( )p log SSFR in the right
panel is best described by a GMM with two components (orange and blue). The SFS components of the best-fit GMMs are plotted in blue. Our GMMmethod provides
a flexible and data-driven method of identifying the SFS in a wide variety of SSFR distributions without hard assumptions or cuts to the sample.

Figure 4. SFSs of the central galaxies in the Illustris, EAGLE, MUFASA, and SC-SAM simulations as identified by our GMM based method (Section 3). The SFSs
above are identified from the instantaneous SFR–M* relation. The uncertainties of the SFSs are derived using bootstrap resampling and marked by the error bars. For
reference, we include the SFS of the SDSS sample in the top right panel and the bottom right panel (black). When we compare the SFSs of the simulations we find that
they have significantly different slopes and their amplitudes vary by up to ∼0.7 dex, a factor of ∼5 (bottom right).
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fits in Hao et al. (2009), which use an “error-corrected” GMM
that involves bootstrap resampling. Hao et al. (2009), however,
use their method to estimate the mean of their GMM
component, rather than to estimate its uncertainty.

Using the SFSs we identified, we can now parameterize it to
some functional form as is often done in the literature—e.g.,
power law(Speagle et al. 2014) or broken power law(Lee
et al. 2015). With little evidence of a turnover in the SFS in
most of the simulations, we fit a power law of the form

*= - +( ) ( )m M blog SFR log 10.5 3MS

to the SFSs in Figure 6. Unlike the SFS of other simulations,
the SFSs for MUFASA have a significant turnover at

* ~ M M1010.5 . This turnover is not caused by misidentifica-
tion of the SFS or some systematic effect in the GMM fitting.
Instead, the turnover is due to the halo mass dependent
quenching prescription in MUFASA (Section 2.3), which causes
a sharper cutoff in the SFS, unlike the other more self-
consistent AGN feedback models. We focus on the power-law
portion of the MUFASA SFS and fit Equation (3) below the
turnover ( * < M M1010.5 ).

The best-fit (least squares) power-law parameters (Table 2
and Figure 6) highlight the significant differences in the slope
of the SFSs. Among our simulations, m ranges from sublinear
in MUFASA (0.75) to superlinear in SC-SAM (1.17). Various
subgrid models (e.g., ISM, star formation, stellar and AGN
feedback; see also Torrey et al. 2014) can influence the slope
and normalization of SFSs in the simulations. To resolve the
underlying cause behind the difference in SFSs, would require
a detailed comparison of the different subgrid parameters and

prescriptions. While such a comparison is beyond the scope of
this paper, the discrepancies we find in the SFSs provide
constraints on galaxy formation models. Furthermore, although
a detailed comparison with observations is complicated by the
differences in how SFR is defined in simulations versus
observations, we include in Figure 6 the power-law fit to the
SFS of the SDSS central galaxies (black dotted). Compared to
the SFSs of the simulations, SFS in SDSS has a significantly a
lower slope: m=0.69. As a result, the SFSs of the simulations
are scattered around the SDSS SFS below * ~ M M1010 , but
have higher amplitudes than the SDSS SFS above

Figure 5. Same as Figure 4 but for 100 Myr SFR. As in Figure 4, the SFSs of the simulations have significantly different slopes and vary in amplitude by up to
∼0.7 dex, a factor of ∼5.

Figure 6. Power-law fits to the SFSs of the Illustris (green), EAGLE (red),
MUFASA (purple), and SC-SAM (brown) simulations highlight the significant
differences in the slopes of the SFSs. We use instantaneous SFR and 100 Myr
SFR in the left and right panels respectively. For reference, we include the fit to
the SDSS SFS (black dotted). We list the best-fit parameters in Table 2. For a
consistent comparison, we fit the MUFASA SFS below log M*<10.5, due to
its high stellar mass turnover.
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* ~ M M1010 . This is also apparent in the bottom right panel
comparisons of Figures 4 and 5.

The differences we find among the SFSs of the simulations,
also appear in their cosmic star formation densities. Cosmic star
formation density roughly corresponds to the total star
formation in the SFS weighted by the SMF. For Illustris,
EAGLE, MUFASA, and SC-SAM, respectively, we find total
cosmic star formation densities (including satellites) of 10−1.66,
10−2.22, 10−1.87, and - - -

M10 yr Mpc1.94 1 3 using instanta-
neous SFRs and similarly 10−1.68, 10−2.20, 10−1.91, and

- - -
M10 yr Mpc1.94 1 3 using 100Myr SFRs (Table 1). The

rank order of the densities is different than those of the SFSs
due to differences in the SMFs. Although these values are
roughly within the uncertainties of observations(Madau &
Dickinson 2014), the difference in the star formation density
between Illustris and EAGLE, for example, is greater than
0.5 dex—more than a factor of 3. With the differences among
the simulations in both their cosmic star formation densities
and SMFs, it is difficult to attribute the difference of the SFSs
to either stellar mass or SFR alone. Differences in both
properties, and therefore the full star formation history as
modeled by different subgrid prescriptions in the four
simulations, likely contribute to the discrepancies in the cosmic
SFR densities, the SMFs, and the SFSs.

In addition to its position, μSFS, the SFS GMM component is
also described by σSFS—the width of the SFS. Using σSFS
derived from the GMM fitting, we can compare the width of
the SFS among the simulations (Figure 7). The uncertainties for
the widths are calculated through bootstrap resampling in the
same way as the SFS uncertainties. Overall, we find little stellar
mass dependence in σSFS for the simulations. For Illustris,
EAGLE, MUFASA, and SC-SAM we, respectively, find
σSFS∼0.20, 0.26, 0.25, and 0.24 dex for instantaneous SFR
and σSFS∼0.18, 0.20, 0.25, and 0.23 dex for 100Myr SFR
(Table 2). Although we do not explicitly include the width of
the SDSS SFS GMM component due to inconsistencies in the
SFRs(Section 2.5), these σSFS are narrower than the ∼0.3 dex
width measured in observations(e.g., Daddi et al. 2007;

Noeske et al. 2007; Salim et al. 2007; Magdis et al. 2012;
Whitaker et al. 2012; Speagle et al. 2014). Observational errors,
however, will bring the simulated values to closer agreement.
For instance, the SFRs of our SDSS galaxies from the NYU-
VAGC have measurement errors of s » 0.031 dexlog SFR ,
approximated from repeated SFR measurements of the same
galaxies. Furthermore, the hydrodynamic simulations lack
burstiness caused by clustered star formation, and thus
feedback due to resolution effects. Sparre & Springel (2017)
found that burstiness can increase slog SFS by 0.10–0.17 dex.
Additionally, Genel et al. (2018) recently showed that chaotic
effects can contribute to the overall scatter in the SFS.
However, because we derive σSFS from a large galaxy
population this butterfly effect does not impact the measure-
ment reliability of statistical properties of the ensemble of
galaxies because the sensitivity of individual galaxy SFRs
averages out. However, the different degree of the butterfly
effect on different simulations may contribute the difference in
σSFS among the simulations. This unresolved variability will
also bring the scatter closer to the observed width. We therefore
conclude that the width of the SFS from the simulations are in
reasonable agreement with the observed SFS width.
Another factor that impacts the SFS we identify is the strict

lower limit of the log SFRs caused by the resolution effects in
the simulations. This is particularly evident in the 100Myr
SFR–M* relations of the hydrodynamic simulations of Figure 2
—especially MUFASA. As we describe in Section 2, the
100Myr SFRs are calculated using the ages of all star particles
in a galaxy. For a galaxy to have star formation (i.e., SFR>0),
it must at least form one star particle over the last 100Myr. A
single star particle forming over 100Myr amounts to an SFR of
~ -

M0.02 yr 1 for Illustris and EAGLE and ~ -
M0.2 yr 1 for

MUFASA. This resolution limit, ultimately impacts the SFS at

* <M 108.4, 108.4, and M109.2 for Illustris, EAGLE, and
MUFASA respectively (see Appendix C).
Using our method for identifying the SFS, we are able to

conduct a consistent data-driven comparison of the SFSs of
simulated central galaxies from the Illustris, EAGLE, MUFASA,
and SC-SAM. From this comparison, we find that the
amplitudes of the SFSs differ from one another by up to
∼0.7 dex, factor of ∼5, with significantly different slopes.
Furthermore, despite these differences, the SFSs of the
simulations have similar widths, consistent with observations.

Table 2
Power-law Fit to the SFS of the Simulated Central Galaxies from the Illustris,

EAGLE, MUFASA, and SC-SAM Simulations

Star-forming Sequence Power-law fit Width

*= - +( )m M blog SFR log 10.5MS

Simulation m b σSFS (dex)

Instantaneous SFR
Illustris 1.01±0.004 0.59±0.006 0.20
EAGLE 0.91±0.006 0.23±0.008 0.26
MUFASA 0.75±0.014 0.58±0.011 0.25
MUFASAa 0.89±0.020 0.74±0.020
SC-SAM 1.17±0.008 0.48±0.009 0.24

100 Myr SFR
Illustris 0.95±0.006 0.55±0.008 0.18
EAGLE 0.75±0.010 0.21±0.009 0.20
MUFASA 0.38±0.023 0.36±0.016 0.25
MUFASAa 0.97±0.050 0.83±0.039
SC-SAM 1.16±0.008 0.47±0.009 0.23

SDSS 0.69±0.008 0.18±0.007

Note.
a Power-law fit to the MUFASA SFS below its turnover ( * <Mlog 10.5).

Figure 7. Width of the SFS, sSFS, for the simulated central galaxies from
Illustris, EAGLE, MUFASA, and SC-SAM (green, red, purple, and brown
respectively). The uncertainties are estimated using bootstrap resampling in the
same way as the SFS uncertainties. The SFS widths in the simulations have
little stellar mass dependence and, adding observational measurement errors in
SFR, they are roughly consistent with ∼0.3 dex from observations (black
dashed line).
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4.2. Beyond the SFS of Simulated Galaxies

So far we have focused solely on the SFSs of the simulated
galaxies—i.e., q m s= { },SFS SFS SFS in Equation (1). Our GMM
method, however, also determines qi of components other than
the SFS. These GMM components provide extra features to
compare the simulated galaxy samples and also offer interest-
ing insights into the different subpopulations in the simulated
galaxy samples. When we examine qi of all components from
our fitting for the simulated galaxies, we find they loosely
correspond to galaxy subpopulations typically referred to as
quiescent, transitioning, and starburst (Figure 8). From the data
alone, we cannot determine whether the components we
identify are actually the “true” subpopulations. Therefore, to
avoid overinterpreting this correspondence, we refer to the
GMM component with the lowest SFR as the “low SF”
component, the component with SFR in between the SFS and
the low SF component as the “intermediate SF” component,
and finally the component with higher SFR than the SFS
component as the “high SF” component. At a given stellar
mass bin, our GMM fits are restricted to k�3; hence, the four
different components come from different stellar mass bins. In
Figure 8, we mark the SFS, low SF, intermediate SF, and high
SF in blue, orange, green, and purple respectively.

Examining the GMM components of the hydrodynamic
simulations in Figure 8, we find that a few *Mlog bins have
intermediate SF components in Illustris at *< <M M109

M1011 . Also a few of the lowest *Mlog bins in Illustris and
EAGLE have high SF components for the 100Myr SFRs.
Besides these few bins, however, the central galaxies from the
hydrodynamic simulations are dominated by the SFS and low

SF components. Furthermore, throughout the stellar mass
ranges of the simulations, the low SF components in each of
these simulations have relatively constant widths and lie
∼1 dex below the SFS components.
Unlike the hydrodynamic simulations, however, the low SF

components in the SC-SAM span out to =log SFR
- -

M4 yr 1. Furthermore, the intermediate and high SF
components are much more prominent in the SC-SAM centrals.
At low stellar masses ( *  M M1010 ) every *Mlog bin has a
high SF component. The log SSFR distributions in these bins
have extended tails on the higher SFR side of the SFS. Our
GMM method, thus, fits high SF components in these *Mlog
bins (bottom left and center panels of Figures 11 and 12).
These high SF components and the extended range of low SF
components are likely caused by the reaccretion prescription of
the SAM (Section 2.7 of Somerville et al. 2008b). A fraction of
gas ejected from halos (e.g., from supernovae) is kept in a
reservoir, which recollapses into the halos at a later time and
becomes available again for cooling. The rate of this
reaccretion depends on the mass of ejected gas, the dynamical
time of the halo, and a free parameter degenerate with
supernovae feedback parameters. This prescription results in
bursty star formation in the SC-SAM galaxies and causes the
extended low SF components and the high SF components.
At high stellar masses ( *  M M1010 ) every *Mlog bin in

the SC-SAM has an intermediate component. While the
log SSFR distributions in the bottom right panels of
Figures 11 and 12 and the BIC values illustrate the benefit of
the GMM with an intermediate SF component, these are
accentuated by the broader distribution of the low SF

Figure 8. Components of the best-fit GMM for the SFR–M* relations of central galaxies in the Illustris, EAGLE, MUFASA, and SC-SAM simulations (left to right).
The top and bottom panels use instantaneous SFRs and 100 Myr SFRs respectively. In each *Mlog bin, we mark the SFS component in blue, the low SF component in
orange, the intermediate SF component in green, and the component above the SFS in purple. These components loosely correspond to the star-forming, quiescent,
transitioning, and starburst subpopulations. The hydrodynamic simulations have similar subpopulations dominated by the SFS and low SF components. Meanwhile, in
the SC-SAM, the GMM components reveal broad low SF components that extend out to < - -

MSFR 10 yr4 1, prominent intermediate components at *  M M1010 ,
and components above the SFS at *  M M1010 .
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population. Despite these differences between the hydrody-
namic simulations and the SC-SAM, all of the simulations have
a low SF component throughout their stellar mass range, even
at * < M M109 . We discuss these low M* low SF galaxies in
further detail later in this section.

Another set of parameters we infer from our GMM fitting is
the weight of the GMM components: πi in Equation (1). These
weights correspond to the fractional contribution of the
different subpopulations. For example, the weight of the low
SF component loosely corresponds to the quiescent
fraction(e.g., Borch et al. 2006; Bundy et al. 2006; Iovino
et al. 2010; Geha et al. 2012; Hahn et al. 2015). In Figure 9, we
present the fractional contribution of the components from our
best-fit GMM, as a function of stellar mass: SFS (blue), low SF
(orange), intermediate SF (green), and high SF (purple). We
also include the fractional contribution of galaxies with
unmeasurably low SFRs (red; see Section 2). The πi have
uncertainties, estimated from bootstrap resampling, on the
order of ∼0.1.

For every simulation, a significant fraction of galaxies have
unmeasurably low SFRs. In hydrodynamic simulations, a
galaxy with unmeasurably low SFR can have an SFR below the
resolution limit, or have a “true” SFR=0 on the measured
timescales (Appendix C). For the SC-SAM, we consider the
SFR unmeasurably low when < - -

Mlog SFR 4 yr 1. There-
fore, in both hydrodynamic simulations and the SAM, galaxies
with unmeasurably low SFR can be considered quiescent.
Moreover, we confirm that SFR resolution does not signifi-
cantly impact the fraction contributions of Figure 9 (see
Appendix C and Figure 15).

The fractional contributions of the GMM components in
Figure 9 reveal significant disagreements between the simu-
lated galaxies and trends established from observations—
especially the hydrodynamic simulations. For instance, in the
hydrodynamic simulations we do not find significant high SF
components at low M*, unlike in SDSS or SC-SAM. The few

M* bins with fractional contributions from high SF compo-
nents have large bootstrap uncertainties (∼0.2). Furthermore, if
we treat the components below the SFS as quiescent (green,
orange, and red in Figure 9), we find little stellar mass
dependence in the quiescent fraction of the hydrodynamic
simulations, unlike the quiescent fraction measurements of
isolated SDSS galaxies(Baldry et al. 2006; Peng et al. 2010;
Hahn et al. 2015). Meanwhile, at * > M M109 the SC-SAM is
roughly consistent with SDSS (rightmost panel) and in
agreement with previous SC-SAM quiescent fraction compar-
isons to observations(Brennan et al. 2015, 2017; Pandya et al.
2017).
Furthermore, for some of the hydrodynamic simulations in

Figure 9 (Illustris, EAGLE, and MUFASA with 100Myr SFRs
and EAGLE, and MUFASA instantaneous SFRs) we find
surprisingly high quiescent fractions (∼0.4) at low masses in
stark contrast with observations(Baldry et al. 2006; Peng et al.
2010; Hahn et al. 2015). In fact, all the simulations, even the
SC-SAM, have nonnegligible (10%) quiescent fractions at

* < M M109 contrary to the M* lower bound of~ M109 for
isolated/central quiescent galaxies we observe in SDSS and
established in the literature(e.g., Geha et al. 2012).
One possible explanation for the significant fraction of low

SFR galaxies at low M* in the hydrodynamic simulations is
misclassification of “splashback” (or “blacksplash” or
“ejected”) galaxies as centrals. Splashback galaxies are satellite
galaxies that have orbited outside the virial radii of its host halo
after having passed through it(e.g., Mamon et al. 2004; Gill
et al. 2005; Wang et al. 2009; Wetzel et al. 2014). The SC-
SAM is not subject to this misclassification because subhalos
are not tracked after first infall, so by construction the model
does not have splashbacks. To test whether splashbacks impact
our results for the hydrodynamic simulations, we adjust our
central galaxy selection criteria in Section 2.6 to exclude any
centrals within three virial radii of a more massive halo. When
we use this stricter central classification and measure the SFS

Figure 9. Fractional contributions, πi, of the best-fit GMM components of the central galaxies in Illustris, EAGLE, MUFASA, and SC-SAM (left to right). We highlight
the SFS component in blue, the low SF component in orange, galaxies with unmeasurably low SFR in red, the intermediate SF components in green, and the high SF
components in purple. We shade the regions below the stellar mass limit set by resolution effects in black (Appendix C). For reference, we include πi of the observed
SDSS centrals in the rightmost panel. Unlike SDSS or the SC-SAM, we do not find significantly high SF components at low M* in the hydrodynamic simulations.
Furthermore, treating the components below the SFS as quiescent, we find littleM* dependence in the quiescent fraction at * < M M1011 unlike observations. In fact,
in all of the simulations, we find a significant fraction of quiescent central galaxies at *  M M109 contrary to observations.
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and other GMM components, we find no significant change to
the SFS fits or the fractional contributions of the GMM
components. We also find no significant changes to our results
when we restrict the selection to galaxies with no “luminous”
neighbors within 1.5 Mpc h−1

—analogous to the Geha et al.
(2012) criteria. We therefore conclude that the significant
fraction of low SFR and low M* galaxies is not caused by
misclassification of centrals.

Another possible explanation for the abundance of low SFR
galaxies at low M*, is that the hydrodynamic simulations have
insufficient resolution for galaxies with * < M M109 . Low
M* galaxies in reality may have star-forming clumps with
masses lower than the baryonic particle mass. Such star
formation will not be captured by the simulations(Sparre &
Springel 2017). We test whether our results are impacted by the
resolution limit using a higher resolution box (8× higher
baryon mass resolution) for EAGLE. Although the fractional
contributions of the low SFR GMM component is significantly
lower at * ~ M M1010 , this can also be affected by the low
number of galaxies in this mass range in the small high
resolution box. We still find an abundance of low SFR galaxies
at * < M M109 for the higher resolution EAGLE simulation,
but as the fraction increases toward lower masses we cannot
rule out resolution as the cause of the low mass, low SFR
component.

Taking a step back, we emphasize that this discrepancy
between the simulations and observations must be taken with a
grain of salt and our comparison is not an apples-to-apples
comparison. For instance, in Geha et al. (2012) low SF/
quiescent galaxies are classified based on a Hα emission and
Dn4000 criteria—different than in the simulations. Even the
central (isolation in Geha et al. 2012) criteria, in detail, is
different than the analogous criteria above. More broadly, the
comparisons we present in this paper are among simulations
and therefore are based on “theoretical” predictions of galaxy
properties. Many factors make it difficult to robustly extend
this comparison to observations.

For example, SFR and M*, the galaxy properties considered
in this paper, in simulations can be directly measured either
using star or gas particles in the simulations. In observations,
even the SFR alone is estimated from SFR indicators such as
Hα flux, Dn4000, or UV brightness and dust absorption
measurements. While they serve as estimates of the SFRs, as
Speagle et al. (2014) find, even for the same SDSS galaxies,
different SFR indicators can produce large discrepancies in the
slope and amplitude of the SFS. ForM*, because we include all
stellar particles to compute the stellar masses in the simula-
tions, this may overestimate M*, in particular, for high mass
galaxies. However, as we mention in Section 2, for the EAGLE
sample, the SFS we identify does not change when we use
stellar mass and SFR in the entire subhalo or within apertures
of 70, 50, or 30 kpc. Furthermore, a consistent comparison to
observations requires a thorough understanding of the selection
effects that come with the observed galaxy sample. These
effects are difficult to propagate into SFR and M* space of
simulations.

Therefore, while we note some of the differences in
Figures 4–6 and 9, between the simulations and observations,
we reserve a more detailed comparison to the next paper in our
series: T. K. Starkenburg et al. (2019, in preparation). In this
next paper, instead of comparing the “theoretical” galaxy
properties, we forward model galaxy spectra and photometry of

simulated galaxies using their star formation histories, make
observationally motivated measurements of SFR andM* on the
synthetic spectra and photometry, and conduct a quantitative,
apples-to-apples, comparison of the simulations to
observations.
In this section, we demonstrate that our method for

identifying the SFS provides additional features besides the
SFSs, to compare different galaxy samples. These extra
components offer insights into the distinct galaxy subpopula-
tions of the simulations. Based on the non-SFS components/
populations, we find that the hydrodynamic simulations are
similarly dominated by the SFS and low SF components, while
the SC-SAM predicts substantial fractions of high and
intermediate SF components. Moreover, we find that all of
the simulations have a significant fraction of low SFR central
galaxies at M*109Me, contrary to observations. Further-
more, the hydrodynamic simulations, at even M*1011Me,
do not reproduce the quiescent fractions from the literature or
their stellar mass dependence.

5. Summary and Conclusions

The SFS provides a key feature in galaxy property space to
consistently compare galaxy populations in simulations and
observations. Such comparisons are crucial for validating our
theories of galaxy formation and evolution. However, they face
two main challenges: the lack of a consistent data-driven
method for identifying the SFS and the discrepancies in
methodology for deriving galaxy properties such as SFR and
M*. In this paper, we address the former by presenting a
flexible data-driven method for identifying the SFS.
Our method takes advantage of Gaussian mixture models to

fit the SFR distributions in stellar mass bins and BIC for model
selection. This data-driven approach allows us to robustly fit
the SFR–M* relation of galaxy populations and identify the
SFS, while relaxing many of the assumptions and hard cuts that
go into other methods. Furthermore, it allows us to identify the
SFS over a wide range of star formation and stellar masses
down to * ~ M M108 . Finally, our method also allows us to
identify subpopulations of galaxies, beyond the SFS, that
correspond to the quiescent, transitioning, and starburst galaxy
populations.
Next we apply our method to the central galaxies of the

Illustris, EAGLE, and MUFASA hydrodynamic simulations and
the SC-SAM. The central galaxies are identified in the
simulations using the Tinker et al. (2011) group finder and
have consistently derived M* and SFRs on instantaneous and
100Myr timescales. For reference, we also apply our method to
central galaxies from SDSS observations. Comparing the
resulting SFSs and other components from the simulations
and observations, we find the following:

1. The identified SFSs of Illustris, EAGLE, MUFASA, and
SC-SAM vary by up to ∼0.7 dex (a factor of ∼5) and
have significantly different slopes over the stellar mass
range *< < M M M10 108.5 11 with little mass depend-
ence on the discrepancies. Meanwhile, the width of the
SFSs are consistent with one another and in agreement
with the ∼0.3 dex width from observations.

2. From the best-fit GMMs, we find that the hydrodynamic
simulations are mainly dominated by the SFS and low SF
(quiescent) components. Meanwhile, the SC-SAM is
composed of a substantial fraction of galaxies between
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the SFS and low SF components at high masses
( * > M M1010 ) and above the SFS at low masses
( * < M M1010 ), likely due to its reaccretion
prescription.

3. The quiescent fractions of the hydrodynamic simulations,
estimated from the components of the best-fit GMMs
below the SFS and galaxies with unmeasurably low SFR,
have little stellar mass dependence and are inconsistent
with the SC-SAM as well as with observations. More-
over, in all of the simulations, we find an abundance of
low mass ( * < M M109 ) quiescent central galaxies,
which we do not find in SDSS or the literature.

With a consistent treatment of the simulations and our
method for identifying their SFSs and other subpopulations, we
demonstrate significant differences in the central galaxy
populations of Illustris, EAGLE, MUFASA, and SC-SAM.
Although we refrain from a detailed comparison with
observations, we also find significant differences between the
simulations and established trends in observations. These
discrepancies, which previous comparisons failed to identify,
underscore the importance of a consistent data-driven approach
for accurately comparing galaxy populations.

Furthermore these results illustrate how differences in the
subgrid physics of the simulations propagate into significant
differences in the properties of their galaxy populations.
Extending our approach of a consistent data-driven comparison,
to observations, we can test the subgrid physics of simulations and
derive strong constraints on our galaxy formation models. This is
exactly what we will present in the subsequent paper of our series
—T. K. Starkenburg et al. (2019, in preparation).
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Appendix A
Previous Comparisons of the SFS

Earlier SFS comparisons in the literature, overall, report
agreement among simulations and observations at z=0 (e.g.,
Genel et al. 2014; Schaye et al. 2015; Somerville & Davé 2015;
Sparre et al. 2015; Bluck et al. 2016; Davé et al. 2016). This
agreement is particularly evident in the comparison in
Somerville & Davé (2015; Figure 5). However, as Somerville
& Davé (2015) note, the SFSs compiled in the comparison are
derived inconsistently, with some applying a star-forming
galaxy selection cut (e.g., SSFR cut) and others not applying
any cut. We demonstrate in this section that inconsistency in
measuring the SFS can produce misleading agreement among
simulations.
In the left panel of Figure 10 we reproduce the SFS

comparison of Somerville & Davé (2015) Figure 5 for the
simulations in Section 2 using different methods for measuring
the SFS. For Illustris and EAGLE, we apply the same methods
as the SFSs in Somerville & Davé (2015): the median SFR in a
M* bin with no selection cut for Illustris (green) and with an
SSFR>10−11 yr−1 cut for EAGLE(red; Schaye et al. 2015).
MUFASA and the current version of SC-SAM did not exist and
were not included in Somerville & Davé (2015). Since we are
illustrating how inconsistent SFS measurements can result in
misleading agreement, for MUFASA and SC-SAM we measure
the median SFR with no selection cut and with an
SSFR>10−11 yr−1 cut, respectively. As in Figure 5 of
Somerville & Davé (2015), we find good agreement among
the SFSs of the simulations.
Instead of measuring the SFSs differently, if we measure the

SFS by taking the median SFR after either an SSFR>10−11 yr−1

cut or with no SSFR cut consistently for all the simulations, we

Figure 10. The SFSs of Illustris, EAGLE, MUFASA, and SC-SAM central galaxies, where we measure the SFSs using different methods as in Figure 5 of Somerville &
Davé (2015; left panel) and using the same methods (center and right panels). In the left panel, we measure the SFSs by taking the median SFR in an M* bin with no
selection cuts for Illustris and MUFASA and by taking the median SFR after an SSFR>10−11 yr−1 cut for EAGLE and SC-SAM. In the center panel, we measure the
SFSs by taking the median SFR after an SSFR>10−11 yr−1 cut for all four simulations. In the right panel, we measure the SFSs by taking the median SFR with no
selection cuts for all four simulations. The difference among the panels illustrates that the agreement found in the left panel, and similarly in Somerville & Davé
(2015), is mainly driven by the difference in methods used to measure SFSs.
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find discrepancies in the SFSs on the order of ∼0.5 dex (center
and right panels of 10). This illustrates that the agreement found in
Somerville & Davé (2015) is driven in large part by the difference
in methods used to measure SFSs. Furthermore, the difference
between the Illustris and MUFASA SFSs in the panels illustrates
how different SFS fitting methods, even when consistently
applied, can alter the difference between SFSs. The difference
between the Illustris and MUFASA SFSs is significantly larger in
the center panel when the SSFR>10−11 yr−1 cut is applied and
galaxies with SFR below the resolution limit, which make up a
larger fraction of the MUFASA galaxies than the Illustris galaxies,
are removed by the selection cut. In the center panel of Figure 10,
we find consistency among the slopes of the different SFSs. This
consistency is a result of the hard selection cut, which biases
the SFS slopes closer to the cut (SSFR=10−11 yr−1) and thus to
one another. These effects highlight the impact of hard selection
scuts and the need for a consistent data-driven method for

identifying the SFS that better account for intrinsically different
SFR–M* distributions in the simulations.

Appendix B
Identifying the SFS Using Gaussian Mixture Models

In order to derive the best-fit GMM used for identifying the
SFS in each M* bin, we compare GMM fits with k�3
components using their BICs (Section 3). In Figures 11 and 12,
we illustrate this comparison among the GMMs with k=1, 2,
and 3 (blue, orange, and green) components fit to the
instantaneous SSFR distributions, ( )P log SSFR , of the Illustris,
EAGLE, MUFASA, and SC-SAM (top to bottom panels)
centrals in three stellar mass bins: *< <M9.2 log 9.4,

*< <M9.8 log 10, and *< <M10.6 log 10.8 (left to right).
The SSFR distributions in Figures 11 and 12 are derived using
instantaneous and 100Myr SFRs respectively. Galaxies with

Figure 11. GMMs with k=1, 2, and 3 (blue, orange, and green) components fit to the instantaneous SSFR distributions, ( )P log SSFR , of the Illustris, EAGLE,
MUFASA, and SC-SAM (top to bottom panels) centrals in three stellar mass bins: [9.2, 9.4], [9.8, 10.], and [10.6, 10.8] (left to right). We represent galaxies with
unmeasurably low SFR in ( )P log SSFR s with = -log SSFR 13.5. For every GMM fit, we plot each component in dash lines and list their BICs in the same color. In
our SFS fitting, we select the GMM with the lowest BIC as the best fit. This provides a data-driven way of accurately fitting the SSFR distribution while avoiding
overfitting.
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unmeasurably low SFR are represented at the edge of the SSFR
distributions with = -log SSFR 13.5. In each panel, we also
present the BICs and plot every component of the GMM fits
(dashed) in their respective colors. These figures illustrate the
advantages of the data-driven GMM based fitting and BIC
based model selection used in our SFS fitting.

For instance, in most of the highest M* bin (right panels in
both figures) the k=1 GMM fits do not reflect the clearly
bimodal SSFR distributions. In these cases, the BICk=1 is
significantly larger than BICk=2 and BICk=3, so our BIC based
model selection favors GMMs with more than one component.
In fact, GMMs with more components are more flexible and
generally can better fit the underlying distribution. However as
the EAGLE and MUFASA *< <M9.8 log 10 bins of the
figures illustrate, our BIC based model selection does not always
favor the higher k GMM fits. Although the k=3 GMMs have
the lowest χ2 in these panels, because of the penalty term for
the number of model parameters, our BIC criteria favors the
k=2 GMMs. According to the BICs, the k=3 GMMs in
these panels overfit the SSFR distributions. The figures also
illustrate that among the GMM fits with comparably low BICs,

the dominant component that describe the star-forming portion of
( )P log SSFR is not significantly impacted. Since this component

is mainly identified as the SFS, our BIC based model selection
does not strongly impact the position and width of the SFS.
From the best-fit GMMs, we identify the SFS components

iteratively starting from the lowest M* bin as described in
Section 3.1. We consider other components, depending on their
mean, as low, intermediate, or high SF components in
Section 4.2. The SC-SAM in particular has high SF components
at *  M M1010 (bottom left and center panels of Figures 11
and 12). In these cases, the SSFR distribution is not well
described by a single log-normal distribution. Instead the
distribution is significantly asymmetric with a heavier tail on
the more star-forming end of the distribution. An extra
component to account for the non-Gaussianity improves the fit
more than the penalty term, giving us the high SF components.
Our method for identifying the SFS and other components using
GMMs assumes that the components are Gaussian. However,
from the data alone, it is impossible to determine the shape of the
“true” galaxy subpopulation distributions. While mixture models
with non-Gaussian components can be used instead, without

Figure 12. Same as Figure 11 but for the 100 Myr SSFR distributions.
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knowing the “true” subpopulations, they will still require
assumptions on the shape of the components. Therefore, in
Section 4.2 when we discuss components besides the SFS (low,
intermediate, and high), we distinguish between the components
and the galaxy subpopulations commonly referred to in the
literature (quiescent, transitioning, and starburst).

Appendix C
Resolution Effects in Hydrodynamic Simulations

In our analysis, we consistently derive SFRs for all of the
simulated galaxies on two timescales: instantaneous and
averaged over 100Myr (Section 2). For the hydrodynamic
simulations, an SFR averaged over 100Myr is derived using

Figure 13. Impact of SFR resolution on the SSFR distribution, ( )P log SSFR , in two stellar mass bins of the hydrodynamic simulations: Illustris (left), EAGLE
(center), and MUFASA (right). We plot the P(SSFR) distributions using the 100 Myr SFRs with resolution effects in black. These exclude galaxies with unmeasurably
low SFRs. In orange, we plot the ( )P log SSFR distributions where the SFRs of the galaxies are sampled uniformly within the SFR resolution range ([SFRi,
SFRi+ΔSFR]). The uncertainties for the orange P(SSFR)s are estimated from resampling the SFR of each galaxy based on the SFR resolution. At low stellar masses
(top) the SFR resolution significantly impacts the star-forming end of P(SSFR)s. At higher stellar masses, although the SFR resolution impacts the P(SSFR)s, the
effect is limited to below < -log SSFR 11.

Figure 14. Resolution effect of 100 Myr SFRs in the hydrodynamic simulations (Illustris, EAGLE, and MUFASA) impact the identified SFSs at low stellar masses. In
black we plot the best-fit SFS with the resolution effects. In orange we plot the best-fit SFS where the SFR for each galaxy is sampled uniformly within the resolution
range: ¢ Î + D[ ]SFR SFR , SFRi i i SFR ). Based on the discrepancy between the fits, we determine stellar mass limits above which the SFR resolution does not
significantly impact (<0.2 dex) the identified SFS. For Illustris, EAGLE, and MUFASA this corresponds to =Mlog 8.4, 8.4lim , and 9.2, as shown in the gray shaded
region.
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the formation times of the star particles in the simulation, which
means that the mass and temporal resolutions of the simulations
impact the 100Myr SFR. In Illustris, EAGLE, and MUFASA,
their 100Myr SFRs have resolutions of ΔSFR=0.0126, 0.018,
and -

M0.182 yr 1, corresponding to baryon particle masses of
´ M1.26 106 , ´ M1.8 106 , and ´ M1.82 107 , respec-

tively. For SFR averaged over 10Myr, the ΔSFRs would be 10
times larger. Therefore, we instead use instantaneous SFRs to
measure star formation on the shortest timescale.

For galaxies with high 100Myr SFR, the resolution ΔSFR is
relatively small compared to their SFRs and therefore it does
not have a significant impact. However, for low SFR galaxies,
the resolution effect is more significant. At the lowest SFR end,
galaxies that, without the resolution effect would have SFRs in
the range of 0<SFR<ΔSFR, may have unmeasurably low
SFR (SFR=0) with the resolution effect. These galaxies are
thereby not included in the SFR–M* plane or when we identify
the SFS. In Figure 13, we present the impact of excluding these
galaxies and the overall resolution effect on the ( )P log SSFR
distributions of the hydrodynamic simulations in two stellar
mass bins. In black, we plot the ( )P log SSFR distributions
using the 100Myr SFRs with resolution effects (excluding
galaxies with unmeasurably low SFR). In orange, we plot the

( )P log SSFR distributions of all galaxies where ¢SFRi of each
galaxy sampled uniformly within the SFR resolution range
[SFRi, SFRi+ΔSFR]. Uncertainties for the orange P
(log SSFR)s are derived from repeating this SFR sampling
100 times. For the low M* bins (top), the SFR resolution
affects the ( )P log SSFR s well above = -log SSFR 11.0 on
the star-forming end of the distribution. Meanwhile, the impact
at higher *M (bottom), is limited to the low SSFR end.

In order to better quantify the impact of the SFR resolution
effect on our SFS fitting, in Figure 14 we compare the SFS fits
using 100Myr SFRs with resolution effects (black) to the SFS
fits using 100Myr SFRs sampled uniformly within the SFR
resolution range (orange; ¢ Î + D[ ]SFR SFR , SFRi i i SFR ). The
uncertainties of our SFS fits in black are calculated using
bootstrap resampling (Section 3). In agreement with Figure 13,
we find that the SFR resolution significantly impacts the
identified SFS at low M*. Moreover, using the comparison of

Figure 14, we determine the stellar mass limit above which the
SFR resolution does not significantly impact the identified
SFS—i.e., the shift in best-fit SFS is below 0.2 dex. For Illustris,
EAGLE, and MUFASA we determine =Mlog 8.4, 8.4lim ,
and 9.2, respectively. For EAGLE, where we have a higher
resolution box (8× higher baryon mass resolution) available,
we further confirm that the SFS is not significantly impacted
above Mlog lim.
In addition to its effect on the SFS fits, we also examine the

impact of SFR resolution on our results regarding the non-SFS
components of our GMM fitting (Figure 9). In Figure 15 we
present the fraction contributions (πi) of the best-fit compo-
nents for the Illustris, EAGLE, and MUFASA simulations,
where we uniformly sample the SFRs within the SFR
resolution range (same as above). Besides no longer having a
component of galaxies with unmeasurably low SFRs due to the
SFR sampling, we find no significant change from the πi of
Figure 9 and, thus, the results of Section 4.2.
In addition to its impact on the SFRs, the mass resolution of

the hydrodynamic simulations also impacts the stellar masses
of the simulations. We note that the SMFs differ with
resolution as shown in Schaye et al. (2015), Genel et al.
(2014), and Davé et al. (2016). To determine whether mass
resolution has a significant impact on the identified SFS, we
compare the SFS identified from our EAGLE simulation
(Section 2) to SFS identified from the higher mass resolution
L0025N0752 EAGLE simulation(Schaye et al. 2015). The
L0025N0752 simulation has a baryonic mass resolution of

´ M2.26 105 (8× higher than our EAGLE simulation). From
the comparison, we find that the SFS is underestimated near the
mass resolution in our lower resolution EAGLE simulation.
However, this impacts the SFS by less than 0.2 dex. Although
higher resolution simulations for Illustris are not available, we
also compare the SFS identified from our Illustris simulations
with SFSs identified from lower resolution Illustris simulations
(8× and 64× lower resolutions) and find qualitatively
consistent results. Therefore, we find that the effect of mass
resolution on the stellar masses in hydrodynamic simulations
does not significantly impact the SFS identified in the

Figure 15. Fractional contributions, πi, of the best-fit GMM components from our method for the hydrodynamic simulations (Illustris, EAGLE, and MUFASA) where
we uniformly sample the 100 Myr SFRs within the SFR resolution range— ¢ Î + D[ ]SFR SFR , SFRi i i SFR . Compared to Figure 9, we find SFR resolution has no
significant impact on the qualitative results in Section 4.2.
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simulations, especially above the stellar mass limits of our
analysis.
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