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New formulas for the (—2) moment of the photoabsorption cross section, o_,
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Two new formulas for the (—2) moment of the photoabsorption cross section, o_,, have been determined,
respectively, from the 1988 photoneutron evaluation of Dietrich and Berman and a mass-dependent symmetry
energy coefficient, agm(A). The data for A 2 50 follow, with a RMS deviation of 6%, the power law o_, =
2.4A%3 ub/MeV, which is in agreement with Migdal’s calculation of o_, = 2.25A43 ub/MeV based on the
hydrodynamic model and the o_, sum rule. The additional inclusion of as,(A) provides a deeper insight into

the nuclear polarization of A = 10 nuclei.
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The ratio of the induced dipole moment to an applied
constant electric field yields the static nuclear polarizability,
o. On using the hydrodynamic model and assuming inter-
penetrating proton and neutron fluids with a well-defined
nuclear surface of radius R = ryA'/3 fm, Migdal [1,2] obtains

e*R%A
o =
40asym

=225 x 10734 fm?, 1))

where agm =23 MeV is the symmetry energy coefficient
in the Bethe-Weizsacker semiempirical mass formula [3,4]
and ro = 1.2 fm. This semiclassical treatment considers the
nuclear symmetry energy, agym(N — Z)*/A, to be spread
uniformly throughout the nucleus as a symmetry energy
density Asym(on — pp)z/p-

Alternatively, o can be calculated from the (—2) moment
of the total electric-dipole photoabsorption cross section, o_,,

o Otolal(Ey)
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using second-order perturbation theory [5,6]. It follows from
the sum rule'
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where E, is the y-ray energy corresponding to a tran-
sition connecting the ground state |i) and an excited
state |[n), M the nucleon mass, and oyw(E,) the total
photoabsorption cross section. The oy(E,) cross section
generally includes the (y,n)+ (y,p)+ (y,np) + (v,2n) +
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The dimensionless oscillator strength f;, for E1 transitions, fi, =
%4 E,(i||[E1|ln)(n|| E1]i), and its relation with the total photoabsorp-
tion cross section, fom Oww(E,)dE, = % Zn fin, are introduced
in Egs. (3) and (4), respectively [6-8].
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(y,3n) + (v, F) channels, which are in competition in the giant
dipole resonance (GDR) region [9,10].
On comparing Egs. (1) and (5), Migdal extracted o_; as [1]

o_p =2.25A%3 ub/MeV. (6)

This power-law relationship was empirically confirmed by
Levinger in 1957 from a fit to the available o_, data [2],

o_y = 3.5k A% ub/MeV. (7

Levinger’s fit is shown in Fig. 1 and included eleven o_;
data points (squares) with approximate estimations for the
high-energy, neutron multiplicity and o (y,p) contributions.
The polarizability parameter « is the ratio of the observed
GDR effect to that predicted by the hydrodynamic model [2],
as determined by comparing the measured o_, values and
Eq. (7). This comparison yields « = 1 for the ground state of
nuclei with A 2 20 [2]. Lighter nuclei require larger values of
k to reproduce the data. Using Eqgs. (5) and (7), the nuclear
polarizability is given by

o = 3.5k x 10734 fm?, (8)

which depends on the nuclear size and «.

In 1988, Dietrich and Berman re-evaluated the pho-
toneutron cross-section data [11]. This evaluation included
(y,n) + (y,pn) + (v,2n) + (y,3n) + (y, F) data from studies
at Livermore, Giessen, Saclay, and other laboratories which
used monochromatic photon beams generated by in-flight
annihilation of positrons.?

Figure 1 shows the o_, data (in ub/MeV) from the Dietrich
and Berman evaluation (circles) [11], by integrating Eq. (2)
between the (y,n) threshold and an upper limit of E, =~
20-50 MeV. These integration limits include the GDR but do
not take into consideration o (y, p) contributions and the rise of
o(E,) at around 140 MeVdue to pion exchange currents [12].

“Most of the photonuclear data produced during 1960-1988 was
taken with monochromatic photon beams [10,11]. One main advan-
tage of this technique over bremsstrahlung photon beams, broadly
used prior to 1960, is the direct and simultaneous measurements of
the partial photoneutron cross sections which are in competition in
the GDR region. These simultaneous measurements are essential to
obtain a reliable oo, (E, ) [10].
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FIG. 1. (Color online) The (—2) moment of the total photoab-
sorption cross section o_, vs A on a log-log scale. The experimental
values from the 1988 compilation [11] are given by circles. These
data follow a power-law relationship o_, = 2.4A4%3 ub/MeV. The
dashed line represents Levinger’s fit to the available data (squares) in
1957, 0_, = 3.5A%3 ub/MeV [2]. In both cases, k = 1 is assumed.

Because of the 1/ E 5 factor, o_; is less sensitive to these high-
energy contributions, which account for less than 10% of the
total o_, value [2,12—14]. This plot uses the mean value when
several measurements were available for the same isotope and
excluded data from natural samples unless one single isotope
dominated the isotopic abundance.

These data follow a power law,

_» = 2.4k A>3 ub/MeV, 9)

with a RMS deviation of 30% for x = 1. For A > 50, on
excluding the ®Ni data point which has a large o(y,p)
contribution [15,16], the agreement is even better, as shown
in Fig. 1, with a RMS deviation of 6%. This formula agrees
with the one published by Berman and Fultz in their 1975
review paper for A > 60: 0_, = 2.39(20)A3ub/MeV [15].
For A < 50, Fig. 1 presents large deviations from « =1
for A =4n, T; =0 nuclei (¢ < 1) and loosely-bound light
nuclei with A < 20 (k > 1). To emphasize this point, Fig. 2
shows a similar plot of the polarizability parameter « vs A by
comparing Eq. (9) and the empirical o_, values [11].

The missing o(y,p) contribution in the Dietrich and
Berman evaluation is the reason for the k < 1 values observed?
for many A < 50 nuclei and 33Ni. For heavier nuclei, neutron
emission is the favorable decay mode due to the strong
suppression of proton emission by the Coulomb barrier.
Proton emission is, however, the predominant decay mode

3The total photoneutron cross section, o (y,n), for ¥Ni is relatively

small because of the "E; ”; ratio is also controlled by the relative level
densities i m the residual nuclei, i.e., the ratio of the number of open

channels, ” . For %Ni, N” ~ o » ~ 2 [16].
a(y.n)
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FIG. 2. (Color online) The polarizability parameter « given by
Jﬁ using the o_, data in the Dietrich and Berman compilation
(circles) [11]. The horizontal solid line corresponds to x = 1. Large
deviations from the hydrodynamic model prediction (x = 1) are

observed for A < 50.

for A = 4n self-conjugate nuclei with A < 50 [17,18]. For
example, o (y,p) =7 x o(y,n) in Ca [19]. This is because
of the isospin selection rule AT = =£1 for E'1 excitations in a

= 0 self-conjugate nucleus.* For a nucleus with a ground
state of isospin 7, there is an isospin splitting of the GDR [21]
which corresponds to excited proton (7" + 1) and neutron (7")
resonances, with the T 4 1 resonance generally lying at a
higher excitation energy. The isospin selection rule’ favors the
excitation of T + 1 states [20], which predominantly decay by
proton emission® [25]. Although the o (y, p) data are scarce,
the o_, sum rule [26] seems to be exhausted once the o (y, p)
contributions are included [17,18,27].

The larger GDR effect (k > 1) observed in Fig. 2 for
light nuclei with A < 20 may be explained from the mass
dependence of the symmetry energy coefficient, agm(A), of
relevance to test 3N forces [28] and describe neutron stars
and supernova cores [29,30]. As mentioned above, Migdal
utilized a constant value of asy, = 23 MeV to determine o_,
in Eq. (6). Nevertheless, the mass dependence of agym(A)
has long been established in the liquid droplet model [31]
and recognized as the fundamental parameter describing the
GDR [15]. Its form has since been refined, despite its current

4 AT = %1 isovector transitions are isospin forbidden as the Wigner

T; 577: ) vanishes for T, = 0 [20].

SWith only small admixtures [22,23], isospin is a good approxima-
tion in photonuclear reactions for light nuclei involving photons in
the range of the electric dipole absorption [24].

®Most neutron emission from excited states with isospin T + 1 is
forbidden, whereas neutron emission from excited states with isospin
T is allowed [25]. These selection rules follow from the respective
Clebsch-Gordan coefficients in the transition probabilities.

coefficient (
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FIG. 3. (Color online) Symmetry energy coefficient, asm(A), of
finite nuclei as a function of mass number A using Eq. (10) [32].

model dependency [32], with the advent of high-precision
mass measurements.

From a global fit to the binding energies of isobaric nuclei
with A > 10 [32], extracted from the 2012 atomic mass
evaluation [33], Tian and co-workers determined agym(A) as

Sy
_ SUA1/3)’ (10)

with S, &~ 28.32 MeV being the bulk symmetry energy
coefficient and g—u A 1.27 the surface-to-volume ratio.” Within
this approach, the extraction of asy,(A) only depends on the
Coulomb energy term in the Bethe-Weizsacker semiempirical
mass formula and shell effects [35], which are both included
in Eq. (10) [32]. Figure 3 illustrates the mass dependency of
asym(A) and clearly prevents the use of a constant agyy, value.
After introducing this mass dependence in Eqs. (1) and (5),

a and o_, are given by

1.8 x 107342,

asym(A) =S, (1

C= Ao ™ (4o
L84* b/MeV (12)
O )= —7—FT = cVv.
2= an gt

Equation (12) is plotted in Fig. 4 for A > 10 nuclides (solid
line). Encouragingly, the increasing upbend observed as
A decreases provides an explanation for the large GDR
effects observed in light nuclei. However, the validity of the
hydrodynamic model remains to be tested for the lightest
A < 10 nuclei.

More generally, Eq. (12) provides a means to evaluate
nuclear polarizability without invoking a polarizability pa-
rameter. As shown in Fig. 4, most of the data points either
fall below the predicted curve (A < 70) or merge with it
where neutron emission is favorable (A > 70). These facts
indicate that Eq. (12) could exhaust the o_; sum rule for

7Similar coefficients are determined in Ref. [34].
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FIG. 4. (Color online) The (—2) moment of the total photoab-
sorption cross section o_, vs A on a log-log scale using Eq. (12)
(solid line). For comparison purposes, Eq. (9) (dashed line) and the
data from the 1988 compilation [11] are also plotted.

both photoneutron and photoproton cross sections and, hence,
incorporate the actual GDR effect to the nuclear polarizability.
Consequently, the mass-dependent o_; curve may provide an
estimate for the missing o(y, p) contribution. For example,
the predicted value of o_, for *“°Ca is in agreement with
the experimentally determined o(y,p)/o(y,n) ratio [19].
Additional experimental and theoretical work are needed to
test the generality of these findings and evaluate deviations
from the hydrodynamic model.

In conclusion, a new empirical formula [Eq. (9)] for the
(—2) moment of the photoabsorption cross section, o_,(A), has
been determined from the latest photoneutron cross-section
evaluation with monoenergetic photons. The o_, data include
most of the photoneutron channels but excludes relevant
o (y, p) contributions for A < 50 nuclides. This new empirical
formula presents a RMS deviation of 6% for A 2 50 and is in
better agreement with Migdal’s calculation of o_, [Eq. (6)]
on combining the hydrodynamic model and second-order
perturbation theory.

Additionally, o_; has been inferred [Eq. (12)] using a mass-
dependent symmetry energy coefficient, agym(A), determined
by Tian and collaborators for A > 10 nuclei, which includes
Coulomb energy and shell corrections. The resulting curve
seems to account for the actual GDR effects as it exhausts
the o0_, sum rule for most A > 10 nuclei in the Dietrich and
Berman compilation. Moreover, it provides an explanation for
the larger polarization effects found in light nuclei with 10 <
A < 20. Additional work is needed to test this new equation
and evaluate deviations from the hydrodynamic model. It is
encouraging, though, that the curve nicely merges with the o_,
data for A 2 70, in agreement with the dominant photoneutron
cross sections for heavy nuclei.

Data evaluations of currently available photoproton and
photoneutron cross sections remain to be done. The o (y,p)
data are scarce compared to the o(y,n) data and extensive
work is desirable throughout the nuclear chart. These new
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data are crucial to test the o_, sum rule and provide a means
to remove the model dependency of asym(A), which, in turn,
may lead to a better understanding of 3N forces, neutron stars
and supernova cores.

Furthermore, this work has direct implications in (1)
broadly used Coulomb-excitation codes such as GOSIA [36],
where the polarization potential has to be modified with either
Eq. (9), which requires a determination of ¥ for A < 50 nuclei,
or Eq. (12), once its generality has been fully tested; and (2)

PHYSICAL REVIEW C 91, 064602 (2015)

shell model calculations of « [37-39]. To date, both approaches
have broadly regarded Levinger’s empirical formula [Eq. (7)].
For clarity purposes, these implications will be presented in a
separate manuscript.
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