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Background: Acute myeloid leukemia (AML) is a heterogeneous type of blood
cancer that generally affects the elderly. AML patients are categorized with
favorable-, intermediate-, and adverse-risks based on an individual’s genomic
features and chromosomal abnormalities. Despite the risk stratification, the
progression and outcome of the disease remain highly variable. To facilitate
and improve the risk stratification of AML patients, the study focused on gene
expression profiling of AML patients within various risk categories. Therefore, the
study aims to establish gene signatures that can predict the prognosis of AML
patients and find correlations in gene expression profile patterns that are
associated with risk groups.

Methods: Microarray data were obtained from Gene Expression Omnibus
(GSE6891). The patients were stratified into four subgroups based on risk and
overall survival. Limma was applied to screen for differentially expressed genes
(DEGs) between short survival (SS) and long survival (LS). DEGs strongly related to
general survival were discovered using Cox regression and LASSO analysis. To
assess the model’s accuracy, Kaplan-Meier (K-M) and receiver operating
characteristic (ROC) were used. A one-way ANOVA was performed to assess
for differences in the mean gene expression profiles of the identified prognostic
genes between the risk subcategories and survival. GO and KEGG enrichment
analyses were performed on DEGs.

Results: A total of 87 DEGs were identified between SS and LS groups. The Cox
regression model selected nine genes CD109, CPNE3, DDIT4, INPP4B, LSP1,
CPNE8, PLXNC1, SLC40A1, and SPINK2 that are associated with AML survival.
K-M illustrated that the high expression of the nine-prognostic genes is associated
with poor prognosis in AML. ROC further provided high diagnostic efficacy of the
prognostic genes. ANOVA also validated the difference in gene expression profiles
of the nine genes between the survival groups, and highlighted four prognostic
genes to provide novel insight into risk subcategories poor and intermediate-poor,
as well as good and intermediate-good that displayed similar expression patterns.

Conclusion: Prognostic genes can provide more accurate risk stratification in
AML. CD109, CPNE3, DDIT4, and INPP4B provided novel targets for better
intermediate-risk stratification. This could enhance treatment strategies for this
group, which constitutes the majority of adult AML patients.
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1 Introduction

Acute myeloid leukemia (AML) is a hematologic cancer
characterized by clonal proliferation and the accumulation of
immature myeloid progenitors (Arber et al., 2016). AML is the
most prevalent leukemia subtype in adults. The disease is highly
heterogeneous with a variable prognosis and a high mortality rate
(Gregory, 2009; Vakiti and Mewawalla, 2022). Recent intensive
research in genomics, novel treatments, and prognostic markers
have substantially improved our understanding of many of the
biological aspects of this complex disease (Green and Heiko,
2020). However, the global outcome of AML patients remains
poor (Wheatley et al., 2009).

The revised European LeukemiaNet (ELN) risk classification
system, categorizes newly diagnosed AML patients into favorable-,
intermediate-, and adverse-risk groups based on cytogenetic and
molecular profiles, which serves as a guideline to establish treatment

strategies (Döhner et al., 2022). However, it has been noted that this
classification system does not completely reflect the heterogeneity
within each subgroup. In particular, the intermediate-risk group
exhibits significantly diverse biology and prognosis (Hu et al., 2021).

A poorly defined intermediate-risk group results in the majority
of AML patients being stratified to an intermediate-risk category (an
umbrella category) because they do not meet the criteria that identify
specific entities of established prognostic relevance (Awada et al.,
2022). Intermediate-risk AML patients feature heterogeneous
clinical outcomes, and it further remains a challenge to assign a
suitable consolidation of therapy (Döhner et al., 2015; Hu et al.,
2021). This emphasizes the need for a more comprehensive
description and understanding of the genetic basis of the
intermediate-risk group to improve AML patients’ prognosis and
provide more effective treatment strategies.

The original aim of the ELN genetic categories was to
standardize reporting of genetic abnormalities, particularly for

FIGURE 1
Study workflow. Steps used to identify genetic signature in AML patients with intermediate-risk. The steps comprise data extraction, sample
grouping, differential gene expression, survival and functional enrichment analyses. DEGs refer to differentially expressed genes.
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correlations with clinical characteristics and outcomes. However,
significant modifications to the risk classification for AML from
2017 (Döhner et al., 2017) to 2022 revision (Döhner et al., 2022),
which excluded the FLT3-ITD mutation, shows that the diagnosis
and management of the intermediate-risk group, in particular,
remain inexact. Generally, the AML classification and prognostic
criteria are based on cytogenetic and molecular features at the time
of diagnosis, and thus studies tend to exclude prognostic
stratification and base the distinction between the intermediate-I
and intermediate-II categories solely on genetic characteristics
(Döhner et al., 2010). Meanwhile, a subsequent study
demonstrated longer OS in the intermediate-I group than in the
intermediate-II group, however, the two groups were prognostically
indistinguishable in older patients, who constitute most AML cases
(Mrózek et al., 2012).

The purpose of this study is to facilitate improved intermediate-
risk stratification of AML and also focus on prognostication. The
gene expression profiles of AML patients were investigated to
identify gene signatures that differentiate between short- and
long-term survival for patients categorized as good- or poor-risk
as well as the intermediate-risk group. Therefore, the benefit of this
study was twofold i) the study enabled the segregation of
intermediate-risk patients into good and poor-prognosis based on
distinct gene expression profiles, ii) significant prognostic gene
signature was identified to differentiate AML patients with good
and poor-prognosis. The identified gene signatures associated with
survival in AML patients have the potential to serve as prognostic
biomarkers that can aid in the prognosis and monitoring of AML.
All contribute to a better understanding of the genetic basis of the
disease.

2 Materials and methods

2.1 Microarray data

The microarray expression profiles of 537 samples and
accompanied clinical data were extracted from the Gene
Expression Omnibus (GEO) database under the accession
number GSE6891 (Verhaak et al., 2009) by the getGEO function
in the GEOquery R package (version 2.64.2) (Davis and Meltzer,
2007). The patients’ survival data were provisioned by the authors
(Verhaak et al., 2009) and samples without clinical data and survival
information were excluded from subsequent analyses and

447 samples remained. A complete illustration of the workflow
employed in this study is shown in Figure 1.

2.2 Samples selection based on risk profile

The patient samples were divided based on OS into short
survival (SS) and long survival (LS) (Table 1). The SS includes
patients with a survival of less than 365 days, while LS contains
patients with a survival of greater than 3,650 days. The two groups
were composed by further evaluating the cytogenetic risk classes of
the samples, in the clinical file, that were categorized into poor-,
intermediate-, and good-risk samples. The SS was further stratified
into two risk subcategories: poor (PP) and intermediate-poor (IP)
risk, while LS was divided into two risk subcategories: good (GG)
and intermediate-good (IG) risk. This additional filtering based on
OS and cytogenic risk yielded 224 samples for downstream analysis.

2.3 Data preprocessing

Raw expression data from the 224 selected samples were
subjected to background correction, quantile normalization, and
log2 transformation through the RMA algorithm from the affy R
package (version 1.74.0). A filtering operation was applied to reduce
the probes that exhibited low variation and a consistently low signal
across samples. The median expression of the dataset was calculated
and returned a median value of 7.2, thus a probe was kept if the
probe expression is above the median in more than 10 samples. The
probe identification numbers were then transformed into official
gene symbols and duplicate probes were deleted.

2.4 Differential gene expression
analysis (DGE)

The normalized gene expression of 224 samples and
31,140 genes were analyzed to identify differentially expressed
genes (DEGs) between the two survival groups (SS and LS). The
limma R package (Ritchie et al., 2015) performs differential gene

TABLE 1 The number of samples stratified by survival time and risk
subcategory. Good-Good (GG), Intermediate-Good (IG), Intermediate-Poor (IP),
and Poor-Poor (PP) risk of AML sample. Long Survival (LS) and short survival
(SS) terms.

Survival time Risk subcategory Sample

LS GG 38

IG 42

SS PP 47

IP 97

Total 224

TABLE 2 Nine prognostic genes with positive coefficient value.

Gene name Coefficient value

CD109 0.0875676482

CPNE3 0.0755063783

CPNE8 0.0585824601

INPP4B 0.0554178086

SPINK2 0.0544528326

PLXNC1 0.0483530691

LSP1 0.0344057691

DDIT4 0.0216117829

SLC40A1 0.0009147425
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expression (DGE) analysis and experimental design through linear
modeling. The limma package was applied to screen for DEGs that
differentiate SS from LS. The DEGs were identified with the
parameters of the filter set to | log2 fold change | > 1 and
adjusted p-value <0.01.

2.5 Identification of gene signatures
correlated with prognosis

The identified DEGs were subjected to a Cox regression model
based on the Lasso algorithm of the glmnet R package (version 4.1-
3), to determine which genes were best correlated with patient
survival (Friedman et al., 2010; Simon et al., 2011; Tibshirani
et al., 2012). The model reduces the number of candidate genes
and selected the most significant genes for a patient’s survival,

FIGURE 2
Kaplan-Meier (K-M) survival curves. Analysis revealed the survival prediction associated with high and low gene expression profiles of the prognostic
genes in AML patients.

TABLE 3 The estimated hazard ratio of each prognostic gene included in the
Cox regression for GSE6891 dataset.

Prognostic genes Hazard ratio p-Value

CD109 0.5322 <0.0001

CPNE3 0.6183 <0.0001

CPNE8 0.7158 0.0051

DDIT4 0.616 <0.0001

INPP4B 0.6572 <0.0001

LSP1 0.5227 <0.0001

PLXNC1 0.7184 0.0062

SLC40A1 0.7875 0.0462

SPINK2 0.6578 0.0005
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assigning a regression coefficient value to each gene. Genes with a
zero coefficient did not affect survival and were discarded. The
product of the coefficient value and the corresponding gene’s
expression value resulted in a prognostic risk score for each

patient in the complete dataset (GSE6891) that provided a
survival time. The patient scores were used to calculate a median
risk score. A status value of 1 or 0 was assigned to each patient based
on whether the patient’s score was greater than or less than the
median risk score.

Using Kaplan-Meier (K-M) survival analysis, the prognostic
difference between the short- and long-term survival groups was
calculated. The K-M curves were created using the ggsurvplot
function from the survminer R package (version 3.4-0).
Additionally, the predicting power (sensitivity and specificity)
of the prognostic gene signatures was calculated using the
receiver operating characteristic (ROC) curve analysis
(Florkowski, 2008). The ROC curves with the observing AUC
values were created in Python by applying the metrics.roc_curve
function from sklearn using logistic regression algorithms. The
results of the Cox regression model were subjected to a validation
step using an independent dataset (GSE37642). This test dataset
comprises 11 favorable, 78 intermediate, and 35 adverse
cytogenetic risk samples. The survival data were inquired and
provided by the authors (Herold et al., 2018). K-M curves and
Hazard Ratio (HR) of the prognostic genes were generated for the
test dataset.

FIGURE 3
Kaplan-Meier (K-M) survival curves. Analysis on the prognostic genes in the validation dataset (GSE37642).

TABLE 4 The estimated hazard ratio of each prognostic gene included in the
Cox regression for the independent test dataset (GSE37642).

Gene HR p-Value

CD109 0.13 <0.0001

CPNE3 0.12 <0.0001

CPNE8 0.13 <0.0001

DDIT4 0.13 <0.0001

INPP4B 0.04 <0.0001

LSP1 0.10 <0.0001

PLXNC1 0.14 <0.0001

SLC40A1 0.17 <0.0001

SPINK2 0.15 <0.0001
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2.6 One-way ANOVA

The statistical analysis was performed using the stats R package
(version 4.2.1). The statistics were conducted to evaluate for
differences in the mean expression profiles of the prognostic
genes identified by Cox regression analysis between the survival
groups (SS and LS) and risk subcategories. One-way analysis of
variance (ANOVA) was applied, followed by Tukey’s post hoc test
for pairwise comparisons (Tukey, 1949). The null hypothesis (H0) of
equal mean between the risk subcategories and survival groups was
accepted if the p-value >0.05; H0: there is no significant difference
among the group means.

2.7 Functional enrichment analyses

List of DEGs were subjected to functional annotations of Gene
ontology (GO) (Ashburner et al., 2000) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses, the
EnrichGO and EnrichKEGG functions were used, respectively, in the
clusterProfiler R package (version 4.4.4) (Yu et al., 2012).
p-value <0.05 was determined as a cut-off criterion for significant
enrichment.

3 Results

3.1 Data extraction and DGE analysis

The selected data set was composed of 144 SS and 80 LS based on
the criteria of survival time split set out in Section 3.2 (Table 1) as
input for DGE analysis. In the DGE, a total of 31,140 genes were
screened for DEGs to differentiate between SS and LS. A total of
87 DEGs were identified, where 69 genes were upregulated and
18 genes were downregulated (Supplementary Table S1).

3.2 Identification of prognostic genes

By performing univariate Cox regression analysis between the
87 candidate DEGs and patient survival data of (GSE6891), nine
prognostic genes were detected and associated with AML patient
survival. The prognostic genes were identified using the LASSO
algorithm, which assigns non-zero, positive, or negative coefficients.
All nine genes had a positive coefficient (Table 2).

Kaplan-Meier’s estimates for OS based on patient statuses of
each gene with a positive coefficient were derived and presented in
Figure 2. All prognostic genes show that a high gene expression level

FIGURE 4
Receiver operating characteristic (ROC) curves. Evaluating the accuracy of high and low gene expression profiles of the nine-genes model in AML
patients. *AUC = area under curve.
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has a poor survival outcome compared to patients with a low gene
expression level (Figure 2). The estimates, HR and p-value, of the
Cox regression model for the prognostic genes were all significant,
which confirms the involvement of the alteration in the expression
of these genes in the survival of AML patients (Table 3).
Additionally, same significant results for K-M and HR were
obtained for the validation dataset (GSE37642) (Figure 3; Table 4).

3.3 Efficiency evaluation of prognostic gene
signatures

The prognostic difference between the high and low gene
expression profiles of identified prognostic genes in AML patients
was also evaluated using ROC curves. ROC analysis evaluated the
accuracy of the aforementioned nine-genes model for survival
prediction in AML patients. The ROC curve showed the best
performance for the area under the curve (AUC) for CD109 of
0.84. This followed by AUC >0.81 for CPNE3, CPNE8, PLXNC1, and

SPINK2 (Figure 4). Genes LSP1, DDIT4, and INPP4B were 0.74 ≤
AUC ≤0.79, with the lowest AUC of SLC40A1 was 0.69 (Figure 4).

3.4 Gene expression patterns between risk
categories

One-way ANOVA was used to evaluate for differences in the
mean gene expression profiles of each prognostic gene identified
between the survival groups and risk subcategories. This includes the
difference between the short- (PP and IP) and long-term survival
(GG and IG) (Figure 5). ANOVA results confirmed that short- and
long-term survival for all prognostic genes are statistically different
in gene expression profiles (p-value ≤1.3 × 10−8 ) (Figure 5).

The samples that were categorized into PP, IP, IG, and GG-risk
groups respectively, were investigated for each of the nine-genes
models that were identified with prognostic significance. Each risk
group was composed of a set of samples in which the gene
expression profile of a specific prognostic gene was extracted to

FIGURE 5
Boxplots based on the survival times of the prognostic genes in AML patients. A boxplot was constructed with the gene expression profile of each
prognostic gene in all the samples that were categorized as short- and long-term survival.
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construct a boxplot (Figure 6). The differences in the mean gene
expression profiles of each prognostic gene identified between PP
and IP-risk groups, as well as the GG and IG-risk groups. Also, the
difference between the two intermediate-risk groups was evaluated
with the IP and IG-risk groups (Figure 6).

All prognostic genes showed a statistically significant difference
between the two intermediate-risk groups, i.e., IG and IP-risk
(p-value ≤5.5 × 10−5). Also, the ANOVA results between the risk
subcategories showed that the mean gene expression profiles of
genes CD109, CPNE3, DDIT4, and INPP4B showed no statistically
significant difference between the PP and IP-risk groups
(p-value ≥0.16). The same was found for the IG and GG-risk
groups (p-value ≥0.54) (Figure 6).

3.5 Enrichment analysis

The GO enrichment analysis showed that AML DEGs were
significantly enriched in functional items, such as DNA-binding
transcription activator activity, RNA and polymerase II-specific and
DNA-binding transcription activator activity, and so on of the

biological process (BP). In terms of molecular function (MF),
AML DEGs were significantly enriched in functional items such
as negative regulation of cytokine production, myeloid cell
differentiation, and pattern specification process, among other
terms (Figure 7). In terms of the cellular component (CC), AML
DEGs were significantly enriched in functional items such as
secretory granule lumen, cytoplasmic vesicle lumen, and vesicle
lumen (Figure 7). The KEGG analysis indicated significant
differences in the transcriptional misregulation in the cancer
pathway, PI3K-Akt signaling pathway, and Rap1 signaling
pathway (Figure 7).

4 Discussion

The risk stratification of AML patients into favorable-,
intermediate- and adverse-risk groups is crucial to determine an
effective therapy strategy and medical care. However, AML patients
continue to feature heterogeneous clinical outcomes, and it remains
a challenge to assign a suitable consolidation of therapy. Therefore, it
is vital to investigate new leukemogenesis-related characteristics.

FIGURE 6
Boxplots based on risk subcategories of the nine prognostic genes in AML patients. A boxplot was constructed with the gene expression profile of
each prognostic gene in all the samples that were categorized into theGood-Good (GG), Intermediate-Good (IG), Intermediate-Poor (IP), and Poor-Poor
(PP) risk categories.
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This study aimed to investigate gene expression profiles in AML
patients with long and short survival to decipher the heterogeneity in
outcomes of intermediate-risk patients and propose a genetic
signature that accurately predict survival of intermediate-risk
patients.

The study screened DEGs through the gene expression profiles
between short- and long-term survival of AML samples. GO terms
and KEGG pathways enrichment analyses was carried out on a total
of 87 DEGs to explore the function of the DEGs. GO enrichment
analysis illustrated that the DEGs of AML were significantly
enriched in functional items such as DNA-binding transcription
activator activity, myeloid cell differentiation, secretory granule
lumen, cytoplasmic vesicle lumen, and vesicle lumen which was
similarly found in studies that focused on predicting disease
prognosis for AML (Chen et al., 2021; Chen et al., 2021; Kuang
et al., 2021). Interestingly, the prognostic gene CD109 enriched for
all three types of GO terms (BP, MF, and CC). Additionally, the
CD109 gene was enriched in the functional item myeloid cell
differentiation, which suggests significant involvement in the
development of AML disease.

The KEGG pathway analysis revealed that AML DEGs were
enriched in the transcriptional misregulation in cancer,
Rap1 signaling pathway, and PI3K-Akt signaling pathway.
Consistent with previous studies, the aforementioned pathways
have been reported to have an impact on the pathogenesis and

prognosis of AML (Martelli et al., 2006; Bertacchini et al., 2015; Yin
et al., 2018; Chen et al., 2020). The prognostic DDIT4 gene enriched
in the PI3K-Akt signaling pathway may play a crucial role in the
activation of cancer. Therefore, the GO enrichment analysis and
KEGG pathway enrichment results showed that the identified DEGs
may be important pathogenic genes of AML, contributing to the
occurrence and progression of the disease.

This study identified a nine-genes model as potential
prognostic biomarkers and therapeutic targets for AML
(Table 2). Cox regression and Kaplan-Meier analyses validated
the prognostic biomarkers and illustrated that high gene
expression of all nine genes has a poor prognosis, whereas a
low gene expression is associated with a good prognosis in
AML. Therefore, both Kaplan-Meier and high AUC values
confirmed that the nine-genes model has good diagnostic
efficacy in predicting prognosis for AML. Previous studies
supported the findings and reported that the higher expression
of the genes is associated with poor prognosis in AML (Woolley,
et al., 2015; Fu et al., 2017; Zhao et al., 2018; Gasparetto et al., 2019;
Lebedev et al., 2019; Xue et al., 2019; Cheng et al., 2020; Ding et al.,
2021). A recent study (Deepak et al., 2022) revealed the potential of
CD109 as a biomarker with diagnostic capabilities in AML, and this
study further aligns with this finding, in which CD109 was also
found with the highest specificity and sensitivity with AUC
(Figure 4).

FIGURE 7
AML DEGs were enriched in Gene Ontology and KEGG pathways (A) Molecular function, (B) Biological process, (C) Cellular component, (D) Kyoto
Encyclopedia of Genes and Genomes. The horizontal axis represents the number of enriched genes, and the vertical axis represents the gene ontology
project and KEGG pathways, respectively.
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The difference in mean gene expression profiles of the
prognostic genes were evaluated with ANOVA to determine if
there is a difference in gene expression profiles between short-
and long-term survival samples. ANOVA confirmed a statistically
significant difference between the short- and long-term survival in
the nine-genes model and therefore confirms the prognostic
significance of the nine prognostic genes identified in this study.
The intermediate-risk category was further investigated to improve
the risk category in which the majority of AML patients are
classified. It is noteworthy that all nine prognostic biomarkers
displayed a statistically significant difference between the gene
expression profiles in the intermediate-good and intermediate-
poor risk categories (p-value ≤5.5 × 10−5). The nine prognostic
genes are therefore essential in intermediate-risk group classification
as AML patients categorized into this risk group could be provided
with an improved prognosis.

A crucial finding was made between the gene expression profiles of
good-risk compared to intermediate good-risk. It was found that the
prognostic biomarkers CD109, CPNE3, DDIT4, and INPP4B found in
this study displayed the same pattern of gene expression in bothGG and
IG-risk categories. Hence, GG and IG-risk categories gene expression
was not significantly different in the four genes (p-value ≥0.54)
(Figure 6). The same observation was made when comparing the
gene expression profiles of poor-risk and intermediate poor-risk.
The same four genes displayed the same pattern of gene expression
in both PP and IP-risk categories (p-value ≥0.16) (Figure 6). Therefore,
the four genes may enable a reclassification of the intermediate-risk
category in AML patients into either good- or poor-risk based on the
gene expression levels of the four genes. Hence, this finding is important
as it could predict the outcome of intermediate risk patients as it is
directly associated with survival. This discovery provides a more
comprehensive description and understanding of the genetic basis of
the intermediate-risk group and therefore has the potential to improve
AML patients’ prognosis and provide more effective treatment
strategies.

5 Conclusion

In this study, we found correlations between risk categories and
gene signatures that differentiate short- and long-term survival
using gene expression profile data from an AML GEO dataset.
The gene expression profiles of nine prognostic genes including
CD109, CPNE3,DDIT4, INPP4B, LSP1, CPNE8, PLXNC1, SLC40A1,
and SPINK2, showed that high gene expression is associated with
poor prognosis. Therefore, the nine genes have the prognostic ability
and successfully predict the prognosis of AML patients. Also, the
prognostic biomarkers were able to segregate intermediate-risk into
poor- and good-risk categories that improve the risk classification by
adding prognostic significance to the particular risk category. The
prognostic biomarkers CD109, CPNE3, DDIT4, and INPP4B
provided novel insights as the gene expression pattern were
similar between poor and intermediate-poor as well as good and
intermediate-good. Therefore, these biomarkers provide targets that
can enhance prognosis and provide a more effective treatment
strategy for AML patients categorized into the intermediate-risk
group. Hence, these biomarkers could serve as potential therapeutic
targets in adult AML.
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