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A B S T R A C T   

We develop and present a novel Bayesian hierarchical geostatistical model for the prediction of plantation forest 
carbon stock (C stock) in the eastern highlands of Zimbabwe using multispectral Landsat-8 and Sentinel-2 
remotely sensed data. Specifically, we adopt a Bayesian hierarchical methodology encompassing a model- 
based inferential framework making use of efficient Markov Chain Monte Carlo (MCMC) techniques for 
assessing model input parameters. Our proposed hierarchical modelling framework evaluates the influence of 
two but related covariate information sources in C stock prediction in order to build sustainable capacity on 
carbon reporting and monitoring. The perceived improvements in the spectral and spatial properties of Landsat-8 
and Sentinel-2 data and their potential to predict C stock with shorter uncertainty bounds is tested in the 
developed hierarchical Bayesian models. We utilized the Mean Squared Shortest Distance (MSSD) as the 
objective function for optimization of sampling locations for equal area coverage. Specifically, we evaluated the 
models using four selected remotely sensed vegetation indices namely, the normalised difference vegetation 
index (NDVI), soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI) and an additional distance 
to settlements anthropogenic variable that justifies from the history of the studied plantation forest in the eastern 
highlands of Zimbabwe. We evaluated two models making use of Landsat-8 and Sentinel-2 derived predictors 
using the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Coverage (CVG) and Deviance Infor-
mation Criteria (DIC). The Sentinel-2 based C stock model resulted in RMSE of 1.16 MgCha− 1, MAE of 1.11 
MgCha− 1, CVG of 94.7% and a DIC of − 554.7 whilst its Landsat-8 based C stock counterpart yielded a RMSE, 
MAE, CVG and DIC of 2.69 MgCha− 1, 1.77 MgCha− 1, 85.4% and 43.1 respectively. Although predictive models 
from both sensors show great improvement in predictive accuracy when modelling the spatial random effects, 
the Sentinel-2 based C stock predictive model substantially outperforms its Landsat-8 based C stock counterpart. 
The Sentinel-2 based C stock predictive hierarchical model therefore adequately addresses multiple sources of 
uncertainty inherent in the spatial prediction of C stock in disturbed plantation ecosystems. It is evident from the 
results of this study that carbon reporting and monitoring can always be improved by scouting for improved and 
easily accessible remote sensing data and allow forest practitioners to keep track of error across space in resource 
environments of interest.   

1. Introduction 

The importance of forests as carbon sinks and the necessity to pre-
serve, monitor and enhance terrestrial carbon stocks is recognised in the 
Kyoto Protocol of the United Nations Framework Convention on Climate 
Change (UNFCCC). This is because changes in forest carbon stocks in-
fluence the atmospheric carbon dioxide (CO2) concentration (Millington 
& Townsend, 1989; Fan et al., 2022). Quantifying the uncertainty 
associated with forest carbon stock estimation and prediction can be 

enhanced by the inclusion of historical information such as scales of 
spatial variability known for characterising carbon stock dynamics in 
particular forest ecosystems (Do et al., 2022; González-Vélez et al., 
2021). Surveys involving the collection of biomass data from forest 
plantations are time consuming and expensive. Yet, players and practi-
tioners in the timber industry can always capitalise on historical data 
and expert opinion to quickly save as aids for accurate accounting and 
monitoring of carbon stock at landscape scales. 

Natural forests in the sub-Saharan African region face increasing 
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threats from cultivation, grazing and urban growth (Traore and Tiegu-
hong, 2018). The rising demand of wood for both industrial and 
household energy and, in recent times, for carbon sequestration, ratio-
nalises the adoption of plantations as a viable and sustainable option for 
meeting these demands. For example, Zimbabwe lost approximately $3 
billion in potential revenue and more than 4000 jobs due to deforesta-
tion by settlers at the height of the Fast Track Land Reform Programme 
(FTLRP), twenty-two years ago (Newsday, 2017). Reports from the 
Timber Producers Federation (TPF) published in 2014 indicated that the 
country’s timber plantations were nearly facing total collapse with the 
national timber industry declining by 25% (Shumba & Marongwe, 
2016). 

An analysis of a mangrove forest in Vietnam making use of remote 
sensing data and Artificial Neural Network (ANN) gave mangrove Above 
Ground Biomass (AGB) predictions which ranged from 6.53 to 368.2 
Mgha− 1 in 2000 and from 13.75 to 320.3 Mgha− 1 in 2020, respectively 
(Do et al., 2022). AGB predictions made by Fararoda et al. (2021) using 
machine learning methods including AdaBoost, random decision forest, 
multilayer neural networks and Bayesian ridge regression endorsed 
random forest and AdaBoost as the best performing methods. It is 
acknowledged in literature that the type of sensor and the method of 
prediction influence the performance of AGB models. For instance, 
Fassnacht et al. (2014) compared LiDAR and hyperspectral data for 
modelling AGB and concluded that LiDAR data fused with Random 
Forest (RF) models offered the best AGB predictive model. 

Zimbabwe has a long-established commitment to conservation of 
biodiversity and its sustainable use as 16% of the country’s land was 
under reserved forest and national parks before the 2000 Fast Track 
Land Reform Programme (FTLRP) (FAO, 2018). Subsequently, the 
country signed and ratified the Convention on Biological Diversity 
(CBD) as a recognition of the role of natural resources to the national 
economy. Most of the forest disturbances being experienced in the forest 
plantations are blamed on the government’s lack of support for the 
resettled farmers in the post Agrarian Land Reform period. This has 
resulted in increased interface between communities and forest areas 
formerly designated for timber plantations. In fact, the amount of 
additional biomass that can be accumulated in these areas depend much 
on the forest condition and management practices in place (Leenhouts, 
1998). 

Obtaining useful estimates of uncertainty relating to forest carbon 
stock with imprecise predictions needed for decision making using 
model-based geostatistics is an established problem in climate change 
and carbon inventory studies (Ravindranath and Ostwald, 2008). 
Design-based estimation methods assume error propagation from sam-
pling design and can therefore be appropriately accounted for if sam-
pling plots are probabilistically selected (Cochran, 1977; Thompson, 
2002). On the other hand, errors are attributed to the underlying process 
by which the outcome variable, that is, carbon stock, is generated in 
model-based assessments (Gregoire, 1998; Ver Hoff, 2002). A 
well-known limitation of error maps associated with classical geo-
statistical estimation techniques like co-kriging and kriging is their 
inability to account for uncertainty in the variogram-derived spatial 
covariance parameters (Cressie, 1993). Non-hierarchical implementa-
tions of spatial predictions struggle to efficiently deal with uncertainty 
associated with spatial covariance parameters, that is, spatial decays and 
spatial variances (Diggle and Ribeiro Jr, 2007). The advantages of 
choosing a Bayesian hierarchical methodology to inference over other 
related techniques include access to the entire posterior predictive dis-
tribution (PPD) (Goulard and Voltz, 1992). According to Beloconi and 
Vounatsou (2020), full access to the PPD facilitates subsequent analysis 
that informs management and ecological objectives whilst accounting 
for prediction uncertainty. 

Hierarchically constructed Bayesian geostatistical models are a po-
tential remedy to the challenges faced when utilizing the aforemen-
tioned approaches (Gelfand et al., 2004). Incorporation of medium and 
high spatial resolution remote sensing derived auxiliary information 

measured at the same geo-location as the independent variable further 
enhances the ability of hierarchical models in providing resource esti-
mates with a reduced measure of uncertainty. Babcock et al. (2015) 
utilized LIDAR for predicting forest biomass using the hierachical 
Bayesian approach and established additional predictive performace 
after accounting for spatial random effects to the prediction equation. 
Significant progress has also been made in mapping forest attributes at 
broader spatial scales using spatially enabled hierarchical models. Such 
forest attributes include forest biomass (Finley et al., 2011; Johnson 
et al., 2014), community forest composition (Finley et al., 2009), rate of 
deforestation (Agarwal et al., 2005) and specific tree structure attributes 
(Babcock et al., 2012). Making predictions of forest biomass and other 
forest parameters needed for carbon accounting under UNFCC using 
Bayesian geostatistics comprehensively takes parameter uncertainty 
into account. However, despite the improvements coming from new 
generation remote sensing platforms as the Landsat series and the Eu-
ropean Space Agency (ESA) based multispectral Sentinel products, no 
study has utilized vegetation indices from new generation sensors, 
particularly Landsat-8 and Sentinel-2, as predictors of C stock under a 
Bayesian Hierarchical framework in climate change studies. 

An understanding of the carbon cycle and reduction in carbon 
emissions can be done through the global monitoring of AGB forest. 
Nevertheless, there is still a lot of uncertainty regarding the quantity and 
spatial distribution of AGB as a result of difficulties faced when 
measuring AGB using field measurement standards (Lefsky, 2010; 
Simard et al., 2011). Space-borne remote sensing techniques can collect 
data correlated with AGB spatial distribution over large national and 
global regions in a cost-effective method (Clerici et al., 2016). The 
limited sensitivity of earth observation sensors to AGB and the lack of in 
situ data needed for calibration at the appropriate scales useful for 
remote sensing are some of the challenges of facing these C mapping 
methods. Obtaining correct allometric models in certain regions of the 
world is a problematic because of armed conflicts, remoteness of the 
areas of interest and lack of capacity to generate plausible data. Remote 
sensing signal saturation due to high density of AGB, clod cover, espe-
cially in tropical regions and complexity of signal retrieval due to 
complicated topography are also some of the major AGB mapping 
challenges (Song et al., 2010). 

Semela et al. (2020) recommend both Sentinel-2 and Landsat-8 as 
valid information sources for grass biomass estimation in mountainous 
environments using random forest modelling. Astola et al. (2019) 
compared Sentinel-2 and Landsat-8 models for retrieving leaf area index 
(LAI), canopy cover (CC) and effective canopy cover (ECC) using spec-
tral bands available for both sensors and found non-systematic differ-
ences between the Sentinel-2 and Landsat-8 data. Korhonen et al. (2017) 
also compared Sentinel-2 and Landsat-8 imagery for forest variable 
prediction and established Sentinel-2 to outperform Landsat-8 due to the 
enhanced spatial resolution in the former compared to the later. The 
majority of studies comparing Sentinel-2 and Landsat-8 for predicting 
AGB favour Sentinel-2 over Landsat-8. This is further justified from the 
work of Jha et al. (2021) who compared Worldview-3, Sentinel-2 and 
Landsat-8 for mapping AGB in a forest landscape in Thailand and 
established Worldview-3 and Sentinel-2 as better predictors than 
Landsat-8 owing to the red-edge and the higher spatial and spectral 
properties of Worldview-3 and Sentinel-2. It is therefore perceived that 
the improvements in the spectral and spatial properties of Sentinel-2 
over Landsat-8 can reduce prediction uncertainty on C stock predic-
tion under a fully modelled Bayesian Hierarchical framework. 

The purpose of this paper is therefore to develop and evaluate the 
performance of Bayesian hierarchical models employing Landsat-8 
Operational Land Imager (OLI) and Sentinel-2 derived vegetation 
indices for carbon stock prediction in disturbed plantation ecosystems in 
Zimbabwe. The employment of the Bayesian methodology coupled with 
predictor information from new generation remote sensing predictors is 
expected to offer better C stock predictions in C stock monitoring an 
reporting. Model evaluation is utilized to identify the strengths and 
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deficiencies of candidate models and hence, the trade-off associated 
with utilization of different information sources in C stock prediction. 
We further assess and compare C stock prediction uncertainty intervals 
generated from Landsat-8 OLI and Sentinel-2 using the Bayesian hier-
archical framework. This is achieved through the development of 
separate but related models, integrating Landsat-8 OLI and Sentinel-2 
derived spectral indices. These models are constructed using a 
Bayesian hierarchical geostatistical framework employed for predicting 
C stock in disturbed plantation forest in Zimbabwe. The paper aims at 
providing clinical information needed for decision making by govern-
ments and Non-Governmental Organizations (NGOs) working towards 
the fulfilment of the 2030 Agenda on Sustainable Development and the 
Paris Agreement on climate change. The government’s pursuit for 
charming private capital into the timber industry in recent years in 
Zimbabwe can only be taken seriously if C stock estimates in the targeted 
plantation ecosystems for reforestation and afforestation programmes 
are provided with an accompanying measure of uncertainty. 

2. Methods 

2.1. Study area 

The study was carried out at lot 75 A of Nyanga Downs in Nyanga 
district in the Eastern Highlands of Zimbabwe, (Fig. 1). The study area is 
dominated by Eucalyptus grandis, Eucalyptus camaldulensis and Pinus 
patula plantation forest species which has some of its patches being used 
for agriculture, grazing and gold panning and is located between 

latitude 32o40’ E and 32o54’ E and 18o10’12”S and 18o25’4”S longitude 
as illustrated in Fig. 1. Grazing, agriculture and gold panning activities 
came after part of the commercially owned plantation forests were 
redistributed to small and medium sized indigenous farmers in 2000. 
This development has increased interface between settlements and 
timber plantations in all forests originally designated under forest 
plantations in Zimbabwe. 

The study domain covers an area of approximately 2767 ha. Rainfall 
amounts are variable and range from 741 mm to 2997 mm with a mean 
annual precipitation of 1200 mm. Annual mean temperatures range 
from a minimum of 9 ◦C to 12 ◦C to a maximum of 25 ◦C to 28 ◦C. The 
weather is very hot and extensive wild fires occur in the high-elevation 
grasslands from August to November where the grasses are dry. 

2.2. Remote sensing derived predictors 

The spatial coverage and extent of RS data such as Landsat in addi-
tion to their relatively low cost vindicate their usefulness as covariates. 
Sentinel-2 comprises six land monitoring bands which are comparable to 
Landsat-8 and also includes three additional bands encompassing the 
red-edge (RE) spectrum (Drusch et al., 2012). The Red edge bands are 
cantered at 704, 740, and 782 nm with bandwidths of 15, 15, and 20 nm, 
respectively. The red-edge is the major spectral feature of vegetation 
positioned between the red absorption maximum (680 nm) and the high 
reflectance in the Near-Infrared (750 nm) (Frampton et al., 2013). In 
addition, Sentinel-2’s land surface bands have a spatial resolution of 10 
m and 20 m in comparison to Landsat-8’s 30 m bands. These sensor 

Fig. 1. Map of the study area indicating (a) the province where samples were derived, (b) study area location within the particular province and (c) the spatial 
distribution of the sampled regionalised variable in the lower panel. 
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differences provide the basis and an inferential framework on which to 
learn and understand the sensor that outperforms the other in C stock 
prediction. 

2.2.1. Landsat OLI and Sentinel-2 MSI imagery 
Landsat-8 imagery was obtained from the United States Geological 

Survey Earth Explorer (http://earthexplorer.usgs.gov) as analysis-ready 
datasets (ARDs). Datasets were filtered with cloud cover and cloud 
shadow cover thresholds set to less than 10%. Sentinel-2 cloud-free 
imagery was acquired on 20 September 2020 at the same time as the 
Landsat-8 OLI data collection covering the entire area of interest at lot 
75A Nyanga Downs in the eastern highlands of Zimbabwe. 

Sentinel-2 imagery is taken using the multispectral instrument (MSI), 
a push-broom imaging instrument that measures the Earth’s top of at-
mosphere (TOA) reflected radiance in thirteen (13) spectral bands 
ranging from 443 nm to 2190 nm. The Sentinel-2 data were derived as 
level-1C 12-bit pre-set TOA reflectance values. The pre-processing and 
orthorectification of the level 1-C products was carried out in the R 
statistical and computing environment using the sen2r package (Ran-
ghetti et al., 2020). 

We utilized Normalised Difference Vegetation Index (NDVI), Soil 
Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI) and 
an additional distance to settlements anthropogenic variable as cova-
riates for C stock prediction in disturbed plantation forest. The afore-
mentioned vegetation indices have been applied in literature, including, 
Li and Li (2019) and Bordoloi et al. (2022), as independent variables in 
AGB biomass estimation. Previous research on climate studies including 

Wang et al. (2005) and Cross et al. (2010) have modelled the effects of 
anthropogenic or biophysical variables on biomass separately. In addi-
tion, a limited number of variables for each of these classes of predictors 
have been applied in biomass estimation. The present study employs a 
combination of these classes of independent variables using a Bayesian 
hierarchical approach for C stock estimation and prediction. 

2.3. Sampling design 

2.3.1. Spatial coverage sampling scheme 
We utilized the Mean Squared Shortest Distance (MSSD) as the 

objective function for optimization of sample locations in the current 
study. We therefore employed the k-means clustering algorithm for 
equal area coverage sampling. Walvoort et al. (2010) demonstrated how 
the mapping of regionalized variables can be enhanced by uniform 
dispersal of sampling locations within a study domain. Furthermore, 
Brus et al. (2006) showed how uniform coverage of the study domain 
with sampling locations can both be used for resolving the mapping and 
estimation of spatial means of regionalized variables in the soil, forestry 
and environmental research. 

Amongst the methods that have been utilized for optimization of the 
sampling pattern in literature, including, Spatial Simulated Annealing 
(SSA), the MSSD stands out as the most suited optimization methodol-
ogy for both prediction and estimation of regionalized variables. The 
design is especially appropriate in scenarios where sampling schemes 
cannot be extended beyond a single phase and where the area has never 
been sampled before. 

Fig. 2. Spatial coverage sampling design.  
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2.3.2. Geographical partitioning of the study domain by the k-means 
algorithm 

The study area was subdivided into compact subregions by clustering 
of the raster cells making up the study region using the k-means opti-
mization algorithm (Brus et al., 2006, Walvoort et al., 2010). 

The k-means optimization algorithm makes use of the x and y co-
ordinates of the centre points of the raster cells as classification vari-
ables. Centroids of the clusters were then used as sample points where 
sampling plots for C stock were established as Illustrated in Fig. 2. 

2.4. Carbon stock data 

2.4.1. Above ground tree biomass (AGTB) field measurement 
We sampled and took measurements of all trees with at least 10 cm 

diameter at breast height (at 1.3 m above the soil surface) using 500 m2 

circular supports using diameter and linear tapes from the 19th of 
September 2021 to the 24th of October 2021. According to Gibbs et al. 
(2007), trees with DBH less than 10 cm have insignificant C stocks. 
Slopes in the study area are generally below 30% and hence, slope 
correction was not considered during the tree biomass measurements 
(Ravindranath and Ostwald, 2008). Optimization of the sample loca-
tions that resulted in 200 spatial coverage samples was carried out using 
the spcosa-package in the R Statistical and Computing Environment 
(Brus et al., 2006, Walvoort et al., 2010). The 200 sampling locations 
were pre-loaded into a 72H handheld Garmin GPS before launching the 
field work exercise. However, 191 observations of forest biomass were 
obtained during the sampling phase as nine sampling plots fell outside 
the boundaries of the defined study area (Fig. 2). Statistics of sampled C 
stock data for the measured plantation forest parameters from the field 
for the studied region are illustrated in Table 1. 

2.4.2. Biomass calculation and derivation of C stock 
Pinus species biomass was calculated using allometric equations 

from Brown (1997) whilst biomass of the Eucalyptus species was 
calculated using allometric equations proposed by Zunguze (2012). Tree 
diameter was measured at 1.3 m above the soil surface with all tree 
species with at least 10 cm measured. Application of the aforementioned 
allometric equations was befitting as the same equations were applied to 
Eucalyptus and Pinus species in Manica province in Mozambique which 
closely resembles and approximates the weather and climatic conditions 
of the eastern highlands of Zimbabwe. The above ground biomass of 
every individual species was then converted to C stocks per species by 
means of a conversion factor of the IPCC (2006). Per plot (support) 
estimated values were then expanded to a standard unit area, in this 
case, a hectare (MgCha− 1). 

We took the position that the relationship between AGB and remote 
sensing features apart from being determined by the crown areas of the 
measured and sampled plantation species in Fig. 1, but also determined 
by other factors like tree age, planting density and plantation conditions 
(i.e. climate or soils). We therefore assumed that the AGB model cap-
tures all these factors indirectly since the remote sensing signal is also a 
product of these factors. 

2.5. Hierarchical Bayesian modelling 

We adopted the Bayesian hierarchical framework in order to fully 
account for parameter uncertainty in the sampled C stock. The Bayesian 
hierarchical framework consists of four stages as detailed below: 

2.5.1. Observed C stock data 
Let Y(s) denotes the observed log transformed C stock data at a 

spatial location s, s = 1, …, S, then, 

Y(s) = XT(s)β+w(s)+ ε(s) (1) 

where 
w(s) is a spatial random effect term representing the effect of being at 

location s, and in our case, an exponential autocorrelation function. 
β is a vector of regression coefficients associated with a 1x q vector of 

predictors X(s) sampled at location s. 
ε(s) represents the random error (white noise) assumed i. i. d. N(0,σε

2) 

2.5.2. Spatial random effects specification 
We assumed the spatial random effects w(s) = (w,…,ws)T arise from a 

multivariate distribution, that is, a Gaussian random field, scaled by a 
spatial variance σw

2 and correlations proportional to the separation dis-
tance, dij, between sites as follows: 

w ∼ MVN
(
0s, σ2

wΣw
)

(2) 

Where 0s is an S x 1 vector of zeros, σw
2 representing the between site 

variance, whilst Σw is the S x S correlation matrix with elements (si, sj) 
indicating the correlation between sites si and sj, i, j = 1, …, S. We 
assumed a stationary model with an isotropic covariance structure 
where the correlation between sites si and sj is a function of the sepa-
ration distance between the sites. We therefore computed the covariance 
matrix Σw for the correlation function as follows: 

f (dsis,ϕ, κ) = exp
(
− ϕdκsisj

)

Because of limited information in the data to be able to estimate both 
κ and ϕ, we followed common practice and fixed κ to be one (Diggle and 
Ribeiro Jr, 2007). 

2.5.3. Model prediction 
A fully Bayesian hierarchical framework entails simultaneous esti-

mation and prediction of model parameters. Uncertainty associated with 
estimates of model coefficients are considered and supplied through the 
model to the predictions. The Markov Chain Monte Carlo algorithm was 
used to make and estimate predictions at a location s′ with the form: 

Ŷ (s)’ = XT(s)’ β̂ + ŵ(s)’ (3) 

As such, predictions were made using a combination of the overall 
mean, the spatial effect and the effect of independent variables from 
medium resolution sensor satellite data. We calculated the spatial 
component of the predictions using multivariate normal properties. That 
is, if w = (w1,…,ws)′ are the spatial effects at site of C stock observation, 
then the conditional distribution at an arbitrary location, s′, is ws′ ∣ w that 
is normally distributed with mean and variance denoted by: 

Table 1 
Summary statistics of the measured C stock plantation forest parameters.  

Statistic Eucalyptus camaldulensis Eucalyptus grandis Pinus patula 

DBH Height C stock DBH Height C stock DBH Height C stock 

Mean 81.4 60.6 2485.3 67.4 70.6 405.7 56.8 58.6 377.9 
Median 77.4 52.7 1470.3 51.4 49.7 327.8 43.5 38.7 295.4 
Max 231.9 88.9 8998.2 97.9 90.1 429.8 64.3 66.6 600.3 
Min 11.4 23.8 13.7 14.7 27.8 111.3 10.6 19.4 9.7  
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E[ws′ |w,Y] = σ− 2
w δ

′

jΣ
− 1
w w (4) 

And 

var(ws′ |w,Y) = σ2
w

(
1 − δ

′

jΣ
− 1
w δj

)
(5) 

respectively, where δj is the vector of the effect of distance between 
new sites and C stock observation locations where each element δij = f 
(dsisj,ϕ). 

2.5.4. Hyperprior specification 
We performed Bayesian hierarchical modelling using the spBayes 

package (Finley et al., 2007) in the R Statistical and Computing envi-
ronment (R Core Development Team, 2008). As articulated in Gelfand 
(2012), the Bayesian approach treats the vector of model parameters, θ 
= β, σ2, ϕ, τ2 as random and mutually independent variables and assigns 
prior distributions to the parameters. By taking p(θ) to be a prior dis-
tribution and p(θ|y,X) to be the posterior distribution of the observed C 
stock model parameters, we computed the posterior distribution of 
model parameters, θ, as follows: 

p(θ|y,X)∝p(θ) x N(w|0,Σw) x N(y|Xtβ+w,Σε) (6) 

A summarised modelling framework for the hierarchical 

specification shown from Eq. (1) to Eq. (7) is illustrated in the flow chart 
illustrated in Fig. 3. We utilized Eq. (6) to quantify uncertainties in 
model parameters. Predicted C stock values were then derived from the 
predictive distribution of C stock at unsampled locations, s0 using Eq. 
(7), which quantifies uncertainties in C stock predicted values. 

p(y0|y,X, x0)∝
∫

p(y0|y, θ, x0)p(θ|y,X)dθ (7) 

Where; y0 denotes the predicted C stock at a location s0 and x0 are the 
covariate values at location s0. 

We assigned normal prior for the overall mean of measured C stock 
and a multivariate normal prior for the regression coefficients. We also 
classified model parameters into two categories of (1) regression co-
efficients consisting of β = (β0,β1,…,βp)′ in the mean function and (2) 
the partial sill (σ2), nugget (τ2) and range (ϕ) in the variance covariance 
matrix. In respect of our sampled data, we specified two sets of priors for 
hierarchical modelling of C stock using predictors from Landsat-8 and 
Sentinel-2 data. An inverse gamma prior distribution was assigned for 
the data and measurement error variance whilst a uniform prior was 
assigned for the spatial decay parameter, ϕ as defined by θ1 and θ2 
below:  

Landsat-8/ Sentinel-2 log-transformed C Stock 
data

mcmc
Using Metropolis 

Hastings Algorithm 

mcmc 
Using Metropolis 

Hastings Algorithm 

Covariance par.
Priors

Bayesian based
Model Prediction

(Using Landsat-8 & Sentinel-2 derived 
covariates)

- Landsat-8 based C stock Posterior predictions
- 95 % Credible Intervals
- Prediction performance

- Parameter uncertainty assessment

Spatial Random Effects
modelling

(accounting for unknown or 
unavailable covariates)

Hyperparameter specification

Landsat-8 based 
Posterior Predictive Distribution

(PPD)

Sentinel-2 based 
Posterior Predictive Distribution

(PPD)

- Sentinel-2 based C stock Posterior predictions
- 95 % Credible Intervals
- Prediction performance

- Parameter uncertainty assessment

Landsat-8 
derived 

variogram 
of residuals

Sentinel-2 
derived 

variogram 
of residuals

Covariance par.
Priors

Fig. 3. Hierarchical Bayesian geostatistical modelling illustrated by Eqns. 1–7 for C stock prediction.  
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Where; 
p(θ1) and p(θ2) are prior specifications for Landsat-8 and Sentinel-2 

derived covariates, respectively. 
In both sets of priors (θ1 and θ2), the shape parameters were chosen 

in order to guarantee that the prior distribution has finite mean and the 
distribution is adequately vague that it would not have finite variance 
(Demirhan and Kalaylioglu, 2015). In the same vein, we adopted scale 
parameter values in order to expresses the preference that the prior 
mean of σε

2 is less than that of σw
2 . This is vindicated from the fact that we 

expect the measurement error variance (nugget, σε
2) to be much smaller 

than the data variance, σw
2 . The spatial decay parameter ϕ was assigned a 

uniform prior with support over the spatial range of the study domain. 
In order to get results from the Bayesian hierarchical modelling, a 

Metropolis-Hastings algorithm typically used in the spBayes R package 
for Markov Chain Monte Carlo (MCMC) methods was employed (Gel-
man, 2006). An algorithm of one chain each with 20,000 MCMC itera-
tions was specified for the posterior densities of the parameters in which 
15,000 were discarded as burn-in. 

2.6. Variogram modelling and exploratory analysis 

We carried out spatial exploratory analysis of the sampled C stock 
observation data in order to get some insights regarding the choice of 
scale values on the prior distribution of the spatial covariance parame-
ters. Spatial exploratory analysis is an important step towards assessing 
the strength of the spatial correlation structure of the modelled 
regionalized variable (Stoyan and Yaskov, 2014; Sahu, 2022; Pascual 
et al., 2022). We also streamlined the modelled C Stock data to the 
normality assumption through the Box-Cox transformation approach 
(Box and Cox, 1982). C Stock data was therefore transformed according 
to the Box and Cox (1982) formula illustrated in Eq. (8). 
{

Y(λ) =
(
Yλ − 1

)/
λ if λ ∕= 0

log Y if λ = 0 (8) 

Y is the C Stock observation and λ is the transformation parameter. 
Developments made by Box and Cox (1964) regarding the trans-

formation parameter in Eq. 8 are of the normal theory linear model as in 
Eq. (9), 

y(λ) = Xβ(λ)+ ε (9) 

where X is an n x p vector of predictors, β(λ) is a p x 1 vector of 
unknown parameters while the standard deviation of the independent 
errors εi(i = 1,…,n) is σ(λ). 

2.7. Model predictions and uncertainty assessment 

We tested the statistical significance of the predictor variables by 
considering the 2.5% and the 97.5% percentiles of the posterior samples. 
Independent variables in the Landsat-8 and Sentinel-2 based hierarchi-
cal models were deemed statistically significant if their 95% Credible 
Intervals (CIs) excluded zero. Uncertainty of C stock predictions was 
assessed by employing the method of Hengl et al. (2004). Median pre-
dictions of C stock for each grid cell (10000m2) were displayed using a 
colour ramp alongside the associated uncertainty (95% Credible Interval 
Widths (CIW)). Posterior predictive distribution CIWs was therefore 
utilized to assess the precision of model predictions. Highly uncertain 

predictions have wider 95% CIWs (Babcock et al., 2016). As docu-
mented in literature including Babcock et al. (2016) and Babcock et al. 
(2018), highly uncertain (less precise) predictions have wider CIW. 

2.8. Model comparison and validation 

Three different Bayesian hierarchical models constructed from 
Landsat-8 and Sentineal-2 derived predictors were compared as illus-
trated in Eq. (10), (11) and (12). The models compared were the inde-
pendent error model (simple multiple linear regression), the spatial 
intercept only model and the spatial model, respectively 

y = xβ+ ε (10)  

y(s) = x(s)β+ ε(s) (11)  

y(s) = x(s)β+w(s)+ ε(s) (12) 

Posterior samples of the spatial and spatial intercept only models’ 
parameters and predictions are gathered via a MCMC algorithm and 
composition sampling. We further tested the predictive performance of 
each of the three candidate models using a k-fold cross validation al-
gorithm, which proceeds by randomly splitting the 191C stock obser-
vations into ten almost equally seized segments (Duchene et al., 2016). 
Log-transformed C stock for the holdout data block was successively 
predicted given model parameters derived using data in the remaining 
nine blocks. 

Root mean squared error (RMSE), Mean Absolute Error (MAE) and 
other validation statistics were calculated using the holdout posterior 
predicted means and observed C stock data for each of the three models 
(Green et al., 2020). We considered the model with the lowest k (k =
10)-fold RMSE and MAE as the “best” predicting model. Model 
convergence was assessed using graphical displays in the form of trace 
plots of the estimated model parameters (Jackman, 2000). 

Fig. 4. Box-Cox Transformation for C stock.  

p(θ1) = Unif (ϕ|0.38, 0.0012) x IG
(
σ2|0.75, 1.76

)
x IG

(
τ2|0.1, 1.76

)
x MVN

(
β|0,Σβ

)

p(θ2) = Unif (ϕ|0.38, 0.0012) x IG
(
σ2|0.071, 0.021

)
x IG

(
τ2|0.071, 0.0028

)
x MVN

(
β|0,Σβ

)

T.S. Chinembiri et al.                                                                                                                                                                                                                          



Ecological Informatics 73 (2023) 101934

8

3. Results 

3.1. Exploratory analysis 

An objective approach for arriving at the appropriate transformation 
parameter made through the Box-Cox transformation as in Eq. (8) for the 
C stock data led to a log-transformation as λ was estimated to be 0.012 as 
illustrated in Fig. 4. 

A transformation parameter of 0.5 entails a square root trans-
formation, a parameter of 1 entails no transformation whilst a trans-
formation of 0 supports a logarithmic transformation as illustrated in 
Fig. 3 (Box and Cox, 1964). 

As detailed in Section 2, parameter transformation from this pre-
liminary analysis governed the treatment of the outcome variable in all 
the subsequent analysis involving treatment of the variable under 
different satellite derived auxiliary information. Log and square root 
transformation of outcome variables are common data transformation 
parameters in natural resources modelling (Babcock et al., 2016; Chi-
nembiri et al., 2013). 

The modelled C stock data employed in the Bayesian hierarchical 
framework displayed a positively skewed distribution as illustrated in 
Fig. 5. Positively skewed C stock data implies that the lower bounds of 
the sampled data are relatively lower than the rest of the data. A Box Cox 
transformation with a transformation parameter of 0.012 (λ = 0.012) 
entailed a log-transformation for the C Stock variable which led to an 
approximately normally distributed C Stock data as illustrated in Fig. 5 
(b). The σε

2 and the σw
2 variance hyperpriors for the Landsat-8 and 

Sentinel-2 based spatial models of the log-transformed C stock data were 
set according to the variogram of residuals of predictors derived from 
the respective medium resolution satellite sensors illustrated in Fig. 6(a) 
and Fig. 6(b) respectively. 

As illustrated in Fig. 6, the σε
2 and the σw

2 variance parameters of the C 
stock hierarchical Bayesian models derived from the respective medium 
resolution sensors show greater influence of Sentinel-2 derived pre-
dictors on C stock. Subsequent Bayesian hierarchical modelling of the 
response variable followed the trajectory of scale parameters illustrated 
in Fig. 6 as these provided a constraint on the prior probability distri-
bution function of the parameter space. 

3.2. Effects of Landsat-8 and Sentinel-2 predictors on C stock prediction 

Covariate information in the form of NDVI, SAVI, EVI and distance to 

the nearest settlements from Landsat-8 and Sentinel-2 employed in the 
hierarchical modelling of C stock showed distance to nearest settlements 
and NDVI to be significant predictors of C stock. The two predictors are 
significantly different from zero as their 95% CIs exclude zero. The 
posterior distribution of predictor coefficients markedly differed be-
tween Landsat-8 and Sentinel-2 based spatial models. However, 
amongst the modelled predictors, NDVI and distance to settlements 
(DIST) were statistically significant in both the Landsat-8 and Sentinel-2 
based spatial models as shown in Table 2. 

The carbon stock model derived from Landsat-8 predictors implies a 
weaker spatial correlation with an effective range estimated as 1764 m 
and a 95% CI of (1578.9, 2307.7) whilst C stock model derived from 
Sentinel-2 independent variables shows a stronger correlation with an 
effective range of 2142.9 m with a 95% CI of (2000, 2307.7) meters 
directly estimated from the CI of the spatial decay parameter, ϕ. How-
ever, estimates of the range of spatial dependence from both medium 
resolution sensor C stock-based models seem plausible as the maximum 
distance between data locations within the study domain is 2463 m. As 
expected, we observe that the spatially structured variance, σw

2 , is higher 
than the micro-scale variance in both models (Diggle and Ribeiro Jr, 
2007). 

DIST* is the distance to the nearest settlements used in the Bayesian 
hierarchical modelling framework 

3.3. C stock prediction from medium resolution sensor derived covariates 

Fitted models with spectral independent variables from Landsat-8 
and Sentinel-2 were employed in the prediction of C stock at unvisited 
locations in the study domain. Since spectral variables of NDVI, SAVI, 
EVI in addition to distance to settlements were on gridded raster with 
10,000 m2 resolution, the predicted log-transformed C stock represents 
averaged values in every pixel. MCMC sampling from the predictive 
distribution of the fitted models resulted in a total of 20,000 predicted 
samples for each grid. Consequently, predicted samples for each pixel 
provide a comprehensive account of the uncertainty in the predicted C 
stock values. The specific expressions and ratios of vegetation indices 
represent properties of green vegetation much better than individual 
bands (Baloloy et al., 2018). 

As illustrated in Fig. 7, the 95% CIs for C stock predictions derived 
from Sentinel-2 spectral variables are much more plausible than pre-
dictors supplied from Landsat-8 spectral covariates. The indispensability 
of NDVI as an index well correlated with vegetation biophysical 

Fig. 5. Logarithmic transformation for the C stock data (with normal overlay).  
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properties, amongst them, leaf area index (LAI), and chlorophyll is much 
established (Baugh and Groeneveld, 2006). Sentiel-2 based C stock 
predictions have lower uncertainty compared to Landsat-8 OLI C stock 
aided predictions. This fact is supported by the evidence of the 95% 
posterior predictions illustrated in Fig. 8, showing C stock 95% CIs or-
ders of magnitude lower than the predicted estimates in Sentinel-2 than 
those displayed in Landsat-8 based estimates. The accompanying cred-
ible intervals for both Landsat-8 and Sentinel-2C stock-based predictions 
are highly certain. This is because the entire part of the study area has 
95% CIs orders of magnitude lower than the C stock estimates (Fig. 7 and 
Fig. 8). 

It is observed that predictions in the central northern region of the 
studied region (Fig. 7) in Lot 75A of Nyanga Downs are much lower in 
Landsat-8 than in Sentinel-2 based C stock predictions. We attribute 
underprediction of C stock in this region in Landsat-8 based predictions 
to the finer spatial and spectral attributes in Sentinel-2 data in the visible 
and near-infrared portions of the electromagnetic spectrum (Sovdat 
et al., 2019; Wang et al., 2020; Ahmed et al., 2022). The enhanced 
spatial and spectral resolution of Sentinel-2 also justifies the shorter 95% 
CIW displayed by the Sentinel-2 based C stock predictions (1.02–1.82) 
MgCha− 1 compared to Landsat-8 based C stock predictions (2.23–4.50) 
MgCha− 1. The results from both sensors look attractive compared to 
AGB reported in literature where Jiang et al. (2021) established an 
average AGB RMSE of 40.92 MgCha− 1 in northeast China whilst Dang 
et al. (2019) reported a RMSE of 36.67 MgCha− 1 in Vietnam using 
Random Forest (RF). 

To add on, Takagi et al. (2015) utilized LiDAR for predicting forest 
biomass in Hokkaido, Japan, and established a biomass RMSE prediction 
of 19.10 MgCha− 1. Differences in the prediction accuracy between the 
reported results in literature and our study can also be explained by the 
differences in forest density as the aforementioned studies have been 
undertaken in tropical and subtropical rainforest biomes. 

3.4. Performance assessment of C stock prediction models 

Table 3 presents the k-fold cross validation statistics used to assess 
the predictive performance of Bayesian hierarchical models emanating 
from Landsat-8 and Sentinel-2 derived spectral predictor variables. 

Different predictive Bayesian hierarchical models from the two medium 
resolution satellite sensors, with varying levels of richness (independent 
error, spatial intercept only and the spatial models) favour the Sentinel-2 
based C stock spatial predictive model (Table 3). 

In addition to the application of RMSE, MAE and CRPS as model 
validation and performance criteria, coverage (CVG) is employed as an 
additional criterion of model performance. The Sentinel-2 based spatial 
C stock predictive model (Table 3) appears as the top performing model 
in terms of the RMSE (1.16 MgCha− 1), DIC (− 554.7), MAE (1.11 
MgCha− 1) and coverage (94.7%) thereby making it the best performing 
model on the premise of the aforementioned validation criteria. The 
model affords predictive ability little short of the benchmark nominal 
95% coverage level (Guhaniyogi and Banerjee, 2019; Sahu, 2022) . We 
define coverage in this study as defined and interpreted in other studies 
(Guhaniyogi and Banerjee, 2019) as the percentage of reliably predicted 
C stock in the study domain. On the other hand, the Landsat-8 based C 
stock predictive model has 85% (Table 3) coverage for the 95% pre-
diction intervals and higher RMSE and MAE, making it less favourable as 
the best performing model within the remote sensing data driven 
Bayesian hierarchical framework. 

Fig. 9 (a) and 9 (b) illustrates the scatterplots of observed C stock 
against the predicted C stock alongside the 95% intervals for both 
Landsat-8 and Sentinel-2C stock based predictive models. Evidence of 
the Sentinel-2 based C stock predictive model performing better than its 
Landsat-8C stock-based counterpart is clear from the scatter plot of the 
model in Fig. 9 (b). This fact is further bolstered by the Relative Root 
Mean Square Error (RRMSE) and other validation statistics including the 
MAE for Sentinel-2 based C stock prediction models illustrated in 
Table 2. 

3.5. MCMC convergence diagnostics 

Independent variable coefficients displayed as trace plots for the 
Landsat-8 and Sentinel-2 based C stock predictions are illustrated in 
Fig. 10 and Fig. 11. We utilized the trace plots for the aforementioned 
models as visual assessment of chain convergence. It is clear from the 
plots that the length N0, of the burn-in period was sufficiently large to 
allow Markov chains to converge to the stationary distribution at the end 

Fig. 6. Landsat-8 and Sentinel-2 derived variogram of residuals for the modelled C stock. The black dotted line is the asymptote of the theoretical variogram model.  
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of the burn-in period (Finley et al., 2007; Gelfand et al., 2004). 
For the sake of presentation and improvement of plot aesthetics, we 

thinned the chains so that only every 10th iteration is retained. Thinning 
speeds up calculations through the reduction of the Monte Carlo sample 
size and can also enhance the appearance and presentation of the plots. 
In both models, the chains seem to have converged to the stationary 
distribution at the end of the burn-in and hence, to mix fairly well over 
5000 iterations (2000 after thinning). It can be deduced from the 
respective presentations (Fig. 9 and Fig. 10) that the length, N0 of the 
MCMC chain should be sufficiently large so that moments and quantiles 
calculated from the MCMC samples are precise estimates of the resulting 
characteristics of the posterior (Beloconi and Vounatsou, 2020). A visual 
assessment of Fig. 9 and Fig. 10 point to a converged sample with MCMC 
sufficiently mixing well. 

4. Discussion 

4.1. Landsat-8 and Sentinel-2 derived C stock predictors 

The current study juxtaposed findings from Landsat-8 and Sentinel-2 
medium resoultion passive satellite sensors in the predictive modelling 
of C stock using a Bayesian hierarchical approach. We beased the 
modelling and prediction framework on a set of vegetation indices 
together with antropogeninc factors as predictors of C stock in a 

disturbed plantation ecosystem in Zimbabwe. Bordoloi et al. (2022) and 
Somvanshi and Kumari (2020) have established NDVI, SAVI and EVI to 
be significant predictors of above ground biomass when using Landsat-8 
and Sentinel-2. However, no Bayesian hierarchical approach has yet 
employed similar predictors from the two medium resolution sensors 
and established their influence on C stock prediction estimates in a forest 
plantation set-up. 

Apart from the utilization of medium resolution derived covariates, 
the significance of the anthropogenic predictor variable in the form of 
distance to nearest settlements in this study is significant. As illustrated 
in Table 1, distance to nearest settlements and NDVI is a significant 
predictor of C stock in disturbed plantation forest in models estimated 
from both medium resolution remote sensing sensors. This fact draws 
logic and support from two main fronts. The plausibility of distance to 
nearest settlements as a predictor of C stock rationalises from the cir-
cumstances prevailing in the plantation forests after the agrarian land 
reform of 2000. Secondly, studies undertaken elsewhere, including 
Chinembiri et al. (2013) and Nwobi and Williams (2021), have shown 
distance to settlements as a significant predictor of C stock in perturbed 
and related environments. 

Previous studies including Finley et al. (2008) proffer interesting 
exposition on forest biomass over larger scales. The authors mapped 
AGB using a suite of spatial regression models with Landsat as the source 
of auxiliary information where residual structure is accounted for by a 

Fig. 7. Landsat-8 based C stock posterior mean and posterior standard deviation.  
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Fig. 8. Sentinel-2 based C stock posterior mean and posterior standard deviation.  

Fig. 9. (a). Spatial model of the Landsat-8C stock-based predictions against observed C stock. (b). Spatial model of the Sentinel-2C stock-based prediction against 
observed C stock alongside 95% intervals. 
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Gaussian process that has the capacity to account for short and long 
range spatially structured dependence. Their findings demonstrated 
effective long-range dependence to the tune of 8000 m with associated 
95% CIs of 4000 to 11,000 m. Similar improvements in spatially struc-
tured dependence is also reported in Datta et al. (2016) work when 
modelling AGB in the conterminous United States. 

4.2. Parameter uncertainty and model performance of new generation 
sensor-based C stock models 

An investigation of the AGB distribution of a mangrove forest in 
Vietnam employing a combination of remote sensing data and Artificial 
Neural Network (ANN) gave mangrove AGB predictions that ranged 
from 6.53 to 368.2 Mgha− 1 in 2000 and from 13.75 to 320.3 Mgha− 1 in 
2020, respectively (Do et al., 2022). AGB predictions made by Fararoda 
et al. (2021) using machine learning methods including AdaBoost, 

Table 2 
Landsat-8 and Sentinel-2 derived predictors of C stock.  

Parameter Lansat-8 OLI C stock Model Sentinel-2 MSI C stock Model 

Mean s.d 2.5% 97.5% Mean s.d 2.5% 97.5% 

Intercept − 2.75 1.01 − 4.73 − 0.82 − 2.41 0.32 − 3.04 − 1.79 
NDVI 2.67 0.99 0.77 4.60 4.97 0.24 4.53 5.45 
SAVI − 0.67 0.69 − 2.05 0.67 − 0.52 0.36 − 1.22 0.18 
EVI − 0.52 0.53 − 1.56 0.53 − 0.002 0.097 − 0.18 0.20 
DIST* 1.47 0.33 0.79 2.09 0.78 0.13 0.52 1.05 
σw

2 1.24 0.28 0.71 1.78 0.072 0.014 0.045 0.091 
σε

2 0.31 0.12 0.079 0.55 0.0047 0.0030 0.0006 0.012 
ϕ 0.0017 0.0002 0.0013 0.0019 0.0014 0.0001 0.0013 0.0015  

Table 3 
Validation statistics for C stock Bayesian hierarchical models.  

Model Selection 
criterion 

Landsat 8 Derived Predictors Sentinel-2 Derived Predictors 

Independent Error 
Model 

Spatial Intercept only 
Model 

Spatial 
Model 

Independent Error 
Model 

Spatial Intercept only 
Model 

Spatial 
Model 

RMSE (MgCha− 1) 3.35 2.64 2.69 1.32 3.25 1.16 
RRMSE 0.11 0.09 0.09 0.04 0.11 0.04 
MAE (MgCha− 1) 2.44 1.70 1.79 1.25 2.16 1.11 
CRPS (MgCha− 1) 2.18 1.46 1.48 1.85 1.75 1.13 
CVG (%) 91.7 85.4 85.4 95.8 89.6 94.7 
DIC 210.2 56.9 43.1 − 244.4 37.8 − 554.7  

Fig. 10. Lansat-8 based C stock prediction MCMC trace plots.  
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random decision forest, multilayer neural networks and Bayesian ridge 
regression endorsed random forest and AdaBoost as the best performing 
methods. The type of sensor and the method of prediction used have 
great influence over AGB model performance. For instance, Fassnacht 
et al. (2014) compared LiDAR and hyperspectral data for modelling AGB 
and concluded that LiDAR data fused with Random forest models offered 
the best AGB model performance. 

In terms of the accuracy of prediction, it is vital to compare the re-
sults of the present study with recent publications in literature from 
similar and related terrestrial biomes. Jiang et al. (2021) established an 
average AGB RMSE of 40.92 MgCha− 1 in northeast China whilst Dang 
et al. (2019) reported a RMSE of 36.67 MgCha− 1 in Vietnam using 
Random Forest (RF). Takagi et al. (2015) utilized LiDAR for predicting 
forest biomass in Hokkaido, Japan, and established a biomass RMSE 
prediction of 19.10 MgCha− 1. Differences in the prediction accuracy 
between the reported results in literature and our study can be partly 
explained by the differences in forest density and largely by the differ-
ences in the modelling approaches between results reported in literature 
and our methodology. First, the aforementioned studies are likely to 
have significant and higher AGB density than in Zimbabwe as they were 
undertaken in tropical and subtropical rainforest biomes. Secondly and 
most importantly, the present study uses a hierarchical Bayesian 
approach which has the advantage of having access to the entire pos-
terior predictive distribution (Goulard and Voltz, 1992). 

Location based C stock uncertainty maps presented in this study are 
needed for monitoring ecosystem health and areas of interest in the 
plantation forests for interventions during times of extreme weather, 
and in times of disease outbreaks. Such information provides timely 
decision making and management by forest practitioners. With accu-
racies for both Landsat-8 and Sentinel-2 based models exceeding accu-
racies established in other similar environments (Ahmed et al., 2022; 
Fan et al., 2022; Jiang et al., 2021; Takagi et al., 2015; Xiong and Wang, 
2022), the application of results of the present study can therefore be 

utilized for comprehensive and location-based ecological interventions. 
The Sentinel-2 based C stock predictive model yielded the shortest CIWs, 
implying more precise C stock predictions than the Landsat-8 based C 
stock estimates. Hence, the usefulness of Landsat-8 based C stock pre-
dictive model is less attractive as it cannot match the standards and 
qualities inherent in the improved Sentinel-2 for similar modelling 
framework as the current study. On the other hand, the Landsat-8 based 
C stock predictive model gave slightly higher RMSE (2.69 MgCha− 1) and 
slightly lower coverage (85.4%) than its Sentinel-2 based C stock spatial 
predictive counterpart. This also means monitoring and conservation for 
extensive forest ecosystems can be done with greater accuracy and 
precision, thereby improving forest carbon accounting, especially in 
inaccessible areas where samples cannot be easily taken. Higher pre-
diction accuracy means mapping and accounting for natural resources 
can be achieved with great accuracy and save forest species from 
extinction in the event of disease outbreaks and extreme environmental 
conditions (Ahmed et al., 2022; Do et al., 2022; Fan et al., 2022). 

As attributed in Frampton et al., 2013 and Gerald et al., 2017, the 
posterior predictive distribution of Sentinel-2 based C stock predictions 
are more precise than their Landsat-8 based counterparts as they have 
far shorter 95% CIWs. This implies that highly certain predictions of C 
stock in disturbed plantation ecosystems can better be made with 
Sentinel-2 derived vegetation indices (NDVI) and distance to nearest 
settlements than with similar spectral and anthropogenic variables 
derived from the Landsat-8 based C stock hierarchical model. The 
quality of predictors deriving from the tested medium resolution sensors 
is a critical point of discussion in this case (Ahmed and De Marsily, 
1987). More refined spectral and spatial resolution (10 m, 20 m) of 
Sentinel-2 derived spectral indices offer an opportunity for enhanced 
and accurate monitoring of forest resources (Mutanga et al., 2016; 
Somvanshi and Kumari, 2020). Our results fall in the same realm as 
those of Korhonen et al. (2017), Astola et al. (2019) and Jha et al. (2021) 
due to the differences in spatial and spectral properties of the two 

Fig. 11. Sentinel-2 based C stock prediction MCMC trace plots.  
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sensors. As such, despite the departure in the modelling methodology 
used by the current study, comparison of the predictive performance of 
Sentinel-2 based C stock model still outperforms its Landsat-8 counter-
part and other machine learning methods reported in literature. This can 
be attributed to the Bayesian hierarchical modelling approach utilized in 
the present study, which has the strength of incorporating multiple 
sources of uncertainty into the prediction modelling framework (Aze-
vedo, 2021). Furthermore, Dang et al. (2019) utilized Sentinel-2 
together with field based biomass data using random forest (RF) and 
machine learning algorithm for estimating AGB in Vietnam. Results 
employing the RF algorithm together with Sentinel-2 derived auxiliary 
information resulted in more accurate predictions of AGB compared to 
the machine learning methods. Consequently, findings in literature 
using Sentinel-2 as a data source have shown the former to be superior 
than other data sources, thereby making Sentinel-2 medium resolution 
imagery a data source of choice for forests management and ecological 
assessment. 

Wu et al. (2016) and Xiong and Wang (2022) compared machine 
learning methods for AGB estimation based on Landsat imagery and 
established Random forest to be the best performing method with a 
RMSE of 26.44 tons/ha over the other methods like support vector 
regression, k-nearest neighbour and stochastic gradient boosting. As 
noted in the present study, hierarchical Bayesian geostatistical methods 
offer superior C stock predictions than the other methods in literature. 
Nevertheless, hierarchical geostatistical methods cannot be easily 
adopted and utilized by forest practitioners for ecological monitoring. 
Their complexity and the lack of readily available easy to use application 
packages greatly limit their adoption and application in ecological 
monitoring. The fusion of medium and high resolution satellite sensors 
greatly enhance the accuracy of predicting forest biomass (Fararoda 
et al., 2021). However, differences in model performance reported in 
literature and the present study are particularly significant as they 
suggest the selection of appropriate statistical and modelling methods to 
be more effective than putting more effort and resources in field data 
collection. Previous research comparing Sentinel-2 and Landsat-8 sen-
sors noted improvements in the spatial and spectral capabilities of 
Sentinel-2 in discriminating rangeland management practices (Sibanda 
et al., 2017), estimating Leaf Area Index (LAI) (Korhonen et al., 2017) 
and to enhance the quality of classification of built-up areas (Pesaresi 
et al., 2016). The inclusion of three bands within the red-edge portion of 
the electromagnetic spectrum is given as the rationale for Sentinel-2’s 
superior performance in all the comparative studies. Hence, the per-
formance of the Sentinel-2 based C stock predictive model in this 
research can be traced to the additional and narrower band channels, in 
particular, the red-edge band coupled with improved spatial resolution. 
However, studies that have utilized Landsat-8 in isolation to Sentinel-2 
for predicting AGB, have noted significant improvement in the spectral 
capabilities of the imagery. 

Predictions in the studied region of Zimbabwe show a much reduced 
density of C stock compared with other tropical and sub-tropical forest 
ecosystems in similar environments like the Indian forests, with average 
biomass density of more than 420 Mgha− 1 (Fararoda et al., 2021). 
Implementation of conservation practices needed for ecological resto-
ration of the disturbed plantation forest ecosystems therefore becomes 
an urgent matter. Depressed C stock concentration in these environ-
ments may also imply that the plantation forest may take much longer to 
return to their former state following perturbations from farming and 
gold panning activities of settlers in the plantations. 

5. Conclusions 

The goal of our investigation was to develop and test the perfor-
mance of a Bayesian hierarchical modelling approach using C stock as 
the outcome variable, under the influence of different but related me-
dium resolution satellite sensor data sources. By comparison of models 
with varying levels of richness from Landsat-8 and Sentinel-2, we were 

able to demonstrate that the Sentinel-2 based C stock spatial hierarchical 
model has the best predictive characteristics in terms of the RMSE, MAE, 
CRPS and DIC, and is more attractive as compared to the Landsat-8 
based C stock hierarchical model. For the sake of our goal, the 
Sentinel-2 based C stock spatial predictive model is the best as it is 
applicable to domains beyond the training sample. The Sentinel-2 based 
C stock spatial predictive model is more useful than the Landsat-8 based 
C stock based predictive model in assisting plantation forest practi-
tioners. This is critical as forest practitioners should correctly advise 
national governments on the potential of resuscitated plantation forests 
in sequestering carbon in the country. The findings of this study will aid 
in the understanding of dynamics between vegetation indices and C 
stock concentration and determining area specific sites for intervention 
for ecological restoration and monitoring. The high cost of obtaining 
data for ecological monitoring and validation of biomass models by 
forest practitioners and managers can be substantially reduced as readily 
available and high-resolution Sentinel-2 remote sensing data is cheap to 
acquire. 

There is however, a need to extend the present modelling framework 
to a broader coverage of auxiliary information by integrating broadband 
vegetation indices and bioclimatic variables in a comprehensive 
Bayesian hierarchical framework. The high residual spatial dependence 
demonstrated in Sentinel-2 based C stock hierarchical modelling implies 
the effectiveness of covariate information from remote sensing. Over 
and above the significant reduction in C stock prediction uncertainty 
when modelling with covariates from finer spectral and spatial resolu-
tion, our model offers the possibility of robust modelling if we adopt a 
framework encompassing a much broader suite of independent variables 
to offer better predictive maps of C stock distribution in disturbed 
plantation ecosystems. We conclude that Sentinel-2 data can be pro-
posed as the primary earth observation data source in the management 
and monitoring of managed ecosystems with history of ecological 
fragility. 
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152–161. http://www.jstor.org/stable/42901479. 

Walvoort, D.J.J., Brus, D.J., de Gruijter, J.J., 2010. An R package for spatial coverage 
sampling and random sampling from compact geographical strata by k-means. 
Comput. Geosci. 36 (10), 1261–1267. https://doi.org/10.1016/j. 
cageo.2010.04.005. 

Wang, Q., et al., 2020. Comparative analysis of Landsat-8, Sentinel-2, and GF-1 data for 
retrieving soil moisture over wheat farmlands. Remote Sens. https://doi.org/ 
10.3390/rs12172708. 

Wang, Q., Ni, J., Tenhunen, J., 2005. Application of a geographically-weighted 
regression analysis to estimate net primary production of Chinese forest ecosystems. 
Glob. Ecol. Biogeogr. 14, 379–393. https://doi.org/10.1111/j.1466- 
822X.2005.00153.x. 

Wu, C., et al., 2016. Comparison of machine-learning methods for above-ground biomass 
estimation based on Landsat imagery. J. Appl. Remote. Sens. 10 (3), 35010. https:// 
doi.org/10.1117/1.JRS.10.035010. 

Xiong, Y., Wang, H., 2022. Spatial relationships between NDVI and topographic factors 
at multiple scales in a watershed of the Minjiang River, China. Ecol. Informat. 69, 
101617 https://doi.org/10.1016/j.ecoinf.2022.101617. 

Zunguze, A.X., 2012. Quantificação de carbono sequestrado em povoamentos de 
eucalyptus spp na floresta de Inhamacari-Manica. Universidade Eduardo Mondlane. 

T.S. Chinembiri et al.                                                                                                                                                                                                                          

https://doi.org/10.3390/rs8040299
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0275
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0275
https://doi.org/10.1016/j.cageo.2020.104473
https://doi.org/10.1016/j.cageo.2020.104473
https://doi.org/10.1007/978-1-4020-6547-7_1
https://doi.org/10.1201/9780429318443
https://doi.org/10.1201/9780429318443
https://doi.org/10.1109/IGARSS39084.2020.9323446
http://refhub.elsevier.com/S1574-9541(22)00384-3/optTkItz7I7Of
http://refhub.elsevier.com/S1574-9541(22)00384-3/optTkItz7I7Of
https://doi.org/10.3390/rs9010055
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0305
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0305
https://doi.org/10.1016/j.acags.2020.100032
https://doi.org/10.1016/j.rse.2009.12.022
https://doi.org/10.1016/j.rse.2019.01.036
https://doi.org/10.1016/j.rse.2019.01.036
http://refhub.elsevier.com/S1574-9541(22)00384-3/optBjnluzVU0I
http://refhub.elsevier.com/S1574-9541(22)00384-3/optBjnluzVU0I
https://doi.org/10.1016/j.ecoinf.2015.01.005
https://doi.org/10.1002/env.532
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0325
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0325
http://www.jstor.org/stable/42901479
https://doi.org/10.1016/j.cageo.2010.04.005
https://doi.org/10.1016/j.cageo.2010.04.005
https://doi.org/10.3390/rs12172708
https://doi.org/10.3390/rs12172708
https://doi.org/10.1111/j.1466-822X.2005.00153.x
https://doi.org/10.1111/j.1466-822X.2005.00153.x
https://doi.org/10.1117/1.JRS.10.035010
https://doi.org/10.1117/1.JRS.10.035010
https://doi.org/10.1016/j.ecoinf.2022.101617
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0350
http://refhub.elsevier.com/S1574-9541(22)00384-3/rf0350

	Hierarchical Bayesian geostatistics for C stock prediction in disturbed plantation forest in Zimbabwe
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 Remote sensing derived predictors
	2.2.1 Landsat OLI and Sentinel-2 MSI imagery

	2.3 Sampling design
	2.3.1 Spatial coverage sampling scheme
	2.3.2 Geographical partitioning of the study domain by the k-means algorithm

	2.4 Carbon stock data
	2.4.1 Above ground tree biomass (AGTB) field measurement
	2.4.2 Biomass calculation and derivation of C stock

	2.5 Hierarchical Bayesian modelling
	2.5.1 Observed C stock data
	2.5.2 Spatial random effects specification
	2.5.3 Model prediction
	2.5.4 Hyperprior specification

	2.6 Variogram modelling and exploratory analysis
	2.7 Model predictions and uncertainty assessment
	2.8 Model comparison and validation

	3 Results
	3.1 Exploratory analysis
	3.2 Effects of Landsat-8 and Sentinel-2 predictors on C stock prediction
	3.3 C stock prediction from medium resolution sensor derived covariates
	3.4 Performance assessment of C stock prediction models
	3.5 MCMC convergence diagnostics

	4 Discussion
	4.1 Landsat-8 and Sentinel-2 derived C stock predictors
	4.2 Parameter uncertainty and model performance of new generation sensor-based C stock models

	5 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


