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ABSTRACT

Motivated by the desire for wide-field images with well-defined statistical properties for 21 cm cos-

mology, we implement an optimal mapping pipeline that computes a maximum likelihood estimator

for the sky using the interferometric measurement equation. We demonstrate this “direct optimal

mapping” with data from the Hydrogen Epoch of Reionization (HERA) Phase I observations. After

validating the pipeline with simulated data, we develop a maximum likelihood figure-of-merit for com-

paring four sky models at 166 MHz with a bandwidth of 100 kHz. The HERA data agree with the

GLEAM catalogs (Wayth et al. 2015) to < 10%. After subtracting the GLEAM point sources, the

HERA data discriminate between the different continuum sky models, providing most support for the

model of Byrne et al. (2021). We report the computation cost for mapping the HERA Phase I data and

project the computation for the HERA 320-antenna data; both are feasible with a modern server. The

algorithm is broadly applicable to other interferometers and is valid for wide-field and non-coplanar

arrays.

Keywords: 21 cm lines (690); Aperture synthesis (53); Interferometers (805); Radio Astronomy (1338);

Radio interferometry (1346)

1. INTRODUCTION

Observations of the 21 cm spectral line of neutral hy-

drogen during the epoch of reionization (EoR), cosmic

dawn, and the Dark Ages have the potential to trans-

form our understanding of the universe. Goals of current

experiments are to map the process of the formation and

evolution of the first stars, galaxies and black holes, to

further constrain the prevailing ΛCDM cosmology (Ben-

nett et al. 1996, 2013; Hinshaw et al. 2013; Planck Col-

laboration et al. 2020), and to search for evidence of

physics beyond the ΛCDM paradigm. For reviews see

(Liu & Shaw 2020; Mesinger 2019; Morales & Wyithe

2010; Pritchard & Loeb 2012). Current and recent in-

terferometric experiments aiming to detect cosmologi-

cal 21 cm signals include CHIME (Bandura et al. 2014),

HIRAX (Newburgh et al. 2016), PAPER (Parsons et al.

2010), MWA (Tingay et al. 2013), LOFAR (van Haarlem

et al. 2013), and HERA (DeBoer et al. 2017).

The ultimate goal of precision cosmology with the

21 cm line is a quantitative comparison between theoret-

ical predictions of neutral hydrogen structures and their

measurements at radio wavelengths. This confrontation

between theory and experiments using interferometers

is beginning with two-point statistics (two-point corre-

lation function or power spectrum), and is likely to de-

velop further with higher-order statistics and, finally,

direct evaluation of properties of 3D (two angular di-

mensions and one frequency dimension) image cubes.

Radio interferometers measure the coherence, or vis-

ibility, between signals received by pairs of antennas in

an array. For co-planar arrays and small fields of view,

the relationship between the measured visibilities and

the brightness distribution on the sky is approximately

a 2D Fourier transform (Thompson, Moran, & Swen-

son 2017), and is therefore closely related to the power

spectrum (Morales & Hewitt 2004). Wider fields of view

can be accommodated with the 2D Fourier technique by

implementing corrections for neglecting the “w-term” in

the interferometric phase (Cornwell et al. 2005, 2012;

Barry et al. 2019; Ye et al. 2021). Current limits on the

21 cm power spectrum have been derived by analyses

that make use of the image-visibility Fourier relation-

ship (Dillon et al. 2014, 2015a; Beardsley et al. 2016;

Trott et al. 2016; Patil et al. 2017; Barry et al. 2019;

Li et al. 2019; Rahimi et al. 2021) and by analyses that

work directly with the visibility data through the de-

lay spectrum approach (Parsons et al. 2012; Kolopanis

et al. 2019; The HERA Collaboration et al. 2021). The

two approaches are complementary, essentially measur-

ing different statistics in the sky (Morales et al. 2019).

Images mapped from visibilities, and convolved by

the array synthesized beam, are called dirty images.

To deconvolve the dirty images, the CLEAN (Högbom

1974; Clark 1980; Cornwell 2008; Rau & Cornwell 2011)

deconvolution algorithm is frequently used. The re-

sulting CLEAN model is a list of deconvolved bright

sources, which are the focus of astronomy and astro-
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physics. However, the focus of 21 cm precision cosmol-

ogy is the faint diffuse emission which is not corrected

by CLEAN. A deconvolution approach is required to

treat all pixels equally across the image. Even for bright

sources, CLEAN is a heuristic, iterative process, and the

statistical properties of the resulting image are not well

known. For cosmological studies, we need an algorithm

that can map wide fields and that can reconstruct bright

point sources and faint diffuse emission with equally well

understood statistics. Other ways to image and decon-

volve images have been explored. Some examples are

Fast Holographic Deconvolution and other forward mod-

eling techniques (Sullivan et al. 2012; Bernardi et al.

2013) and m-mode mapping (Shaw et al. 2014; East-

wood et al. 2018). For a recent review, see Liu & Shaw

(2020).

In this paper we explore direct optimal mapping

(DOM) of interferometric data, and we apply it to

HERA data as a demonstration. By “direct”, we mean

that we do not make the assumptions that lead to the

two-dimensional Fourier transform relationship between

data and image, and we take “optimal” to mean that

the mapping process does not lose information of model

parameters. The optimal mapping approach was first

explored in the context of CMB observations (Tegmark

1997). It has more recently been extended to interfero-

metric imaging for 21 cm cosmology (Morales & Mate-

jek 2009; Sullivan et al. 2012; Dillon et al. 2015b; Zheng

et al. 2017a), and considerations of optimal mapping

are incorporated in the HERA design (Dillon & Parsons

2016).

Benefits of this approach include a data product in the

image domain that potentially covers the full celestial

sphere, full knowledge of the point spread function in all

directions, and full knowledge of the covariance matrix

relating map pixels. Linear deconvolution, implemented

through matrix operations, is in principle possible, treat-

ing point sources and extended emission equally. With

the direct inversion of the instrument response, it is not

necessary to grid the data (Barry & Chokshi 2022), it is

not necessary to correct for neglect of the w-term, and

the configuration of the antennas need not be coplanar.

The paper is organized as follows. We introduce the

DOM general mathematical formalism in Section 2, and

how we apply the formalism to HERA data in Section 3.

We validate the algorithm with simulated data in Sec-

tion 4. In Section 5, we use DOM to map HERA data,

and evaluate four sky models. In Section 6, we assess the

computational costs of DOM. We conclude in Section 7.

2. FORMALISM

Interferometers measure intensity as complex visibili-

ties, defined as:

Vij(ν) =

∫
Bij (̂s)I (̂s) exp

(
−i 2πν

c
bij · ŝ

)
dΩ, (1)

where ŝ is the unit vector pointing to a certain point

on the sky, Bij (̂s) is the product of two primary beams

from the i − j baseline1, I (̂s) is the specific intensity,

bij is the baseline vector, ν and c are the observation

frequency and the speed of light.

If we denote the sky as a map vector m and the mea-

sured visibilities to form a data vector d, the mapping

can be expressed by one matrix multiplication

d = Am + n, (2)

where A is the measurement matrix and n is the noise

vector for the visibilities. The A matrix maps the sky

to visibilities.

With this data model, an optimal estimator of the sky

is obtained with the following operation:

m̂ = DA†N−1d, (3)

where N = 〈nn†〉 is the noise covariance matrix, D in

general transforms the raw map to the final estimation

of the true sky, and m̂ is an estimate of the true sky.

In this paper, we only format D as a normalization to

physics units; we leave more complicated D formats, say

including deconvolution, to future publications. Even as

a normalization matrix, D does not have a set form, and

we discuss our choice of D in Section 3.2.

DOM calculates direction-dependent PSFs for all pix-

els, expressed in a Npixel×Npixel matrix P (Dillon et al.

2015b):

P = DA†N−1A. (4)

For interferometers, pixel noise is highly correlated.

Therefore, the pixel covariance matrix is critical for

quantitative interpretation of the measured sky map.

One advantage from DOM is that it provides a pixel

covariance matrix. The covariance matrix C is closely

related to the PSF matrix (Dillon et al. 2015b):

C = DA†N−1ADT = PDT. (5)

To use DOM, we first need to construct the measure-

ment matrix A and the noise matrix N. We divide

the sky into HEALpixels (Górski et al. 2005) with the

pixel size chosen to be much smaller than the synthe-

sized beam. Then the integral in Equation 1 becomes a

1 The primary beams are peak-normalized.
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Figure 1. Diagram of the direct optimal mapping (DOM). The two major modules, data conditioning and mapping, are
displayed on the left; the detailed steps are shown in the flowchart. More details of each step are described in Section 3.

summation:

dn = Vn(ν) =
∑
k

mkB(̂sn,k) exp

(
−i 2πν

c
bnŝn,k

)
,

(6)

where the subscript n represents all visibilities (folding

ij into one index), the subscript k represents all pixels,

dn is an element of the data vector d, ŝn,k is the direc-

tional vector in the horizon coordinate system, and mk

is the flux within one pixel calculated as mk = Ik ·∆Ω

(∆Ω is the solid angle of one HEALpixel). Please note

that approximating spatially extended flux to the cen-

ter of HEALpixels leads to errors, especially when the

in-pixel flux distribution is strongly skewed by bright

off-center point sources. This will be discussed later in

the treatment of the GLEAM catalogs in Section 5.1.

In the above equation, we assume all the antenna pairs

have the same primary beam B, and ŝn,k implicitly de-

pends on time because of sky rotation.

Then the A matrix is written element-wise:

Ank =B(̂sn,k) exp

(
−i2πν

c
bn · ŝn,k

)
(7)

=B(̂sn,k) · Φn,k, (8)

where the second line shows that the beam term B(̂sn,k)

and the fringe term Φn,k are separable. We will use this

feature in Section 3.2 for normalization.

3. APPLICATION TO HERA

In this paper, we use HERA data from the Phase I

observation season, with 39 operational antennas. This

is the dataset that was used to derive the Phase I EoR

power spectrum limits, and we refer the reader to Kern

et al. (2019), Dillon et al. (2020), Kern et al. (2020a),

Kern et al. (2020b), and The HERA Collaboration et al.

(2021) for a detailed discussion of the data prepara-

tion. We only map the east-west polarization for this

demonstration because Byrne et al. (2021) shows that

this patch of the sky is predominantly unpolarized.

Briefly, the dataset spans the dates of December 10th –

28th, 2017, and the data were calibrated, flagged, and

binned by local sidereal time (LST). Certain instrumen-

tal systematics, including crosstalk and cable reflection,

were modeled and subtracted. HERA is designed to

have a redundant array configuration (Dillon & Par-

sons 2016), the resulting non-redundant baseline groups

poorly sample the uvw space, making HERA not an

ideal instrument for imaging. However, the focus of

DOM is to make images with well understood statis-

tical properties, regardless of the resolving power of the

images themselves.

We have developed a software package2 for the DOM

algorithm. The diagram in Figure 1 illustrates steps of

the algorithm. Although the package is initially imple-

mented in HERA data, it can be easily applied to other

interferometric data.

3.1. Calculating A and N

The sky pixels are defined in the equatorial coordi-

nate system, meaning that the pixels are independent

of Earth rotation. For a zenith-pointing telescope, both

the primary beam B and the unit vectors ŝn,k are na-

tively defined in the horizon coordinate system. At each

time integration, the pixel locations are converted from

the equatorial coordinate system to the horizon coordi-

nate system (RA/Dec→Az/El). Then with the baseline

vectors (bn in Equation 7), all the elements of the A

matrix are calculated.

The input data are first conditioned by selecting visi-

bilities, estimating the visibility noise, removing flagged

data, and averaging redundant baselines3. We estimate

2 The “direct optimal mapping” repository is developed
on GitHub; the first release version (v1.0.0, Zenodo,
doi:10.5281/zenodo.6984370) is used for the analyses in
this paper.

3 Given the manageable amount of data, we do not perform redun-
dant averaging for HERA Phase I data. However, we will need
redundant averaging for future HERA data with 320 antennas.

https://github.com/HERA-Team/direct_optimal_mapping
https://zenodo.org/badge/latestdoi/353426311 
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the noise for each visibility according to the radiometer

equation (Thompson et al. 2017; Kern et al. 2020a)

σn =

√
ViiVjj√
∆ν∆t

, (9)

where σn is the estimate of the noise of the visibil-

ity between antenna i and j, Vii and Vjj are au-

tocorrelations of antenna i and j, ∆ν is the band-

width, and ∆t is the integration time. When visibili-

ties are redundant-averaged, the estimated noise for each

redundant-averaged baseline is calculated as

σred. avg. =

(∑
n

1

σ2
n

)−1/2
, (10)

where the summation runs over visibilities from redun-

dant baselines within one redundant group.

The noise matrix N is constructed by filling the diago-

nal elements with the visibility noise squared, assuming

off-diagonal elements are zero:

N = diag(σ2
1 , σ

2
1 , · · · , σ2

Nvis
), (11)

where σn is the noise of the nth visibility.

3.2. Map Normalization

The direct optimal mapping formalism only requires

the D matrix being non-singular to preserve all informa-

tion of model parameters. In practice, different normal-

ization can be applied for different map-based analysis.

Without normalization, the mapping equation

m̂ = A†N−1d adds up contribution from all visibili-

ties as a sum. To calculate the average, we need the

effective weights, which varies across pixels because of

the primary beam. In addition, sky drift complicates

the weighting because it moves the primary beam on the

sky. Therefore, we need a weighting of the visibilities

considering a moving primary beam for each sky pixel.

For HERA, the instrument observes the sky naturally

with one primary beam applied. After that, noise is in-

troduced in visibilities. In direct optimal mapping, we

apply another primary beam from multiplying A† in the

mapping equation (Equation 3). Therefore, the recov-

ered sky has the primary beam applied twice—one from

observation and one from mapping. However, the noise

only has the primary beam applied once from mapping.

Because of the difference, there does not exist an ob-

vious way to correct for the primary beam effect in nor-

malization. We may correct for the primary beam twice,

and the recovered sky will have no primary beam ap-

plied; however, the noise will have one extra primary

beam corrected, blowing up the noise far away from the

beam center. Alternatively, if we correct for the primary

beam once, the recovered sky will still have one primary

beam applied, but the map noise will be free of primary

beam effect. Here we choose to correct for the primary

beam once, and define the normalization matrix D ac-

cordingly.

Inspired by Barry et al. (2019), we use the optimal

mapping equation but replace the visibility data with

a vector of ones for counting. Then, we divide m̂ by

the weight map for normalization. However, the weight

map has zero values because of the small-scale fringe

term in the A matrix, which are numerically unstable

in the denominator. Instead, we use only the primary

beam term in the A matrix to construct the weight map.

We first construct another version of A with only the

beam term (i.e., setting the exponential term equal to

unity), which we call AB:

(AB)nk = B(̂sn,k). (12)

We then calculate the weight map

mweight = A†BN−11, (13)

where 1 is an all-ones vector counting all visibilities. The

weight map is constructed following the exact sampling

of the visibility measurement and the noise weighting.

We divide the weight map out of m̂ to turn the visibility

summations to averages. Figure 2 shows an example of

the weight map.

Finally, we define the D matrix as

D = diag(
1

mw,1
,

1

mw,2
, ...,

1

mw,Npixel

), (14)

where mw,i is the ith element in mweight. This definition

accounts for the differing contribution of the visibilities

to each point on the map given the primary beam. How-

ever, the primary beam effect, from observation, is still

left in the map, meaning that sources away from the

zenith are attenuated by the primary beam.

With A,N, D and the conditioned HERA data d, the

map estimator m̂ is calculated with Equation 3. The

PSF and the covariance matrices (P and C) are also

calculated with Equation 4 and Equation 5.

4. ALGORITHM VALIDATION

In this section, we use simulated data to validate the

direct optimal mapping algorithm.

4.1. Map Validation

We generate simulated data with the HERA Phase I

array configuration, through a pipeline independent of
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Dec. -30°

Figure 2. An example of the weight map defined in Equa-
tion 13. The map spans two hours in RA. The fact that
there are more effective weight on the left side of the region
is due to lower noise (higher weighting) when observing that
region, which results from longer integration time and lower
intrinsic sky noise.

15.017.520.022.5
RA (deg)

34

32

30

28

26

D
ec

 (d
eg

)

0.2-Jy Horizon Source

15.017.520.022.5
RA (deg)

Non-coplanarity

-2.9e-05 2.9e-05
Flux Density (Jy)

-0.071 0.071
Flux Density (Jy)

Figure 3. Validation-characterized effects: horizon source
and array coplanarity. Both maps are centered on the zenith.
Left : A point source, with a typical flux density (0.2 Jy at
166 MHz), is added 85◦ away from the zenith. The source
signal is picked up by the sidelobes of the primary beam and
leaks into the zenith field via grating lobes at the 10−4 level.
Right : Non-Coplanarity residual. Comparing to the original
map in Figure 5, the difference increases to 5% of the original
map with the GSM08 sky model.

direct optimal mapping. The simulated data are verified

to be consistent with the pyuvsim simulation (Lanman

et al. 2019) to machine-precision (Kim et al., 2021 in

preparation). We did not use pyuvsim because our sim-

ulator is tested to be more computationally efficient.

We use the Global Sky Model (GSM08) (de Oliveira-

Costa et al. 2008) as our model of the true sky for one

twenty-second integration at 166 MHz. Then we use

DOM to map the simulated visibilities, and compare the

map to convolved GSM08. Specifically, the convolved

GSM08 is calculated by multiplying the P matrix and
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Figure 4. Point spread function (PSF) in 30◦ × 30◦ maps at
166 MHz. The four maps show the field center and 25◦, 50◦,
75◦ away from the field center. The white area in the 75◦

plot is beyond the horizon. The full-width-at-half-maximum
(FWHM) of the synthesized main beam at the field center
is 50–60 arcminutes, close to the diffraction limit defined
by the longest baseline. Grating lobes are seen in hexag-
onal patterns, which are distorted as we move away from
the field center, especially in the 75◦-away map. As shown,
DOM provides direction-dependent PSF information across
the sky. The grating lobes cause the difference between the
original and the convolved GSM08 in Figure 5. The peak
values change because of the primary-beam attenuation at
the four pixels. The color bars saturate at 10% of the peak
values to illustrate faint sidelobe structures.

the GSM08 sky model. Without noise, the two maps

are consistent at 10−7 levels (Figure 5). Getting to the

10−7 consistency, we quantitatively characterized vari-

ous factors that affect the mapping results:

1. Primary beams: the residual map is very sen-

sitive to the primary beam. We use the CST-

simulated single-antenna primary beam (Fagnoni

et al. 2021), which describes the beam pattern in

electric fields with 1◦ angular grid and 0.5 MHz fre-

quency resolution. However, our mapping requires

< 0.25◦ angular resolution and 0.1 MHz frequency
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Figure 5. Map validation with simulated visibilities. Top:
Global Sky Model (GSM08) (de Oliveira-Costa et al. 2008) at
166 MHz before and after convolving with the PSF. Because
of the grating lobes in the PSF (Figure 4), the convolved
GSM08 looks different from the original GSM08. Middle:
the DOM map from simulated visibilities before and after
adding noise. Bottom: the residual maps after subtracting
the convolved GSM08 from the middle row. The one with-
out noise shows 10−7 residuals. The one with noise shows
random patterns at ∼ 10% level. The reduced-χ2 value (Sec-
tion 4.2) is also shown in the noise residual.

resolution. We need to interpolate the simulated

beam pattern in both angular and frequency space.

We use the UVBeam object within the pyuvdata

package (Hazelton et al. 2017) to perform the in-

terpolation. When the beam pattern is rotated by

90◦, the residual increases up to 30% of the original

map. Moreover, interpolating in electric fields or

in power also lead to 10−4 differences in the resid-

ual maps. This sensitivity to the primary beam

indicates the possibility to constrain the primary

beams with DOM maps.

2. Horizon contribution: the simulation includes all

signals above horizon. We found that if we only

convolve sky signals within 50◦ around the zenith,

the residual is 30 – 50% of the peak value. Fur-

thermore, Figure 3 (on the left) shows the map

difference when a typical point sources is added

near the horizon (85◦ away from the zenith). The

source leaks into the zenith field at 10−4 level.

Considering the significant solid angle around the

horizon, this demonstrates the necessity to cor-

rectly include signals within the entire observable

hemisphere (Pober et al. 2016), perhaps even ac-

counting for the terrain near the horizon (Bassett

et al. 2021), to model the foreground.

3. Coplanarity: we estimate the effect of array copla-

narity by comparing the mapping results with and

without assuming the antennas are on a plane.

The HERA dishes deviate randomly from a per-

fect plane by about 4 cm, and Figure 3 (on the

right) shows the resulting 5%-level difference from

ignoring the non-coplanarity.

DOM calculates the direction-dependent PSFs across

the field. Figure 4 shows PSFs in four pixels from the

field center to near-horizon. The synthesized beam and

the grating lobe pattern become increasingly distorted

as the pixel moves away from the field center, illustrat-

ing the importance of considering direction-dependence

PSFs.

After mapping the noiseless simulation, we add noise

to the visibilities. Specifically for a simulated visibility

dn, we draw independent random noise with the ampli-

tude of σn/
√

2 for the real and imaginary parts. The

noisy visibilities are then mapped to compare with the

convolved sky model. Figure 5 shows the results with

and without adding noise to the simulations. Without

noise, the residual map is at 10−7 levels. With noise,

the residual map amplitude is ∼ 10%, six orders of mag-

nitude higher than the noiseless residual map. Further

investigation shows that the residual pattern changes
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Figure 6. Eigenvalues of C in descending order for the one-
integration simulation data. A clear drop is seen around the
180th eigenmode. Thus, we choose the first 180 eigenvalues
for the figure-of-merit calculation. The red-shaded region
shows the selected eigenmodes.

for each random noise realization, confirming that it is

random-noise dominated.

4.2. Pixel Covariance Matrix

The coherent noise pattern (Figure 5, bottom right)

shows the correlated noise in map space. One feature

of DOM is that it provides a robust noise covariance

matrix C to capture the correlation. The pixel correla-

tion results from the instrument’s incomplete uvw space

sampling. There are patterns in the sky to which the ar-

ray configuration is not sensitive.

The noise covariance matrix C is closely related to the

PSF matrix P by multiplying DT on the right (Equa-

tion 5). With C, we define a maximum likelihood figure-

of-merit (FoM) to evaluate residual maps using the pixel

covariance:

FoM = ∆mTC−1∆m, (15)

where ∆m is the map vector of one residual map. Since

C is not invertible, we first eigendecompose C

C = V W V−1 (16)

where V and W are the eigenvectors and eigenvalues.

Since C is singular, W has zero elements. Figure 6

shows the eigenvalues in descending order. A clear drop

is seen around the 180th eigenvalue, this is related to the

number of nonredundant modes HERA Phase I array

measures. In addition, the fact that the simulation data

only has one time integration leads to the sharp drop in

eigenvalue spectrum. Eigenvalue spectra look different

when we map multiple time integrations in Section 5.2.

Because C is symmetric, we can choose V to be or-

thonormal

V−1 = VT. (17)

Now we plug Equation 16 into Equation 15

FoM = ∆mT(V W V−1)−1∆m

= ∆mTV W−1 V−1∆m

= ∆mTV W−1 VT∆m

= (∆mTV)W−1(∆mTV)T, (18)

where ∆mTV is the map projections onto the eigenvec-

tors. Since W has zero values, W−1 is not computable.

Therefore, we only consider the dominating eigenvalues

in Equation 18. For this simulated data, we choose the

first 180 eigenvalues, indicated in Figure 6.

We write ∆mTV and W element-wise for the first

dominating 180 eigenvalues

∆mTV = (α1, α2, ..., αN=180), (19)

W = diag(w1, w2, ..., wN=180), (20)

and the FoM calculation can be more clearly expressed

as

FoM =

N=180∑
i

α2
i

wi
. (21)

This FoM is a χ2-statistic, and the reduced-χ2 is χ2
ν =

χ2/d.o.f.4 For a residual map from noise-dominated vis-

ibilities, we expect the FoM follows a χ2 distribution

with 180 degrees of freedom. For reduced-χ2, we expect

χ2
180 ∼ 1. The simulation map in Figure 5 is measured

χ2
180 = 0.93. For different noise realizations, χ2

180 ∼ 1,

validating that the covariance matrix provides an accu-

rate description of correlated pixel noise in map space.

Back to the interferometric setting, eigenvectors rep-

resent emission patterns in the sky. The measured vis-

ibilities are sensitive to different patterns at different

levels, which is characterized by the magnitude of the

eigenvalues. The eigenvectors with very small eigenval-

ues are essentially invisible to the interferometer, which

should be excluded for the FoM calculation. Therefore,

by selecting the nonzero eigenvalues, we only use the

emission patterns visible to the array in calculating the

FoM.

5. MAPPING HERA DATA

In this section, we map a small fraction of HERA data

and evaluate sky models against the HERA measure-

ment. Aguirre et al. (2021) report a calibration bias in

the calibration of this dataset, so we correct the bias

by multiplying the visibilities by a factor of 1.04 (The

HERA Collaboration et al. 2021) before mapping.

5.1. HERA Map vs Sky Models

4 The degrees of freedom (d.o.f) for this simulated data is 180, the
number of eigenvalues considered.
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Figure 7. Maps from HERA data and convolved GLEAM
catalogs (Wayth et al. 2015) at 166 MHz. Left: the HERA
map. Right: GLEAM catalogs (Hurley-Walker et al. 2017,
2019) convolved by the PSF. The GLEAM catalogs miss
some diffuse emission in the map, especially between point
sources.

We select the best fraction of the HERA Phase I

data, the central region of Field 1 defined in The HERA

Collaboration et al. (2021). This data set contains 20

twenty-second time integrations. We randomly select

one HERA frequency channel around 166 MHz with a

bandwidth of 100 kHz and map the corresponding visi-

bilities. Meanwhile, we calculate the P matrix to cover

the entire hemisphere (90◦ from the zenith) to convolve

four sky models and compare with HERA data:

1. GLEAM catalogs: GLEAM (Wayth et al. 2015) is

a set of point source catalogs from the Murchi-

son Widefield Array (MWA). GLEAM covers

the sky south of +30◦ declination across 72–

231 MHz. The publicly-available data include an

extragalactic catalog (Hurley-Walker et al. 2017)

with 307,455 sources and a partial Galactic plane

catalog (Hurley-Walker et al. 2019) with 22,037

sources. We use the fitted spectral information

stored in the GLEAM catalog—a flux at 200 MHz

and a spectral index—for each source to evaluate

its flux at 166 MHz. We remove sources without

fitted spectral information in GLEAM catalogs,

because those sources cluster within a sky patch

>120◦ away from our field. We do not approxi-

mate point source flux to the center of the corre-

sponding pixel because we found that the location

approximation causes significant errors. Instead,

we create additional pixels representing the exact

location of each point source, similar to what was

done in Dillon et al. (2015b).

2. Global Sky Model in 2008 (GSM08): de Oliveira-

Costa et al. (2008) compiled several sky surveys

and derived a model of the sky emission across

10 MHz – 94 GHz. GSM08 includes both the dif-

fuse emission and point sources.

3. Global Sky Model in 2016 (GSM16): Zheng et al.

(2017b) improved upon de Oliveira-Costa et al.

(2008) by including additional or revised survey

maps (Remazeilles et al. 2015) and masking out

the top 1% pixels to remove point sources. The

frequency coverage is also extended to 10 MHz –

5 THz from GSM08.

4. Byrne21 Map: Byrne et al. (2021) recently pub-

lished a sky map at 182 MHz from MWA ob-

servations, covering 11,000 deg2. Assuming the

Byrne21 map is dominated by Galactic syn-

chrotron foreground, we use the reported spectral

index of -2.61 (Mozdzen et al. 2017) to scale the

original 182 MHz map to 166 MHz.

The HERA map and convolved GLEAM catalogs are

shown in Figure 7. The GLEAM catalogs match the

HERA map in point-like morphology and amplitude,

while missing some faint diffuse emission. A similar

comparison between GLEAM and HERA was performed

in Carilli et al. (2020) with the Common Astronomical

Software Applications (CASA) CLEAN imaging.

We subtract the GLEAM catalogs out of the HERA

map (left plot of Figure 8) to further study the diffuse

structures. With the bright point sources subtracted,

the diffuse emission starts to emerge. We compare sky

models with the measured diffuse emission. Figure 8

shows this comparison by further subtracting sky models

out of the GLEAM-subtracted residual. The middle col-

umn of Figure 8 shows three convolved sky models. The

GSM08 model shows signs of the two bright sources and

vertical stripes. These stripes originate from the Haslam

survey (Haslam et al. 1982), which is used to construct

GSM08 (Remazeilles et al. 2015). GSM16 does not show

signs of bight point sources nor obvious signs of verti-

cal stripes after their de-sourcing and de-striping pro-

cesses (Zheng et al. 2017b). But neither GSM08 nor

GSM16 shows a diffuse emission pattern that resembles

the measurement. However, the Byrne21 map shows

similar emission patterns to the measurement, especially

at large scales.

After further subtracting the three sky models, the

final residual maps are shown on the right column of

Figure 8. Both GSM08 and GSM16 residual maps show

morphology close to GSM08 and GSM16 themselves,

with negative amplitudes. This means that neither

GSM08 nor GSM16 map reduces the measured diffuse

pattern, instead they impose their intrinsic patterns in
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Figure 8. Residual maps at 166 MHz. The figure is designed as a subtraction equation showing residuals with different
components subtracted. All maps share the same sky patch and color bar range as annotated on the left map. Left column:
After subtracting the convolved GLEAM catalogs (Hurley-Walker et al. 2017, 2019) from the HERA map, the residual map
starts to show diffuse emission patterns. Center column: From top to bottom are convolved Global Sky Model 2008 (GSM08) (de
Oliveira-Costa et al. 2008), convolved Global Sky Model 2016 (GSM16) (Zheng et al. 2017b), and convolved Byrne21 map (Byrne
et al. 2021). GSM08 contains the two brightest point sources, while neither GSM16 nor Byrne21 contains point sources. GSM08,
less so for GSM16, also shows vertical stripes. Right column: Residual maps after further subtracting the GSM08, GSM16,
and Byrne21 maps. Both the GSM08 and the GSM16 residuals increase the amplitude of the residual map. The morphology
of their residual maps resemble that of the sky models themselves, indicating that they do not represent the observed diffuse
emission. The Byrne21 map, however, shows a similar diffuse pattern as observed in the GLEAM-subtracted residual at large
scales. Reduced-χ2 values are also presented for each of the residual maps as in Table 1.

the final residual maps. However, the Byrne21 residual

does show reduced large-scale diffuse pattern, with the

point sources more prominent in the final residual map.

5.2. Reduced-χ2 of Residual Maps

To calculate χ2
ν of the maps, we first examine the

eigenvalues of the covariance matrix C. Because we are

mapping 20 time integrations, the sky rotation increases

the array sampling compared to one time integration

in Section 4.2. The additional information leads to the

smoothing of the eigenvalue spectrum in Figure 9. With-

out a clear drop, it is not obvious to determine a cut for

dominating eigenvalues. We choose to use the first 1000

eigenvalues for this covariance matrix. We are explor-

ing more systematic and robust ways to determine the

number of dominating eigenvalues for future work.

Similar to Section 4.2, we measured χ2
ν of the residual

maps in Figure 8, but with the highest 1000 eigenvalues.

The result shows χ2
1000 at three levels: the Map-GLEAM

map and the Map-GLEAM-Byrne21 map show similar

values at the lowest, around 0.9×103; the Map-GLEAM-

GSM16 map shows a value in the middle, around 2×103;
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Figure 9. Full eigenvalue spectrum of C from mapping the
HERA data. The eigenvalues are displaced in descending
order, with blue for the positive and orange for the negative.
The negative values have the absolute values at the machine-
error levels, and are artificially ordered to the right side of
the plot instead of scattering around zero with the positive
eigenvalues. Different from Figure 6, there is not a clear-cut
in this eigenvalue spectrum. This is because we combined
20 time integrations in this mapping. The sky rotation adds
information beyond what the same array measures at one
time, smoothing the drop we saw in Figure 6. We choose
to include the first 1000 eigenvectors (red shaded region) for
the reduced-χ2 calculation.

Table 1. Reduced-χ2 of Residual
Maps

Residual Map χ2
ν

(1) (2)

Noise Simulation 0.93

Map - GLEAM 873

Map - GLEAM - GSM08 5,429

Map - GLEAM - GSM16 2,169

Map - GLEAM - Byrne21 868

Note—Reduced-χ2 statistics are cal-
culated for the map from noise sim-
ulation and different residual maps.
Column (2) shows χ2

ν as introduced
in Section 4.2.

the Map-GLEAM-GSM08 map shows the highest value,

around 5× 103.

Looking at the χ2
1000 numbers, we can see that only

subtracting GLEAM gives a relatively low value, while

further subtracting GSM08 and GSM16 increases χ2
1000

back up. However, further subtracting Byrne21 does

not significantly change the χ2
1000 value. This numer-

ical indication is consistent with the conclusion we vi-

sually drew in Figure 8. The overall χ2
1000 � 1 values

quantify the apparent differences between HERA mea-

surement and the sky models. Contribution factors to

the difference include errors in HERA’s primary beam

modeling (Fagnoni et al. 2021), in instrument calibra-

tion (Dillon et al. 2020; Kern et al. 2019, 2020a,b), and

RA 2h RA 1hRA 3h

Dec. -30°

Figure 10. A wide-field map at 166 MHz. Observations
across RA 1h–3h are composed for this map. This map covers
5◦ around the HERA zenith path. Previous examples cover
the central part of this field.

in sky models (Wayth et al. 2015; de Oliveira-Costa et al.

2008; Zheng et al. 2017b; Byrne et al. 2021).

6. COMPUTATION COST

Previous analysis focuses on a map from 20 twenty-

second integrations. Figure 10 shows a wide-field map

at 166 MHz from 300 twenty-second integrations, includ-

ing the entire Field 1 (The HERA Collaboration et al.

2021). This map covers 215 deg2, 5◦ around the RA

1 h – 3 h sky path at -30.7◦ declination. The covariance

matrix for pixels in this map is also available. Wide-

field maps will be our final product. With the wide-field

maps, Liu et al. (2016) showed that power spectra, es-

pecially in large angular scales, can be measured with

spherical Fourier-Bessel formalism. However, mapping

wide-field maps is computationally expensive. With this

mapping configuration, we investigate whether HERA

Phase I data, and eventually the full HERA array data,

are computable with DOM.

Here we discuss mapping within 5◦ around the zenith,
which seems to contradict Section 4.1 where we empha-

sized the contribution from the entire hemisphere, es-

pecially near the horizon. In fact, when we map the

visibilities, including a larger fraction of the sky does

not change the pixel flux already mapped in a small

field. Considering the attenuation of the primary beam,

the visibilities contain information mainly within a small

field around the zenith. However, if we attempt to com-

pare the map with a sky model, we need to convolve the

sky model over the entire hemisphere, as we did in Sec-

tion 5.1. This will be relevant for foreground removal in

future cosmological analyses.

Even for a small field around the zenith, the DOM

algorithm is computationally expensive both in terms of

CPU time and RAM consumption. For one frequency

bin, the A matrix has the dimension ofNvisibility×Npixel.

Nvisibility is of the order of 104 − 105, considering base-
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lines at multiple integrations; Npixel is of the order of

105 or more, depending on pixel size and sky coverage.

Storing the entire matrices requires 101 − 102 gigabytes

of memory.

However, since the N matrix and the D matrix we

adopt are both diagonal, we can analyze the visibilities

piecewise and add their contribution to the final map

and covariance matrix. This approach will reduce the

RAM requirement.

We first write the mapping equation m̂ = DA†N−1d

element-wise, focusing on mapping the kth pixel

m̂k = Dk

Nint∑
t=1

Nbl∑
n=1

dn,t
B(̂st,k)

σ2
n,t

exp

(
i
2πν

c
bn · ŝt,k

)
,

(22)

where n runs over all the baselines and t covers all

the time integrations, dn,t is the data, and σn,t is the

noise. The above equation shows that mapping essen-

tially sums all the visibilities together with different co-

efficients that are independent of other visibilities (i.e.

there are no cross terms). The inner summation sums

all the visibilities within one integration, and the outer

summation sums all the time integrations. The reason

that the simple format can be obtained is that both N

and D are diagonal.

Now we take a close look at diagonal elements in D

Dk =

(
Nint∑
t=1

Nbl∑
n=1

B(̂st,k)

σ2
n,t

)−1
, (23)

which also sums over baselines and time integrations.

The subject to be summed is the inverse-variance

weighted primary beam (Section 3.2).

We plug Equation 23 into the Equation 22

m̂k =

∑Nint

t=1

∑Nbl

n=1 dn,t
B(̂st,k)

σ2
n,t

exp
(
i 2πνc bn · ŝt,k

)
∑Nint

t=1

∑Nbl

n=1
B(̂st,k)

σ2
n,t

. (24)

The numerator and denominator are completely sepa-

rate, we can calculate them individually before the di-

vision. Furthermore, since there are no cross terms,

the summations can also be performed visibility-by-

visibility, avoiding large matrix multiplication.

Similarly, we write down the calculation of C element-

wise

Ck1k2 =

∑Nint

t=1

∑Nbl

n=1
B(̂st,k1

)B(̂st,k2
)

σ2
n,t

exp
(
i 2πνc bn · [st,k1 − st,k2 ]

)(∑Nint

t=1

∑Nbl

n=1
B(̂st,k1

)

σ2
n,t

)
·
(∑Nint

t=1

∑Nbl

n=1
B(̂st,k2

)

σ2
n,t

) (25)

=

∑Nint

t=1

∑Nbl

n=1
B(̂st,k1

)B(̂st,k2
)

σ2
n,t

exp
(
i 2πνc bn · [st,k1 − st,k2 ]

)
Dk1 ·Dk2

. (26)

Although the equation is complicated, the logic is clear:

the numerator can be added visibility-by-visibility be-

cause there are no cross terms, and the denominator is

the product of two diagonal elements of D.

In practice, we do not really analyze the visibili-

ties one-by-one, we analyze visibilities in manageable

batches, say per time integration. This operation

loosens the requirement for N: as long as there are no

inter-batch visibility noise correlation, the calculation

can still be conducted piecewise, although the calcula-

tion may not be written down as simply as illustrated

above.

To summarize, provided we keep track of the normal-

ization, the final results from this piece-wise calculation

are the same as if we analyzed all the visibilities simulta-

neously. This piece-wise calculation frees us from storing

one large A matrix in RAM; we are now only limited by

storing the noise covariance matrix C. The summations

in the piecewise calculation also shows that the com-
putation scales linearly with Nbaseline and Nintegration.

Since the expressions are for one pixel or one matrix el-

ement, the computation scales with Npixel for the maps

while scales with N2
pixel for the noise covariance ma-

trix. At last, the above discussion is about mapping one

frequency channel, the computation also scales linearly

with number of frequency channels.

Table 2 shows the computation time for mapping the

HERA Phase I data and the upcoming HERA data with

320 antennas. In summary, it takes 2.8 single-core CPU

hours and 0.7 GB of RAM to generate the map in Fig-

ure 10, along with the covariance matrix. Computing

maps across 300 frequency channels takes 840 single-core

CPU hours, which can be done in one day with a 40-core

server. Projecting to the 320-antenna HERA data, we

will map 2.5 times more baselines and four times more

pixels (from increasing map resolution). It will take 28
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Table 2. DOM Computation

HERA Phase I (Nside=256)

Baseline Int. Pixel Freq. CPU time RAM

595 1 5411 1 38 sec 0.7 GB

595 300 5411 1 2.8 hrs 0.7 GB

595 300 5411 300 840 hrs 0.7 GB

HERA 320-Antenna (Nside=512)

Baseline Int. Pixel Freq. CPU time RAM

1501 1 21644 1 380 sec 10 GB

1501 300 21644 1 28 hrs 10 GB

1501 300 21644 300 8400 hrs 10 GB

Note—DOM computation with different mapping pa-
rameter, including the numbers of baselines, time in-
tegrations, pixels, and frequency channels. Baseline
numbers shown are non-redundant averaged number
for HERA Phase I and redundant averaged number for
HERA 320-antenna. The calulation includes mapping
and calculating the pixel covariance matrices. The
quoted time is for single-core CPU time for Intel Xeon
CPU E5-2643 v2 @ 3.50 GHz.

single-core CPU hours and 10 GB to calculate one map

along with the covariance matrix. Calculating 300 fre-

quency channels requires 8,400 single-core CPU hours,

which can be done in < 9 days with a 40-core server.

7. CONCLUSION

We have introduced the direct optimal mapping algo-

rithm for interferometric data and applied the algorithm

to HERA Phase I data. The algorithm is designed to

recover faint diffuse emission on a wide-field with well-

defined statistics. It relaxes the requirements of small

fields and coplanar antennas, which will be useful for

future interferometer arrays, including space missions.
The algorithm is validated with simulated data for

one twenty-second integration, showing that it achieves

10−7 precision with noiseless data. After adding noise,

we show that, with the noise covariance matrix, the map

noise follows χ2
ν ∼ 1 distribution. The χ2

ν calculation

accounts for the pixel correlation, which is essential for

an interferometer array with incomplete uvw coverage

like HERA.

After correcting the calibration bias (The HERA Col-

laboration et al. 2021), we map HERA Phase I data

and compare the map with the GLEAM point source

catalog and three different global sky models. The

GLEAM catalogs (Hurley-Walker et al. 2017, 2019)

match the point sources in the map. After subtracting

the GLEAM point sources, the residual diffuse emission

is best represented by the Byrne21 map (Byrne et al.

2021). Neither GSM08 (de Oliveira-Costa et al. 2008)

nor GSM16 (Zheng et al. 2017b) provides a sky emission

distribution consistent with the HERA measurement.

Finally, we presented an example of wide-field map-

ping along with calculating the pixel covariance matrix.

We examined the computation cost and found that, with

diagonal visibility noise matrix N and normalization

matrix D, the mapping and covariance calculation can

be conducted in batches of visibilities. This reduces the

memory requirement for manipulating all visibility data

at once. In addition to memory, the computation cost

for mapping the HERA Phase I data and 320-antenna

HERA data is one day and one week with a modern

server.

With the direct optimal mapping algorithm, we are

able to map visibilities into image cubes along with co-

variance matrices and point spread functions. We aim

to cover followup analyses in future publications.
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