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The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful 
observable for both fundamental physics and cosmology. The expression of the delay when the particles 
travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular 
coordinate system and self-consistent assumptions. The present article shows that this formula enjoys 
a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. 
This result reveals an interesting kinematical property of general relativity, namely that the tidal forces 
experienced by ultra-relativistic particles in the direction of their motion are much smaller than those 
experienced orthogonally to their motion.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The time delay between the reception of ultra-relativistic (UR) 
particles has historically been proposed in 1968 as an astrophysical 
observable to measure the mass of the electronic neutrino [1]. This 
method has notably been applied to the delay between photons 
and neutrinos emitted during the supernova explosion SN1987A, 
yielding the upper limit mν ≤ 16 eV for the mass of the electronic 
neutrino (see e.g. ref. [2] and references therein). Although much 
less constraining than today’s limits on neutrino masses obtained 
by the Planck mission [3], the photon-neutrino delay observed with 
SN1987A has been nevertheless one of the main arguments against 
the OPERA erroneous measurement of superluminal neutrinos [4].

The idea of using time delays between UR particles as a cos-
mological probe is more recent [5] (see also the short review [6]). 
Though observational applications still have to face technical dif-
ficulties [7], the time delays between, e.g., cosmic rays and γ -ray 
bursts are expected to provide independent measurements of the 
cosmological parameters in the future. However, even with perfect 
sources and instruments, an irreducible uncertainty comes from 
the fact that the particles propagate in a locally inhomogeneous 
universe, and are therefore affected by gravitational phenomena. 
This issue was recently tackled by the authors of ref. [8], hereafter
FGMV15, who derived a general expression for the time delay 
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within an arbitrary spacetime, generalizing the formula proposed 
in ref. [5] for the Friedmann–Lemaître–Robertson–Walker universe.

The result of FGMV15 is the following. Consider two particles 
P1, P2 emitted at the same event S with different velocities. Since 
one of them is slightly slower than the other, those particles are 
received at different times t1, t2 by the observer, whose difference 
is

�t ≡ t2 − t1 =
(

m2
2

2E2
2

− m2
1

2E2
1

) t1∫
ts

dt

1 + z(t)
, (1)

at lowest order in the inverse of the gamma factors γi ≡ Ei/mi � 1, 
where mi and Ei are respectively the rest mass and the energy 
of Pi , as measured at reception in the observer’s frame. In eq. (1), 
the redshift z is not necessarily cosmological, because the formula 
is valid for any geometry, but it rather relies on an arbitrary 3 + 1
foliation of spacetime such that the coordinate t coincides with 
the observer’s proper time. The integral over t must be understood 
as an integral along the worldline of P1, which is approximately 
a null geodesic. It is remarkable that eq. (1) has exactly the same 
form as in a strictly homogeneous and isotropic universe.

In FGMV15, this result was derived using the geodesic-light-
cone formalism [9,10], and relying on a self-consistent ansatz. 
However, as mentioned by the authors themselves, the simplic-
ity of eq. (1) suggests the existence of a more general deriva-
tion, which is precisely the purpose of the present paper. In 
sec. 2, I show that the time-delay formula is actually equivalent to 
assuming that the relative velocity of two UR particles is constant 
during their travel. I then physically justify this surprising assump-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Relation between (i) the time delay �t of two UR particles following the 
worldlines L1, L2, in the frame of the observer Lo; and (ii) the proper distance �

between those particles in the frame of the fastest one when it is detected by the 
observer. Solid lines indicate worldlines, while the dashed line represents the set of 
all events which are simultaneous with O 1 in P1’s frame.

tion in sec. 3, which reveals a general mechanism about how UR 
particles experience tidal forces.

2. Physical interpretation of the time-delay formula

Equation (1) has the advantages of directly involving observable 
quantities, and exhibits a dependence in the cosmological param-
eters via z. However, its physical meaning is hidden and therefore 
requires some reformulation. First notice that the prefactor of the 
integral corresponds to the difference between the velocities vi of 
the particles as measured by the observer:

v1 − v2 =
√

1 − 1

γ 2
1

−
√

1 − 1

γ 2
2

(2)

= 1

2γ 2
2

− 1

2γ 2
1

+O(γ −4). (3)

Second, the integral of eq. (1) is proportional to the proper 
travel time τ1 of P1 from its emission at S to its observation at O 1. 
Indeed, since the particle is UR the evolution of its energy is es-
sentially encoded in the lightlike redshift z as

1 + z(t) ≈ E(t)

Eo
= γ (t)

γo
= 1

γo

dt

dτ
, (4)

where a subscript o indicates the observed value of a quantity, and 
τ denotes the proper time of P1; whence

t1∫
ts

dt

1 + z(t)
≈ γ1τ1, (5)

so that eq. (1) takes the form

�t = γ1(v1 − v2) τ1. (6)

Though simpler than the former, the latter formula involves 
quantities defined in different frames, which makes it hard to in-
terpret. The last step thus consists in translating eq. (6) into a 
relation between quantities in P1’s frame only. More specifically, 
we are going to relate the observed time delay �t to the distance �

that separates the particles in P1’s frame, when P1 is detected by 
the observer.

The geometry of the problem is depicted in Fig. 1. The world-
line Li of the particle Pi intersects the observer’s worldline Lo
at the even O i . Define I as the event of L2 which is simultane-
ous with O 1 in the frame of P1. This event therefore indicates the 
spatial position of P2 in this frame when P1 is detected by the 
observer. The spacetime separation �s2(I, O 1) is therefore equal 
to �2.

In the following, it will be convenient to work with a Fermi 
normal coordinate system [11] (t, xi) about Lo, so that spacetime 
appears nearly flat in the vicinity of this worldline. As a conse-
quence, the geodesics L1, L2 are essentially straight lines in the 
domain of interest. If we choose the axes of (xi) so that ∂1 at O 1
is aligned with the direction of O 1 E , then the problem becomes 
spatially one-dimensional, and we only have to consider the coor-
dinate x1 ≡ x.

Because I ∈ L2, its coordinates (t I , xI ) satisfy

xI = v2(tI − �t). (7)

Besides, a simple Lorentz transformation relates those coordinates 
to their counterpart (0, −�) in P1’s frame,

0 = γ1(tI − v1xI ) (8)

−� = γ1(xI − v1tI ). (9)

Combining eqs. (7), (8), and (9) then yields

� = 1

γ1

v2

1 − v1 v2
�t, (10)

which, once introduced in eq. (6), finally gives

� = v1 − v2

1 − v1 v2
τ1 = |v2/1|τ1, (11)

where we have recognised the expression of the velocity v2/1 of 
P2 in P1’s frame [12] at the observation event. Equation (10) is 
equivalent to the time-delay formula (1) at lowest order in the 
inverse gamma factors, but its meaning is clearer: since the dis-
tance � is proportional to the travel time τ1, the relative veloc-
ity v2/1 of two UR particles emitted at the same event and in the same 
direction is constant during their travel.

This statement—which is the physical content of the conjec-
tures (5) in FGMV15—means that tidal forces (i.e. curvature effects) 
are negligible in this specific situation, even when the particles 
travel over cosmological distances. This is a priori surprising. In-
deed, in the comparable situation of two UR particles, such as 
photons, emitted simultaneously but in slightly different direc-
tions, curvature is absolutely non-negligible, as it is responsible for 
all gravitational lensing phenomena.

In the next section, I propose a geometrical solution to this 
paradox, showing that for UR particles, longitudinal curvature is ef-
fectively much smaller than transversal curvature.

3. Tidal forces and ultra-relativistic particles

3.1. Geodesic deviation equation

Because the particles Pi are freely falling and very close to each 
other, it is reasonable to consider their worldlines Li as infinites-
imally separated timelike geodesics. Let us parametrize them by 
their own proper time xμ

1 (τ ), xμ
2 (τ ), and introduce the separation 

vector ξ defined by ξμ(τ ) ≡ xμ
2 (τ ) − xμ

1 (τ ). This vector is orthogo-
nal to the geodesics, in the sense that ξμuμ = 0, where u denotes 
the four-velocity of one of the particles. Physically speaking, ξ rep-
resents the spatial separation of the particles in their rest frame; 
its norm ξμξμ is thus nothing but the �2 introduced in the previ-
ous section.

The evolution of ξ with the particles’ proper time τ is given by 
the geodesic deviation equation [11]
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D2ξμ

dτ 2
= −Rμ

νρσ uνξρuσ , (12)

where Rμ
νρσ are the components of the Riemann curvature ten-

sor. This equation thus describes how curvature affects the relative 
motion of P1 and P2, which is precisely what we are worried 
about here.

For the remainder of this subsection, it will be convenient to 
work in the frame of, e.g., P1, by choosing a Fermi normal coordi-
nate system (τ , Xa) about L1. The orthogonality between ξ and u
then implies that ξτ = 0, while the evolution of the spatial com-
ponents ξa is

d2ξa

dτ 2
= −Ra

τbτ ξb ≡ −Ra
bξ

b. (13)

In the above equation, I have replaced covariant derivatives with 
normal derivatives thanks to the properties of Fermi coordinates, 
and introduced the 3 × 3 tidal matrix Ra

b ≡ Ra
τbτ . An order of 

magnitude for the impact of tidal forces can then be obtained by 
integrating eq. (13) perturbatively

�ξ̇a ≈ −
( τo∫

τs

τRa
b dτ

)
ξ̇b

s , (14)

where ξ̇b
s is the initial relative velocity of the particles (at the 

source event), and �ξ̇a is the total variation of this velocity dur-
ing the particles’ travel to the observer. The integral in eq. (14) can 
also be reformulated in terms of an average tidal matrix

Rab ≡ 2

τ 2
1

τo∫
τs

τRab dτ , (15)

where τ1 ≡ τo − τs still denotes the travel time in P1’s frame.
If e denotes the unit vector in the direction of the initial relative 

velocity between P1 and P2, with ξ̇ s = v2/1e, then eq. (14) tells us 
that the fractional variation of v2/1 is

�v2/1

v2/1
≈ −1

2
(Rabeaeb) τ 2

1 . (16)

From this result we can already understand how tidal effects may 
be suppressed for UR particles: as their effect on v2/1 goes like τ 2

1 , 
time dilation implies that if the particles travel over a distance D , 
then τ1 ∼ D/γ1. Compared to a couple of non-relativistic parti-
cles travelling over the same distance D , tidal forces are therefore 
effectively suppressed by γ −2

1 . As we shall see in the next subsec-
tion, this does not contradict the existence of gravitational lensing 
phenomena, because of the anisotropic frame-dependence of Rab .

3.2. Lorentz-boosted curvature

Consider two frames along the worldline L1 of P1: the parti-
cle’s frame materialized by a tetrad {eα}, such that e0 = u1; and 
a reference frame {eμ} obtained by parallely transporting the ob-
server’s frame at O 1 along L1. Again, for simplicity we choose 
their orientations so that the motion of the particle in the refer-
ence frame occurs along e1. In this case, both frames are simply 
related by a (constant) Lorentz transformation

eα = �μ
αeμ, (17)

with
[�μ
α] =

⎡
⎢⎣

γ1 −γ1 v1 0 0
−γ1 v1 γ1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦ . (18)

If the observer is non-relativistic, then the components of the Rie-
mann tensor over the reference tetrad are on the order of the 
square root of the Kretschmann scalar Rμνρσ Rμνρσ . In terms 
of orders of magnitude, on the surface of a massive gravi-
tating body of mass M and radius R , this quantity goes like 
0.2 (M/M	)(R	/R)3 AU−2; in a cosmological context, it is of order 
(H0/c)2 = 0.2 Gpc−2, indicating from which length scales curvature 
effects start to be non-negligible.

In the particle’s frame, however, the Riemann tensor reads

Rαβγ δ = �μ
α�ν

β�ρ
γ �σ

δ Rμνρσ (19)

from which one can deduce the expression of the tidal matrix in 
the particle’s frame, Rpart

ab , as a function of its counterpart in the 
reference frame, Rref

ab , and of other components of the Riemann 
tensor in the latter frame:

[Rpart
ab ]

=
[ Rref

xx γ1Rref
xy − Rtxyx γ1Rref

xz − Rtxzx

γ1Rref
xy − Rtxyx γ 2

1

(
Rref

yy − 2v1 Rtyxy + v2
1 Rxyxy

)
γ 2

1

(
Rref

yz + 2v1 Rt(yz)x + v2
1 Rxyxz

)
γ1Rref

xz − Rtxzx γ 2
1

(
Rref

yz − 2v1 Rt(yz)x + v2
1 Rxyxz

)
γ 2

1

(
Rref

zz − 2v1 Rtzxz + v2
1 Rxzxz

)

]
,

(20)

with the symmetrization convention T(μν) ≡ (Tμν + Tνμ)/2. For 
example, if the metric reads ds2 = −(1 +2�)dt2 +(1 −2�)δi jdxidx j

in the reference frame, with � 
 1 and slowly varying with 
time, then the Riemann tensor in this frame reads Rμνρσ =
2δμ[ρ∂σ ]∂ν� − 2δν[ρ∂σ ]∂μ�, so that Rref

ab ≈ ∂a∂b�. In the parti-
cle frame, we get

[Rpart
ab ] ≈

⎡
⎣ ∂2

x � γ1∂x∂y� γ1∂x∂z�

γ1∂x∂y� γ 2
1 (2∂2

y� + ∂2
x �) γ 2

1 ∂y∂z�

γ1∂x∂z� γ 2
1 ∂y∂z� γ 2

1 (2∂2
z � + ∂2

x �)

⎤
⎦

≈
⎡
⎣ Rref

xx γ1Rref
xy γ1Rref

xz

γ1Rref
xy γ 2

1 (2Rref
yy +Rref

xx ) γ 2
1 Rref

yz

γ1Rref
xz γ 2

1 Rref
yz γ 2

1 (2Rref
zz +Rref

xx )

⎤
⎦ ,

(21)

where we have used that v1 ≈ 1. We conclude that the longitu-
dinal component of the tidal matrix R|| ≡ Rxx , i.e. the curvature 
experienced by the particles in the direction of their motion, is 
the same whatever their velocity. On the contrary, the transverse
terms R⊥ ≡Ryy, Rzz are enhanced by γ 2

1 ,

Rpart
|| = Rref|| Rpart

⊥ ∼ γ 2
1 R

ref⊥ . (22)

In the second relation above, the γ 2
1 factor thus compensates 

the γ −2
1 coming from time dilation in the geodesic deviation equa-

tion. As a result, if initially the relative velocity of the two particles 
is orthogonal to the boost, then eq. (16) yields(

�v2/1

v2/1

)
⊥

∼ γ 2
1 R

ref⊥ τ 2
1 ∼ Rref⊥ D2, (23)

the net effect on the particles’ motion is therefore comparable to 
the non-relativistic case. This is the reason why gravitational lens-
ing actually occurs.1

1 Note also from eq. (21) that tidal effects are also enhanced by a factor two. 
This is the reason why deflection of UR particles is twice larger than the one of 
non-relativistic particles.
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If, on the contrary, the relative velocity of the particles is 
aligned with their velocity with respect to the reference frame, 
then(

�v2/1

v2/1

)
||

∼ Rrefτ 2
1 ∼ Rref|| D2

γ 2
1

. (24)

In this case, tidal effects are thus really suppressed by time dila-
tion. The relative velocity v2/1 of two UR particles following each 
other can therefore be considered constant over their travel, even 
on cosmological distances where Rref|| D2 ∼ 1. This finally validates 
eq. (10), i.e. the time-delay formula (1).

4. Conclusion

In this article, I have proposed a physical interpretation for the 
expression of the observed time delay between two UR particles 
emitted at the same event, recently derived by ref. [8]. This for-
mula indeed means that the velocity of one particle, in the rest 
frame of the other, is constant; in other words the impact of tidal 
forces on their relative motion is negligible. This surprising result 
can be explained by a very general mechanism of relativistic gravi-
tation: the curvature effectively experienced by UR particles in the 
direction of their motion is effectively suppressed by a factor γ −2

with respect to the curvature they experience orthogonally to their 
motion. This is the reason why time-delay phenomena in gravita-
tional optics are always much smaller than deflection phenomena.

In practice, the trajectory and energy of UR particles is also 
affected by non-gravitational interactions with galactic and inter-
galactic matter. Such interactions should generate astrophysical 
corrections to eq. (1), which must be evaluated in order to de-
termine to which extent UR time delays are a viable cosmological 
observable.
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