

doi: 10.1093/femsyr/foy117 Advance Access Publication Date: 1 November 2018 Research Article

RESEARCH ARTICLE

Identification of superior cellulase secretion phenotypes in haploids derived from natural Saccharomyces cerevisiae isolates

Steffi A. Davison¹, Riaan den Haan² and Willem Heber van Zyl^{1,*}

¹Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa and ²Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa

*Corresponding author: Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. Tel: +27-21-808-5854; E-mail: whvz@sun.ac.za

One sentence summary: Screening for superior cellulase secretion in haploids derived from natural Saccharomyces cerevisiae isolates. Editor: Jens Nielsen

ABSTRACT

The yeast *Saccharomyces cerevisiae* is considered an important host for consolidated bioprocessing and the production of high titres of recombinant cellulases is required for efficient hydrolysis of lignocellulosic substrates to fermentable sugars. Since recombinant protein secretion profiles vary highly among different strain backgrounds, careful selection of robust strains with optimal secretion profiles is of crucial importance. Here, we construct and screen sets of haploid derivatives, derived from natural strain isolates YI13, FINI and YI59, for improved general cellulase secretion. This report details a novel approach that combines secretion profiles of strains and phenotypic responses to stresses known to influence the secretion pathway for the development of a phenotypic screen to isolate strains with improved secretory capacities. A clear distinction was observed between the YI13 haploid derivatives and industrial and laboratory counterparts, Ethanol Red and S288c, respectively. By using sub-lethal concentrations of the secretion stressor tunicamycin and cell wall stressor Congo Red, YI13 haploid derivative strains demonstrated tolerance profiles related to their heterologous secretion profiles. Our results demonstrated that a new screening technique combined with a targeted mating approach could produce a pool of novel strains capable of high cellulase secretion.

Keywords: second generation bioethanol; recombinant yeast; heterologous protein secretion; cellulases; cellobiohydrolase; screen

INTRODUCTION

During consolidated bioprocessing (CBP), the production of heterologous cellulolytic enzymes, including exoglucanases i.e. cellobiohydrolases (CBHs), endoglucanases (EGs) and β -glucosidases (BGLs) from a fermentative host like *Saccharomyces cerevisiae*, is required for the hydrolysis of recalcitrant lignocellulosic biomass. Several techno-economic analysis reports suggest cellulolytic enzyme production to be the limiting

step in CBP biomass conversion technologies (Wingren, Galbe and Zacchi 2003; Zhuang *et al.* 2007; Khajeeram and Unrean 2017; Olofsson *et al.* 2017). This highlights the importance of studying heterologous cellulolytic enzyme secretion, which is highly dependent on genetic background of the host yeast strain as well as highly protein specific in nature (Ilmén *et al.* 2011; Den Haan *et al.* 2013; Kroukamp *et al.* 2013; Davison, den Haan and van Zyl 2016; Van Zyl, Den Haan and Van Zyl 2016). Therefore, selection of novel hybrid strains with increased secretion

Received: 14 August 2018; Accepted: 31 October 2018

 $[\]ensuremath{\mathbb{C}}$ FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

profiles is crucial for the development of suitable industrial CBP yeasts.

Recent studies have broadened the search to include trait analysis of strains of S. cerevisiae, which have demonstrated high phenotypic variance in different yeast subgroups (Van Dijken et al. 2000; Garay-Arroyo et al. 2004; Warringer et al. 2011). Other industrially relevant traits from natural strain isolates have also been selected for including tolerance to high temperatures (Mukherjee et al. 2014; Ruyters et al. 2014), microbial inhibitory compounds (Mukherjee et al. 2014; Ruyters et al. 2014; Davison, den Haan and van Zyl 2016; Jansen et al. 2018) as well as high ethanol productivity, concentrations and yields (Jin et al. 2013; Ruyters et al. 2014; Jansen et al. 2018). These results described the relationship between phenotype and genetic background, which provided insights into how genetic variants are known to influence phenotypes and functional variances occur in different strains of the same species. In particular, past research suggested that natural isolates outcompeted laboratory and industrial derivatives for secretory capacity of heterologous cellulolytic enzymes (Warringer et al. 2011; Davison, den Haan and van Zyl 2016).

As with any industrially relevant trait, improving the phenotype of heterologous protein secretion in yeast is not straightforward. Firstly, this phenotype is complex and shares the common features of quantitative traits, i.e. polygenic control and environmental influence (Liu et al. 2014; Kroukamp et al. 2017). Due to this complexity of protein secretion, rational engineering methods for strain development have yielded limited success to improve general protein secretion capacities. Therefore, the genetic basis of superior recombinant protein secretion must be investigated as a complex architecture of genes that affects this phenotype through direct and interactive effects (Steinmetz et al. 2002). Approaches that generate genetic variation in a nontargeted fashion, for instance intra-species hybridisation of genetically stable haploid strains, have proven successful for other desired characteristics (as demonstrated in Jansen et al. 2018 and Kroukamp et al. 2018). The approach of sexual hybridisation strategies using phenotypically characterised haploid segregants of carefully selected parental strains (cell-to-cell mating) is thus an appealing strategy.

While large sets of strains have been previously generated for the genetic mapping of other industrially relevant traits from glycerol yield to ethanol tolerance and yield (Deutschbauer and Davis 2005; Cubillos, Louis and Liti 2009; Cubillos et al. 2011; Parts et al. 2011; Liti and Louis 2012; Salinas et al. 2012; Meijnen et al. 2016; Coi et al. 2018), there is a lack of stable haploid strains for research on heterologous enzyme secretion. One of the most important factors in determining the success of these studies is the availability of an easy screen to identify the few superior cells among a large pool of inferior variants. However, quantifying the recombinant protein secretory capacity of strains, especially in different genetic backgrounds, can be challenging. While studies have attempted to overcome this challenge through the use of small, easy-to-screen enzymes (Liu et al. 2013; Huang et al. 2015), screening strains for a range of recombinant cellulolytic enzymes have proven to be laborious, expensive and time-consuming (Den Haan et al. 2015). Thus, an easy, indirect method to evaluate innate secretion capacity is desired and can be achieved through analysis of secretion stress.

In the last decade, it has become obvious that many heterologous protein products exert severe stress on the host cells when being overexpressed, limiting the potential secretion yield. Likewise, the intimate connection of unfolded protein response (UPR) to recombinant protein production (Mattanovich et al. 2004), cell wall integrity (CWI; Verna et al. 1997) and membrane lipid balance is well documented (Travers et al. 2000). For instance, cells treated with tunicamycin are known to elicit endoplasmic reticulum (ER) stress and activate the conserved UPR pathway that drives transcription of genes such as chaperones and folding enzymes, which are intimately linked to the secretion pathway (Kuo and Lampen 1974; Travers et al. 2000). In eukaryotes, this N-acetylglucosamine antibiotic prevents the first step of N-linked glycosylation of proteins that causes extensive protein misfolding, leading to the activation of UPR. Past research suggested that innate higher protein folding capacity, could alleviate ER stress, lessening the impact of UPR, which may enable higher levels T.e.Cel7A secretion in S. cerevisiae (Ilmén et al. 2011; Davison, den Haan and van Zyl 2016). As such, tunicamycin may be used to screen haploid segregants for superior secretory capacities of certain reporter proteins and possibly also tolerance to other stresses. A survey of the published literature failed to return any previous studies on phenotypic screening using a combination of stress tolerances for the isolation of strains with innate, distinct secretory capacity. The current study, therefore, proposed to investigate the diversity of secretion stress and cell wall tolerance among different strains of S. cerevisiae to determine whether it could serve as a useful selection agent to evaluate strains' capacity for recombinant protein secretion.

Here, we developed a novel approach that combines secretion profiles of strains and phenotypic responses to stresses known to influence the secretion pathway for the development of a phenotypic screen to isolate strains with improved secretory capacities. We describe the technical approaches used for the generation of genetically stable haploid derivatives from three S. cerevisiae natural strain isolates ranging in secretory phenotypes (namely high, medium and low) in order to understand the phenotypic differences linked to a range of secretory capacities. Our efforts resulted in several hybrids showing hybrid vigour (also known as heterosis) for heterologous protein secretion. Considering the peculiarities and complexities of the enhanced secretion protein phenotype, the construction of haploid strains representative of a range of secretion phenotypes that are amendable to genetic studies and phenotypic studies is of great value.

MATERIALS AND METHODS

Yeast strains and media

In this study, we screened three diploid, homothallic strain isolates described previously (Davison, den Haan and van Zyl 2016; Table 1), as well as their haploid derivatives shown in Table 2. Strain isolates were obtained from the Agricultural Research Council (ARC) Infruitec-Nietvoorbij Wine Research Centre (Van der Westhuizen, Augustyn and Pretorius 2000) and deposited in the Culture Collection of the Plant Protection Research Institute (PPRI-ARC, Queenswood, Pretoria). The industrial strain derivatives of Ethanol Red were obtained from the Thevelein Lab at KU Leuven and laboratory strains namely S288c (ATCC 204508) and Y294 (ATCC 20116) were included in this study for comparison of relatively diverse backgrounds. The native Saccharomyces strains were identified at the species level by sequencing the variable D1/D2 portion of the eukaryotic 26S rDNA as described previously in Davison, den Haan and van Zyl (2016). After species identification, sequences were aligned using MUSCLE version 3.70 (Edgar 2004). The phylogenetic dendorgram was prepared

 Table 1. List of strains and plasmids used in this study.

StrainsE.coli DH5 ω deoR endA1 gyrA96 hsdR17 6[lac]U169 recA1Life Technologies, Rockville, Md. supE44 thi-1 [q80 lacZ6M15]Superior secreting S. cerevisiaeKX428528Y113 MAT α' KX428528Y113.HOMAT $\alpha'\alpha_i$;HO::GALp kanMX4This workModerate secreting S. cerevisiaeKX428522FIN1 MMAT $\alpha'\alpha_i$;HO::GALp kanMX4KX428522FIN1.HOMAT $\alpha'\alpha_i$;HO::GALp kanMX4This workLow secreting S. cerevisiaeTO avison et al. 2016)Y159.HOMAT $\alpha'\alpha_i$;GALp HO::kanMX4This workIndustrial S. cerevisiaeT1 22739.12ER12MAT α' T1 22739.16ER17MAT a' T1 22739.16ER17MAT a' T1 22739.17ER19MAT a' T1 22739.19ER19 MAT a' T1 22739.19ER19 MAT a' This workCAT5-911 MIPL-661A-UCC1166This workS288c a' MAT a' mal gal2 sal1-1 MKT1-30DThis workCAT5-911 MIPL-661A-UCC1166T1 22739.10Y294MAT a' mal gal2 sal1-1 MKT1-30DThis workMH00Industrial strainKX428523.1MH100Industrial strainKX428523.1MH100Industrial strainKX428525PlasmidsTJ1 2073.10PlasmidsThis studyPlK301.1bla URA3 HO-isc.GALpkanMX4tef1tThis studyPlK301.1bla URA3 PGKp-Tc.elfA-PGKt;NatMX4This workPlK212.SD3bla URA3 PGKp-Tc.elfA-PGKt;NatMX4This work	Strain or plasmid	Relevant features	Reference
E.coli DH5α desk endA1 gyrA96 hsdR17 6[lac]UI69 recA1 Life Technologies, Rockville, Md. Superior secreting S. cerevisiae Y113 MATα/MATα KX428528 Y113.H0 MATα/α;H0::GALp kanMX4 Mis work Moderate secreting S. cerevisiae KX428522 FIN1.M0 MATα/α;H0::GALp kanMX4 KX428522 INN.H0 MATα/α;H0::GALp kanMX4 KX428522 INN.H0 MATα/α;H0::GALp kanMX4 Mis work Low secreting S. cerevisiae Y159 MATα/ATα (Davison et al. 2016) V159.H0 MATα/AGLp H0::kanMX4 This work Industrial S. cerevisiae T2 2739.12 ER12 MATα T2 2739.13 ER14 MATα T2 2739.13 ER15 MATα This work ER17 MATα TAra/MATα ER19 MATα/MATα This work ER17 × 12 MATα/MATα This work ER17 × 12 MATα/MATα This work S288c a/α MATα/M ang gal 2sall 1 MKT	Strains		
Superior secreting S. cerevisiae KX428528 Y113 HO MATa/MATα KX428528 Y113 HO MATa/ar,HO::GALp kanMX4 This work Moderate secreting S. cerevisiae KX428522 FIN1 HO MATa/ar,APC::GALp kanMX4 KX428522 Inla MATa/MATα KX42852 Inla MaTa/ar,HO::GALp kanMX4 KX42852 Low secreting S. cerevisiae Uarson et al. 2016) Y159 MATa/MATα (Davison et al. 2016) Industrial S. cerevisiae T22739.12 ER12 MATa/MATa T22739.12 ER13 MATa JT 22739.12 ER14 MATa JT 22739.12 ER15 MATa JT 22739.12 ER16 MATa JT 22739.17 ER17 × 12 MATa/MATa This work ER17 × 12 MATa/MATa This work S288c a(a MATa/ar and gal2 sall-1 MKT1-30D ATCC204508 M11000 Industrial strain KX428523.1 MH1000 Industrial strain KX428523.1 MH1000 Industrial strain KX428525	E.coli DH5α	deoR endA1 gyrA96 hsdR17 6[lac]U169 recA1 supE44 thi-1 [q80 lacZ6M15]	Life Technologies, Rockville, Md.
Y113MATa/MATaKX428528Y113.HOMATa/α,HO:GALp kanMX4This workModerate secreting S. cerevisiaeKX42852FIN1MATa/α,HO:GALp kanMX4KX42852FIN1.HOMATa/α,HO:GALp kanMX4This workLow secreting S. cerevisiaeTY159MATa/α,GALp HO::kanMX4Davison et al. 2016)Y159.HOMATa/α,GALp HO::kanMX4T12 2739.12Industrial S. cerevisiaeTER12MATaT2 2739.12ER16MATaT2 2739.12ER17MATaT2 2739.13ER17MATaT2 2739.13ER19MATaT2 2739.13ER19MATaT2 2739.13ER19MATaT1 22739.17ER19MATaT1 22739.17ER19MATaT1 22739.17ER19MATaT1 22739.17ER19MATaMATa/ATaER17 × 12MATa/MATaThis workEference S. cerevisiaeTT1 22739.17S288c a/aMATa/mal gal2 sal1.1 MKT1-30DThis workS288c a/aMATa/mal gal2 sal1.1 MKT1-30D CATS-911ATCC204508MIP1-661A-UCC1166TT1Y294MATa leu2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1MH1000Industrial strainKX428523.1MH1000Industrial strainKX428523.1PHK301.1bla URA3 HO:GALpkanMX4tef1tThis studyPHK402.25D1bla URA3 FOG-Fr.ec/A-PGKtyNatMX4This workPHK402.25	Superior secreting S. cerevisiae		
Y113.HOMATa/α;HO::GALp kanMX4This workModerate secreting S. cerevisiaeKX428522FIN1.HOMATa/α;HO::GALp kanMX4KX428522FIN1.HOMATa/a;HO::GALp kanMX4This workLow secreting S. cerevisiaeUavison et al. 2016)Y159.HOMATa/a;GALp HO::kanMX4This workIndustrial S. cerevisiaeTER12MATa/a;GALp HO::kanMX4This workIndustrial S. cerevisiaeTER12MATa/a;GALp HO::kanMX4T122739.12R16MATaT22739.13ER16MATaT22739.13ER17MATa/MATaT122739.13ER19MATa/MATaThis workER19MATa/MATaThis workER17MATa/MATaThis workER18MATa/amal gal2 sal1.1 MKT1-30DThis workReference S. cerevisiaeTTS288c a/aMATa/amal gal2 sal1.1 MKT1-30D CAT5-91IATCC204508MT1-661A-UCC1166TTY294MATa leu2.312 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1MH1000Industrial strainKX428523.1HH1011Ial URA3 HO:site:GALpKanMX4tef1tThis studyPHK301.1Ial URA3 HO:site:GALpKanMX4tef1tThis studyPHK402.2SD2Ial URA3 FOFP-T:ec/FA-FOKKNatMX4This workPHK402.2SD2Ial URA3 FOFP-T:ec/FA-FOKKNatMX4This workPHK212.SD3Ial URA3 FOFP-T:ec/FA-FOKKNatMX4This work	YI13	ΜΑΤ α /ΜΑΤα	KX428528
Moderate secreting S. cerevisiae KX42852 FIN1 MATa/MATa KX42852 FIN1_HO MATa/a;HO::GALp kanMX4 This work Low secreting S. cerevisiae (Davison et al. 2016) YI59.HO MATa/a;GALp HO::kanMX4 Davison et al. 2016) Industrial S. cerevisiae T T ER12 MATa Davison et al. 2016) Industrial S. cerevisiae T T ER12 MATa T T RATa MATa T T RATa MATa T T ER12 MATa T <td< td=""><td>YI13_HO</td><td>MATa/α;HO::GALp kanMX4</td><td>This work</td></td<>	YI13_HO	MAT a /α;HO::GALp kanMX4	This work
FIN1ΜΑΤα/ΜΑΤαKX428522FIN1_HOMATα/α;GALp kanMX4This workLow secreting S. cerevisiae(Davison et al. 2016)Y159MATa/α;GALp HO::kanMX4This workIndustrial S. cerevisiaeTEX12MATa/α;GALp HO::kanMX4This workIndustrial S. cerevisiaeTEX12MATaT22739.12EX12MATaT22739.12EX14MATaT22739.17EX15MATaT22739.17EX17MATaT22739.17EX19MATa/MATaThis workEX17 × 12MATa/MATaThis workEX8c a/aMATa/MATaThis workEX8c a/aMATa/mal gal2 sal1.1 MKT1-30DThis workCAT5-911 MIP1-661A-UCC1166TTY294MATa mal gal2 sal1.1 MKT1-30D CAT5-911ATCC201600HoegBrewing strainKX428523.1MH1000Industrial strainKX428523.1HO00Industrial strainKX428523.1H1000Industrial strainKX428523.1H1000Indus	Moderate secreting S. cerevisiae		
FIN1.HOMATa/α;HO::GALp kanMX4This workLow secreting S. cerevisiaeY159MATa/ArATαY159.HOMATa/α;GALp HO::kanMX4Davison et al. 2016)Industrial S. cerevisiaeER12MATa (Δ, GALp HO::kanMX4T22739.12ER16MATaJT 22739.16ER17MATa (Δ, GALp HO::kanMATA)JT 22739.17ER19MATaJT 22739.17ER19MATa (Δ, MATaThis workER17 × 12MATa/MATαThis workER17 × 12MATa/MATαThis workEr17 × 12MATa/mal gal2 sal1-1 MKT1-30DThis workEr17 × 12MATa and gal2 sal1-1 MKT1-30DThis workS288c a/αMATa and gal2 sal1-1 MKT1-30DTCC204508M170-661A-UCC1166Y294MATa walg gal2 sal1-1 MKT1-30DATCC204508H019-661A-UCC1166Y294MATa walg sal1 sa trainX428523.1H026Brewing strainKX428523.1H020Industrial strainKX428523.1H1900Industrial strainKX428523.1H1900Industrial strainKX428523.1H1900Industrial strainStadyPIK301.1Is la URA3 HO-SALpkanMX4tef1tThis studypHK402.SD1bla URA3 PGKp-Tr.cel5A-PGK;NatMX4This workpHK212.SD2bla URA3 PGKp-Tr.cel5A-PGK;NatMX4This workpHK212.SD3bla URA3 PGKp-Ts.cel5A-PGK;NatMX4This work	FIN1	MAT a /MATa	KX428522
Low secreting S. cerevisiae MATa/MATa (Davison et al. 2016) Y159 MATa/AGALp HO::kanMX4 This work Industrial S. cerevisiae JT 22739.12 ER12 MATa JT 22739.12 ER16 MATa JT 22739.12 ER17 MATa JT 22739.12 ER19 MATa JT 22739.13 ER19 MATa JT 22739.13 ER19 MATa JT 22739.13 ER19 MATa/MATa JT 22739.19 ER19 MATa/MATa JT 22739.19 ER19 MATa/MATa This work ER19 MATa/MATa This work ER19 MATa/MATa Mata/MATa S288c a/a MATa/MATA MATa/MATA MATa lag22 sal1-1 MKT1-30D CAT5-911 ATCC204508 MIP1-661A-UCC1166 META/MATA KX428523.1 <td>FIN1_HO</td> <td>MATa/α;HO::GALp kanMX4</td> <td>This work</td>	FIN1_HO	MAT a /α;HO::GALp kanMX4	This work
YI59ΜATa/MATα(Davison et al. 2016)YI59-HOMATa/α;GALp HO::kanMX4This workIndustrial S. cerevisiaeER12MATαJT 22739.12ER16MATαJT 22739.16ER17MATaJT 22739.17ER19MATaJT 22739.17ER19MATaJT 22739.17ER19MATa/MATαJT 22739.17ER19 × 12MATa/MATαThis workER17 × 12MATa/MATαThis workER17 × 12MATa/MATαThis workER18 × 12MATa/MATαThis workER17 × 12MATa/malgal2 sal1-1 MKT1-30DThis workER17 × 12MATa mal gal2 sal1-1 MKT1-30D CAT5-911ATCC204508ER18 × 10MATa wal gal2 sal1-1 MKT1-30D CAT5-911ATCC204508S288c a/αMATa mal gal2 sal1-1 MKT1-30D CAT5-911ATCC204508Y294MATa klu2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1Ho100Bug strainKX428523.1HH1000Idustrial strainKX428525PIasmidsJis ustrainKX428525PIAsto1.1bla URA3 HO site:GALpKanMX4tef1tThis studypHK301.1bla URA3 HO GALpKanMX4This studypHK102.SD1bla URA3 PGKp-Tcel7A-PGKt;NatMX4This workpHK212.SD2bla URA3 PGKp-T.cel7A-PGKt;NatMX4This workpHK212.SD3bla URA3 PGKp-T.cel7A-PGKt;NatMX4This work	Low secreting S. cerevisiae		
YI59.HOMATa/α;GALp HO::kanMX4This workIndustrial S. cerevisiaeER12MATαER12MATαCR12MATαCR13MATαCR14MATαCR17MATaCR19MATaCR19MATa/MATαCR17MATa/MATαCR17MATa/MATαCR17MATa/MATαCR17MATa/MATαCR17MATa/MATαCR17MATa/Malgal2 sal1-1 MKT1-30DCR15-911 MIP1-661A-UCC1166This workS288c aMATa malgal2 sal1-1 MKT1-30D CAT5-91ICAT5-911 MIP1-661A-UCC1166This workY294MATa (Lau2-3112 ura3-52 his3 trp1-289MH1000Industrial strainMATa Na Jal2 sal1-1 MKT1-30DMH1000Industrial strainMATa Na SegKp-Tr.ecl5A-PGKt;NatMX4This studypHK40.galIa URA3 PGKp-Tr.ecl7A-PGKt;NatMX4pHK412.SD2Ia URA3 PGKp-Tr.ecl5A-PGKt;NatMX4pHK212.SD2Ia URA3 PGKp-Tr.ecl5A-PGKt;NatMX4pHK212.SD3Ia URA3 PGKp-Tr.ecl5A-PGKt;NatMX4Na SwakIa URA3 PGKp-Tr.ecl5A-PGKt;NatMX4Na Swak	YI59	MAT a /MATa	(Davison et al. 2016)
Industrial S. cerevisiae ER12 MATα JT 22739.12 ER16 MATα JT 22739.16 ER17 MATa JT 22739.17 ER19 MATa JT 22739.17 ER19 MATa JT 22739.19 ER19 × 12 MATa /MATα JT 22739.19 ER19 × 12 MATa/MATα This work ER17 × 12 MATa/mal gal2 sal1-1 MKT1-30D This work Reference S. cerevisiae This work S288c a/α MATa mal gal2 sal1-1 MKT1-30D This work MATa mal gal2 sal1-1 MKT1-30D CAT5-91I ATCC204508 MTC S288c a/α MATa mal gal2 sal1-1 MKT1-30D CAT5-91I ATCC204508 MTC S288c a/α MATa mal gal2 sal1-1 MKT1-30D CAT5-91I ATCC204508 MTC S288c a/Δ MATa lequ-3112 ura3-52 his3 trp1-289 ATCC201160 MTC Y294 MATa lequ-3112 ura3-52 his3 trp1-289 ATCC201160 MTC H1000 Industrial strain KX428523.1 MTG MH1000 Industrial strain KX428523.1 MTG	YI59_HO	MAT a /α;GALp HO::kanMX4	This work
ER12ΜΑΤαJT 22739.12ER16ΜΑΤαJT 22739.16ER17ΜΑΤαJT 22739.17ER19ΜΑΤαJT 22739.19ER19 × 12ΜΑΤα/ΜΑΤαJT 22739.19ER19 × 12ΜΑΤα/ΜΑΤαThis workER17 × 12ΜΑΤα/ΜΑΤαThis workER17 × 12ΜΑΤα/ΜΑΤαThis workS288c a/αΜΑΤα/α mal gal2 sal1-1 MKT1-30DThis workCATS-911 MIP1-661A-UCC1166This workS288c a/αΜΑΤα mal gal2 sal1-1 MKT1-30D CATS-91IATC204508MP1-661A-UCC1166This workY294ΜΑΤα ku2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1M11000Industrial strainKX428523.1MH1000bla URA3 HO-GALpkanMX4tef1tThis studypHK301.1bla URA3 HO-GALpkanMX4tef1tThis studypHK40.galbla URA3 PGKp-T.ecel7A-PGKt;NatMX4This workpHK212.SD1bla URA3 PGKp-f.cel3A-PGKt;NatMX4This workpHK212.SD3bla URA3 PGKp-f.fcel3A-PGKt;NatMX4This work	Industrial S. cerevisiae		
ER16ΜΑΤαJT 22739.16ER17MATaJT 22739.17ER19MATaJT 22739.19ER19 × 12MATa/MATαThis workER17 × 12MATa/MATαThis workReference S. cerevisiaeMATa/mal gal2 sal1-1 MKT1-30DThis workS288c a/αMATa/mal gal2 sal1-1 MKT1-30DThis workCAT5-911 MIP1-661A-UCC1166MIP1-661A-UCC1166MIP1-661A-UCC1166S288c aMATa mal gal2 sal1-1 MKT1-30D CAT5-91IATCC204508MIP1-661A-UCC1166MIP1-661A-UCC1166MIP1-661A-UCC1166Y294MATa leu2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1MH100Idustrial strainKX428523.1MH100bla URA3 HO site:GALpKanMX4tef1tThis studyPHK301.1bla URA3 HO site:GALpKanMX4tef1tThis studypHK40.galbla URA3 PGKp-Te.cel7A-PGKt;NatMX4This workpHK212.SD1bla URA3 PGKp-Tr.cel5A-PGKt;NatMX4This workpHK212.SD3bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4This work	ER12	ΜΑΤα	JT 22739.12
ER17MATaJT 22739.17ER19MATaJT 22739.19ER19 × 12MATa/MATaThis workER17 × 12MATa/MATaThis workReference S. cerevisiaeMATa/a mal gal2 sal1.1 MKT1-30DThis workS288c a/aMATa/a mal gal2 sal1.1 MKT1-30D CAT5-911ATC204508CAT5-911 MIP1-661A-UCC1166MIP1-661A-UCC1166MIP1-661A-UCC1166Y294MATa mal gal2 sal1.1 MKT1-30D CAT5-911ATC204508M6MIP1-661A-UCC1166MIP1-661A-UCC1166Y294MATa leu2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1MH1000Industrial strainKX428523.1MH1000Industrial strainKX428523.1PlasmidsJJis studyPlK301.1bla URA3 HO site:GALpKanMX4tef1tThis studypHK40.galbla URA3 HO-GALpkanMX4This studypHK42_SD1bla URA3 PGKp-Te.eel7A-PGKt;NatMX4This workpHK21_SD2bla URA3 PGKp-Te.eel5A-PGKt;NatMX4This work	ER16	ΜΑΤα	JT 22739.16
ER19MATaJT 22739.19ER19 × 12MATa/MATαThis workER17 × 12MATa/MATαThis workReference S. cerevisiaeThis workS288c a/αMATa/ mal gal2 sal1-1 MKT1-30DThis workCAT5-911 MIP1-661A-UCC1166This workS288c aMATa mal gal2 sal1-1 MKT1-30D CAT5-911ATCC204508MIP1-661A-UCC1166TCC201160Y294MATa leu2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1MH100Industrial strainKX428523.1MH100Industrial strainKX428523.1PlasmidsJJpHK301.1bla URA3 HO site:GALpKanMX4tef1tThis studypHK0.galbla URA3 HO-GALpkanMX4This studypHK121_SD1bla URA3 PGKp-T.ecel7A-PGKt;NatMX4This workpHK212_SD2bla URA3 PGKp-T.rcel5A-PGKt;NatMX4This workpHK212_SD3bla URA3 PGKp-S.fcel3A-PGKt;NatMX4This work	ER17	МАТа	JT 22739.17
ER19 × 12MATa/MATαThis workER17 × 12MATa/MATαThis workReference S. cerevisiaeS288c a/αMATa/α mal gal2 sal1-1 MKT1-30DThis workCAT5-911 MIP1-661A-UCC1166S288c aMATa mal gal2 sal1-1 MKT1-30D CAT5-91IATCC204508MIP1 661A-UCC1166Y294MATα leu2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1MH1000Industrial strainKX428525PlasmidspHK301.1bla URA3 HO site:GALpKanMX4tef1tThis studypHK122.SD1bla URA3 PGKp-Te.cel7A-PGKt;NatMX4This workpHK212.SD2bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4This work	ER19	МАТа	JT 22739.19
ER17 × 12MATa/MATαThis workReference S. cerevisiaeMATa/α mal gal2 sal1-1 MKT1-30DThis workS288c a/αMATa/α mal gal2 sal1-1 MKT1-30D CAT5-91IThis workS288c aMATa mal gal2 sal1-1 MKT1-30D CAT5-91IATCC204508MIP1-661A-UCC1166MIP1-661A-UCC1166TCC201160Y294MATα leu2-3112 ura3-52 his3 trp1-289ATCC201160HoegBrewing strainKX428523.1MH1000Industrial strainKX428525PlasmidsJJpHK301.1bla URA3 HO site:GALpKanMX4tef1tThis studypHK10.galbla URA3 HO-GALpkanMX4This studypHK212.SD1bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4This workpHK212.SD2bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4This workpHK212.SD3bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4This work	$ER19 \times 12$	MAT a /MATa	This work
Reference S. cerevisiae MATa/α mal gal2 sal1-1 MKT1-30D This work S288c a/α MATa mal gal2 sal1-1 MKT1-30D This work CAT5-911 MIP1-661A-UCC1166 TCC204508 S288c a MATa mal gal2 sal1-1 MKT1-30D CAT5-91I ATCC204508 MIP1-661A-UCC1166 TCC201160 TCC201160 Y294 MATα leu2-3112 ura3-52 his3 trp1-289 ATCC201160 Hoeg Brewing strain KX428523.1 MH1000 Industrial strain KX428525 Plasmids J J pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHK10.gal bla URA3 HO-GALpkanMX4 This work pHK1212.SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212.SD2 bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4 This work	$ER17 \times 12$	MAT a /MATa	This work
S288c a/α MATa/α mal gal2 sal1-1 MKT1-30D This work CAT5-911 MIP1-661A-UCC1166 TOC204508 S288c a MATa mal gal2 sal1-1 MKT1-30D CAT5-91I ATCC204508 MIP1-661A-UCC1166 MIP1-661A-UCC1166 TOC201160 Y294 MATa leu2-3112 ura3-52 his3 trp1-289 ATCC201160 Hoeg Brewing strain KX428523.1 MH1000 Industrial strain KX428525 Plasmids J J pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHK10.gal bla URA3 HO-GALpkanMX4 This work pHK1212.SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212.SD2 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work	Reference S. cerevisiae		
CAT5-911 MIP1-661A-UCC1166 ATCC204508 S288c a MATa mal gal2 sal1-1 MKT1-30D CAT5-91I ATCC204508 MIP1-661A-UCC1166 MITa leu2-3112 ura3-52 his3 trp1-289 ATCC201160 Y294 MATa leu2-3112 ura3-52 his3 trp1-289 ATCC201160 Hoeg Brewing strain KX428523.1 MH1000 Industrial strain KX428525 Plasmids Framids Framework pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHKH0.gal bla URA3 HO-GALpkanMX4 This study pHK212.SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212.SD2 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work	S288c a /α	MAT a /α mal gal2 sal1-1 MKT1-30D	This work
S288c a MATa mal gal2 sal1-1 MKT1-30D CAT5-91I ATCC204508 MIP1-661A-UCC1166 MIP1-661A-UCC1166 ATCC201160 Y294 MATa leu2-3112 ura3-52 his3 trp1-289 ATCC201160 Hoeg Brewing strain KX428523.1 MH1000 Industrial strain KX428525 Plasmids T T pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHK40.gal bla URA3 HO-GALpkanMX4 This study pHK212.SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212.SD2 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work		CAT5-911 MIP1-661A-UCC1166	
MIP1-661A-UCC1166 Y294 MATα leu2-3112 ura3-52 his3 trp1-289 ATCC201160 Hoeg Brewing strain KX428523.1 MH1000 Industrial strain KX428525 Plasmids F pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHKH0.gal bla URA3 HO-GALpkanMX4 This study pHK212.SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212.SD2 bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4 This work	S288c a	MAT a mal gal2 sal1-1 MKT1-30D CAT5-91I	ATCC204508
Y294 MATα leu2-3112 ura3-52 his3 trp1-289 ATCC201160 Hoeg Brewing strain KX428523.1 MH1000 Industrial strain KX428525 Plasmids pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHKH0.gal bla URA3 HO-GALpkanMX4 This study pHK212.SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212.SD2 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work		MIP1-661A-UCC1166	
Hoeg Brewing strain KX428523.1 MH1000 Industrial strain KX428525 Plasmids pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHKH0.gal bla URA3 HO-GALpkanMX4 This study pHK212.SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212.SD2 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work	Y294	MATα leu2-3112 ura3-52 his3 trp1-289	ATCC201160
MH1000 Industrial strain KX428525 Plasmids This study pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHKH0.gal bla URA3 HO-GALpkanMX4 This study pHK212_SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212_SD2 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work	Hoeg	Brewing strain	KX428523.1
Plasmids This study pHK301.1 bla URA3 HO site:GALpKanMX4tef1t This study pHKH0.gal bla URA3 HO-GALpkanMX4 This study pHK212_SD1 bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4 This work pHK212_SD2 bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4 This work pHK212_SD3 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work	MH1000	Industrial strain	KX428525
pHK301.1bla URA3 HO site:GALpKanMX4tef1tThis studypHKH0.galbla URA3 HO-GALpkanMX4This studypHK212.SD1bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4This workpHK212.SD2bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4This workpHK212.SD3bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4This work	Plasmids		
pHKHO.galbla URA3 HO-GALpkanMX4This studypHK212_SD1bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4This workpHK212_SD2bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4This workpHK212_SD3bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4This work	pHK301.1	bla URA3 HO site:GALpKanMX4tef1t	This study
pHK212_SD1bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4This workpHK212_SD2bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4This workpHK212_SD3bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4This work	pHKHO.gal	bla URA3 HO-GALpkanMX4	This study
pHK212.SD2bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4This workpHK212.SD3bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4This work	pHK212_SD1	bla URA3 PGKp-T.e.cel7A-PGKt;NatMX4	This work
pHK212_SD3 bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4 This work	pHK212_SD2	bla URA3 PGKp-T.r.cel5A-PGKt;NatMX4	This work
	pHK212_SD3	bla URA3 PGKp-S.f.cel3A-PGKt;NatMX4	This work

using Molecular Evolutionary Genetics Analysis software version 5.0 (Tamura *et al.* 2011).

Yeast cells were routinely cultivated at 30°C in YPD medium (1% yeast extract, 2% peptone, 2% glucose; Merck, Darmstadt, Germany) and synthetic complete (SC) media (1.7% yeast nitrogen base; Becton, Dickinson and Company, New Jersey, United States of America), 2% glucose, complete amino acid mix, ammonium sulphate (Merck) supplemented with the appropriate antibiotics and solidified with 2% agar (Merck) to make plates. For long-term storage, strains were stored at -80°C in 15% glycerol-based standard storage medium. Putative strain lines were screened in 1 mL antibiotic-selective YPD or SC medium cultured in 96 deep well culture plates (Greiner bioone, Kremsmunster, Austria), covered with AeraSeal breathable film (Sigma-Aldrich, Missouri, USA) in an adapted Titramax 101 incubator 1000 (Heidolph, Schwabach, Germany) at 30°C, shaking at 600 rpm. Unless otherwise stated, confirmation screening rounds were performed in 10 mL SC medium cultivated in 100 mL Erlenmeyer flasks shaking at 200 rpm at 30°C. Escherichia coli DH5 α was grown in either Terrific Broth (1.2% tryptone, 2.4% yeast extract and 0.4% glycerol; Merck) or on Luria-Bertani agar plates (0.5% yeast extract, 1% tryptone, 1% sodium chloride and 2% agar; Merck) supplemented with appropriate antibiotics for selecting plasmid-containing cells.

Strain construction, sporulation and transformation

A flow diagram of the steps followed in this work is shown in Fig. 1. Stable, haploid strains were constructed by disrupting at least one HO gene allele from native yeast strains with the KanMX4 marker under the control of galactose-inducing promoter to allow genetic stability in haploid state, followed by sporulation to identify heterothallic, haploid progeny (Van Zyl, Lodolo and Gericke 1993). The deletion cassette containing the KanMX4 marker was amplified from plasmid pHK301.3 (Table 1) by PCR primers listed in Table 3 and using KAPA Biosystems polymerase (Roche, Basel, Switzerland) following manufacturers' instructions. The PCR product was isolated on a gel, extracted using Zymogen Gel cleanup kit (Zymo Research, California, USA) and used to transform the strain isolates YI13, FINI and YI59, using the protocol described in Davison, den Haan and van Zyl (2016). Confirmation of HO gene deletion was performed by PCR using Taq DNA polymerase (New England Biolabs, Massachusetts, USA), using primers (Table 3), which amplify the 3 kb entire HO gene including upstream and downstream regulatory elements, under manufacturer's instructions. Sporulation was induced on minimal sporulation agar medium (1% potassium acetate, 2% agar; Merck) supplemented with the appropriate antibiotics. Asci were digested with a solution of 5% lyticase (Melford, Ipswich, UK) for 8 min, and spores

Table 2. Constructed S. cerevisiae haploid derivative strair	ns
--	----

Strain	Derivative strain	Genotype
YI13	YI13_C2	MAT a ; ho::GALp kanMX4
	YI13_6C	MAT a ; ho::GALp kanMX4
	YI13_E1	MAT a ; ho::GALp kanMX4
	YI13_9D	MATα; ho::GALp kanMX4
	YI13_G1	MATα; ho::GALp kanMX4
	YI13_9B	MATα; ho::GALp kanMX4
	YI13_8B	MAT a; ho::GALp kanMX4
	YI13_D2	MAT a ; ho::GALp kanMX4
	YI13_E4	MAT a ; ho::GALp kanMX4
	YI13_3A	MATα; ho::GALp kanMX4
	YI13_A1	MATα; ho::GALp kanMX4
	YI13_D3	MATα; ho::GALp kanMX4
	YI13_E10	MAT a ; ho::GALp kanMX4
	YI13_J1	MATα; ho::GALp kanMX4
	YI13_7C	MAT a ; ho::GALp kanMX4
	YI13_9D	MATα; ho::GALp kanMX4
YI59	YI59_E1	MAT a; ho::GALp kanMX4
	YI59_F2	MATα; ho::GALp kanMX4
	YI59_E3	MAT a ; ho::GALp kanMX4
	YI59_D4	MATα; ho::GALp kanMX4
	YI59_L4	MAT a ; ho::GALp kanMX4
	YI59_G4	MATα; ho::GALp kanMX4
	YI59_G2	MATα; ho::GALp kanMX4
	YI59_D2	MAT a ; ho::GALp kanMX4
	YI59_L1	MATα; ho::GALp kanMX4
	YI59_D3	MATα; ho::GALp kanMX4
	YI59_F4	MAT a ; ho::GALp kanMX4
FIN1	FINI_E3	MATα; ho::GALp kanMX4
	FINI_B4	MATα; ho::GALp kanMX4
	FINI_H3	MATα; ho::GALp kanMX4
	FINI_G4	MATα; ho::GALp kanMX4
	FINI_B3	MATα; ho::GALp kanMX4
	FINI_G1	MATα; ho::GALp kanMX4
	FINI_C1	MAT a ; ho::GALp kanMX4
	FINI_C3	MAT a ; ho::GALp kanMX4
	FINI_C2	MAT a ; ho::GALp kanMX4
	FINI_C59	MAT a ; ho::GALp kanMX4
	FINI_G3	MAT a ; ho::GALp kanMX4
	FINI_B2	MAT a; ho::GALp kanMX4
	FINLE1	MAT a ; ho::GALp kanMX4

were separated using a micromanipulator (MSM300 Singer Instrument, Watchet, UK). MATa and MAT α were genotyped by PCR and confirmed by a mating test.

Plasmid constructions were done according to standard molecular biology techniques previously described by Sambrook and Russel (2001). Initial PCR products were amplified using Taq DNA polymerase (New England Biolab) as instructed by manufacturer, using forward and reverse primers listed in Table 3. All kits and enzymes were used as recommended by manufacturers. Restriction endonucleases and T4 DNA ligases were purchased from New England Biolabs. PCR products and DNA fragments were routinely separated on 1% agarose (Lonza, Rockland, ME, USA) gels and fragments of appropriate sizes were isolated using the Zymoclean Gel DNA Recovery kit (Zymo Research). All plasmids constructed and utilised in this study are summarised in Table 1.

Preliminary screening was performed with the reporter cellobiohydrolase protein T.e.Cel7A on a low copy CEN6 containing plasmid, pHK212.SD1, before further screening with low copy plasmids pHK212_SD2 and pHK212_SD3 expressing T.r.cel5A (the EGII) and S.f.cel3A (the BGLI), respectively. For the construction of the plasmids pHK_SD1/2/3, open reading frames of cellulase genes namely T.e.cel7A, T.r.cel5A and S.f.cel3A were extracted from their respective plasmids pMUSD3, 2 and 1 by digesting with PacI and AscI, and subsequently inserting the individual fragments into corresponding restriction sites on the yeast expression vector pHK212. In this way, three distinct plasmids encoding different reporter proteins were constructed under the control of PGK1 promoter and terminator (listed in Table 1). Plasmid isolations were carried out using cetyltrimethylammonium bromide method (Sambrook and Russel 2001). Yeast transformations were carried out according to a previously described protocol (Davison, den Haan and van Zyl 2016). The presence of cellulase genes in strains was confirmed through PCR using primers specified in Table 3.

Determination of efficiency of transformation, mating and sporulation

To determine transformation efficiency, cells were grown to midlogarithmic growth phase at 30°C in YPD medium (OD₆₀₀ = ~0.4) and transformed with 1 μ g of plasmid DNA by electroporation (Sambrook and Russel 2001). The transformants were serially diluted and plated onto YPD agar media supplemented with the appropriate antibiotic marker. After 24, 48, 72 and 96 h incubation, the colonies were counted, and colony-forming units per micrograms of plasmid (CFU. μ g⁻¹) were calculated. Cell matings were performed according to a protocol focused on stimulation of a/α -factor expression and optimised cell–cell contact during mating (Soellick *et al.* 2001). Mating and sporulation efficiency were determined as described in Chinen *et al.* (2011). The spore viability for each cross was scored after each tetrad dissection.

Phenotypic screening

To obtain a global view of the landscape of stress tolerance profiles in *Saccharomyces cerevisiae*, we selected three strain isolates ranging in secretory phenotypes, namely YI13, FIN1 and YI59, based on innate general secretion capacities (Davison, den Haan and van Zyl 2016). These three homothallic, diploid strain isolates, with an identified range of secretory capacities (Davison, den Haan and van Zyl 2016), namely YI13 (high-), FIN1 (medium-) and YI59 (low secretor), serve as potential strains for future genetic studies (Table 1). This study proposed a phenotypic characterisation technique, with secretion and industrial stress tolerance as underlying factors, to assist with the screening of a set of strains for their applicability in a mating study towards improved heterologous cellulase secretion.

Characterisation of every strain was estimated as an average growth in YPD medium either on agar plate or in liquid culture with measurements taken every 24 h (Kvitek, Will and Gasch 2008). In our previous study, such an approach was used to characterise a collection of *S. cerevisiae* strain isolates, by cultivation on YPD agar plates supplemented with the appropriate chemicals (Davison, den Haan and van Zyl 2016).

Environmental and secretion stresses

Environmental stresses assayed include a range in temperatures (30° C, 37° C and 40° C), ethanol concentrations (7.8%-9% w/v) and a range of inhibitory cocktail concentrations (25%-40%), as previously described in Davison, den Haan and van Zyl (2016). Strains evaluated include the three strain isolate lines, namely

Figure 1. Overview of haploid and diploid strain generations. A diagram illustrating the steps followed for the generation of strains containing HO deletion, T.e.cel7A, T.r.cel5A and S.f.cel3A, is shown. The KanMX4 cassette inserted (light grey box) is flanked by 40 bp HO homologous sites and under the control of a galactose inducible promoter. Strains were disrupted for HO gene and sporulated. Four viable spores were obtained from tetrad dissection, and haploid spores were selected on geneticin (G418) and galactose-supplemented plates. MATa and MAT α were genotyped by PCR and confirmed by a mating test. The haploid strains were transformed with pCEN6/ARS4 plasmids individually expressing T.e.cel7A, T.r.cel5A and S.f.cel3A gene cassettes (dark grey boxes). Alternatively, segregants were screened for survival in multiple stresses, including secretion stressor tunicamycin. In parallel to these two approaches, we also performed targeted mating by outcrossing the best performing segregant with an Ethanol Red strain as well as inbreeding the best preforming isolates to produce novel hybrid strains. These hybrid strains were sporulated to produce F1 segregants utilised for the next round of screening. See 'Methods' for more details about these procedures.

FIN1, YI13 and YI59, and reference strains, namely Ethanol Red derivatives ER12, ER16, ER17 and ER19, and laboratory reference strains S288c and Y294. To evaluate direct stresses found in secretory pathway, compounds such as tunicamycin (0.5–2.0 μ g.mL⁻¹; Sigma), sodium orthovanadate (0.4–1.0 mg.mL⁻¹; Sigma) and Congo Red (400–800 μ g.mL⁻¹; Sigma) were utilised.

For these stress experiments, cells were grown to midexponential phase at 30°C, collected and spotted onto to fresh solid medium containing the corresponding stress as described previously (Davison, den Haan and van Zyl 2016). Spot plates were made by diluting the cultures to $OD_{600} = 0.5$ and spotting (3 μ L) 10 fold serial dilutions. Unless indicated, colony growth was inspected after 2–4 days of incubation at 30°C. Inhibition (%) assay was performed by inoculating the cultures to $OD_{600} = 0.5$ in YPD or SC medium (96 deep well plate filled with 250 μ L/well) supplemented with tunicamycin (range of 1.0–3.0 μ g.mL⁻¹) and cell growth (OD₆₀₀) was measured at 24 h intervals at an incubation at 30°C for a period of 48 h. Control assays containing 1 μ L.mL⁻¹ of 100% dimethyl sulfoxide (DMSO) were included to discard the specific effect of the solvent.

Enzyme assays

Enzyme activity assays were performed as described in Davison, den Haan and van Zyl (2016), whereby cellobiohydrolase activity from transformants expressing *T.e.cel7A* was evaluated using methyllumberiferyl- β -lactopyranoside (MULac; Sigma) as a substrate. To evaluate EG activity from transformants expressing *T.r.cel5A*, enzyme assays were performed using the carboxylmethyl cellulose/3,5 dinitrosalicylic acid (CMC/DNS) method. Finally, to evaluate BGL activity from *S.f.cel3A* expressing transformants, enzyme assays were performed with *p*-nitrophenyl β -D-glucopyranoside (Sigma).

Ploidy determination

Flow cytometry was used to verify the ploidy of the top performing strains in terms of T.e.Cel7A secretion, namely YI13 and its derivatives namely C2, E4 and 3B as well as parental reference control strain ER12. Protocols for ploidy determination were described in Davison, den Haan and van Zyl (2016). DNA histograms were recorded with a FACS Diva Version 6.1.3 flow cytometer (BD BioSciences, Franklin Lakes, New Jersey, USA). The DNA histograms were analysed with a mathematical model to determine the distribution of cells in the various ploidy classes.

Targeted mating, mass sporulation and selection strategies

To create an F1 pool with targeted mating, each parental strain was sporulated and screened individually (see earlier). As shown in Fig. 1, transformation with either Te.cel7A, Tr.cel5A and S.f.cel3A expressing pCEN6/ARS4 plasmids allowed the identification of top performing isolate, which in turn was outcrossed to an Ethanol Red strain and inbred to another top performing haploid isolate to produce hybrid strains. For the mating, each parental haploid containing pHK212_SD1 was utilised and we confirmed the plasmids were largely retained after sporulation and germination (data not shown). After the targeted mating, the hybrid strains were sporulated individually, and the tetrads were digested using random spore isolation (Ausubel et al. 1987).

We sub-cultured F1 hybrid segregants from the outcrossed (n = 200) and inbred lines (n = 60) in liquid medium YPD (96 deep well plate filled with 1 mL/well) and incubated the cells

Table 3. PCR primers use	l to construct and	d confirm haploid strains.
--------------------------	--------------------	----------------------------

Primer	Sequence 5'-3'	Reference
Mating type determination		
MATa-L	ACTCCACTTCAAGTAAGAGTTTG	(Davison et al. 2016)
MAT <i>a</i> -L	GCACGGAATATGGGACTACTTCG	
MATlocus-R	GCACGGAATATGGGACTACTTCG	
HO knockout		
galG418HO-L	GTGCGCAGATGGCTCCGCTG	This study
galG418HO-R	CCGCCACATTTTATACACTCTGGTCC	-
HO confirmation		
HO-L	AGAAAGGGTTCGCAAGTCCT	This study
HO-R	CTACGTTGCCTCCATCGAAC	
T. emersonii cel7A determination		
CCBH-L	GACTTTAATTAAAATGCTAAGAAGAGCTTTACTATTG	(Ilmén et al. 2011)
CCBH-R	GACTGGCGCGCCTTACAAACATTGAGAGTAGTATGGG	
T. reesei cel5A determination		
EGII-L	GTTAACAACAATTTGGGTGG	(Davison et al. 2016)
EGII-R	CAATGGAGAAAAAGCACC	
S. fibuligera cel3A determination		
BGL-L	GACTCGCGAGTCCCAATTCAAAACTATACC	(Davison et al. 2016)
BGL-R	CCGCTCGAGCGGTCAAATAGTAAACAGGACAGATG	. ,

for 48 h before enzyme quantification assays. After quantification, hybrid pools (n = 20) containing F1 outcrossed segregants were selected based on their distinct secretory capacities and cultured for 72 h in 10 mL minimal media in 100 mL Erlenmeyer flasks at a starting $OD_{600} = 0.1$ for enzyme quantification assays. In parallel, inhibition (%) assays were performed on the hybrid pools.

Statistical analysis

The significance of the differences in physiological properties of yeast strains was assessed by one-way ANOVA, unpaired t-tests and Mann–Whitney U test (P > 0.05).

RESULTS AND DISCUSSION

Large-scale screening of Saccharomyces strain lines for stresses impacting secretory pathway

This study exploited the natural variation that exists among strain isolates to create novel hybrids with enhanced innate secretory capacity. Previously, we had screened three natural strain isolates identified from inland and coastal winery regions of Western Cape, South Africa (Davison, den Haan and van Zyl 2016). We hypothesised that mating genetically divergent strains increases the chance of obtaining hybrids demonstrating hybrid vigour (heterosis) for industrial traits due to the fact that each strain contributes different beneficial genetic components. To estimate the evolutionary relatedness of different strains to commercially available wine, brewing and industrial strains, we aligned the D1/D2 region of the rDNA of selected strains and constructed a phylogenetic tree. MH1000 (industrial strain) and HOEG (brewing strain) as well as laboratory reference strain S288c (Fig. S1, Supporting Information). We found that the commercial strain MH1000 and laboratory strain S288c appear to be closely related to the YI1, V3, MF15, YI59, YI19 and FIN1 isolates, whereas brewing strain HOEG appears to be closely related to YI13 isolate, suggesting that the isolated strain lines potentially evolved from commercial contaminants. Three genetically divergent, homothallic strains showing distinct secretory capacities namely YI13 (high secretor), FINI (median secretor) and YI59 (low secretor; Davison, den Haan and van Zyl 2016) and industrial derivative Ethanol Red strains (ER12, ER19, ER17 and ER16) were chosen for further analysis. Given its widespread application in bioethanol industries, Ethanol Red is used as a reference strain throughout this paper.

Since many natural and industrial Saccharomyces cerevisiae strains are known to demonstrate poor sexual reproduction and transformation efficiency (often hindrances in studies involving heterologous protein production and hybrid generation), we tested the strains' capacity for genetic transformation and the ability to generate viable spores. The strain isolates demonstrated a range of transformation efficiencies from 2.0×10^3 to 1.6×10^5 (Fig. S2a, Supporting Information) lower than reported transformation efficiencies of laboratory strains (Yu et al. 2016); however, the strains of importance, namely YI13, YI59, FIN1 and Ethanol Red strains, retained sufficient transformation, as well as mating and sporulation efficiencies required for mating studies (Fig. S2, Supporting Information). Strain isolates demonstrated median sporulation capabilities (Fig. S2b, Supporting Information), with prominent strains YI13, FIN1 and YI59, demonstrating tetrad (%) values of 46.6%, 54.4% and 50.0%, respectively. Low sporulation efficiency in both wine and laboratory strains are notorious as reported by Gerke, Chen and Cohen (2006), encumbering mating analysis. As a result, cross breeding strain isolates with highly sporulating Ethanol Red strains, which produced more than 80% viable tetrads (Fig. S2b, Supporting Information), are desired. All strain isolates were confirmed to be homothallic (data not shown); therefore, to obtain stable MATa and MAT α haploid derivatives, a single HO gene knockout was performed in the strains FINI, YI13 and YI59. After these strains were sporulated, only tetrads with four viable spores were taken into account (listed in Table 2). Strains were confirmed to be genetically stable after multiple rounds of sub-cultivation (data not shown). The mating type ratios' of segregants derived from YI13, FIN1 and YI59 did not significantly deviate from the expected $2a:2\alpha$ segregation ratio of the mating type locus, indicative of true diploid yeast strains (Table 2).

We hypothesised that the impact of uniform stress responses linked to the secretory pathway can lead to various reactions in different genetic backgrounds, namely YI13, FIN1 and YI59 as well as their haploid derivatives, reference strains $S288c\alpha$, S288cα/a, Y294 and Ethanol Red strains ER19, ER19, ER17, ER12 and constructed diploid strains ER19 imes 12 and ER17 imes 12. A range of phenotypic variance was observed between the strains (Fig. 2a and b), as expected when haploids were compared with heterozygotes (Szafraniec et al. 2003; Wu, Benjamin and Thibault 2014). Interestingly, natural isolates and their derivatives displayed a wider phenotypic variance for specific traits including the tolerance profiles of ethanol, inhibitor and sodium orthovanadate when compared to other stresses (Fig. 2a). This supports the claim that background-specific effects can create phenotypic expression variation as summarised by Fournier and Schacherer (2017). As a result, even uniform stress responses can lead to various reactions, especially in different genetic backgrounds. This is supported by Szafraniec et al. (2003), who suggested that heterozygous genetic backgrounds could have small, interfering effects resulting in the displayed significant variation of the trait phenotype.

In contrast, more homogenous behaviour was observed between isolate derivatives for the traits of Congo Red, temperature and tunicamycin (Fig. 2a). Congo Red sensitivity was shown here to be a feature of diploid strain isolates, with the haploid derivatives demonstrating higher tolerance (Fig. 2a). This is potentially associated with the presence of higher chitin content at increased ploidy states of cells (Schekman and Brawley 1979). Unexpectedly, the Ethanol Red derivative lines also displayed extreme sensitivity to Congo Red compared to the other strain isolate derivatives (Fig. 2a), with growth inhibited at 400 μ g.mL⁻¹ concentration (data not shown). In contrast to the Congo Red phenotypes, an inverse relationship was observed between tunicamycin tolerance and ploidy, whereby the diploid strains' tolerance was similar or outranked the strain isolate derivatives (Fig. 2a). Haploid derivatives had pointedly reduced tunicamycin tolerance compared to the diploid strain isolates (namely YI13, FIN1 and YI59). One possible explanation is a multi-gene phenotype, which, when halved unmasks weaker tolerance (or whereby loci can interact antagonistically), resulting in a multiplicative action of effects (Szafraniec et al. 2003). Diploidy provides the immediate benefit of masking deleterious mutations if only their negative effects are reduced in heterozygotes. However, this suggested feature of haploid derivatives warrants further investigation. This not only highlights the degree of phenotypic behaviour that exist between derivatives of different genetic backgrounds and the allelic distribution of genes for different tolerance profiles, but also the highly interrelated yeast stress response pathways (as reviewed by Kawakami et al. 2016).

It is worthy to note that the high secretor strain YI13 demonstrated high tolerance to cell wall stressor namely Congo Red, cell membrane stressors namely high ethanol concentrations, high temperature and inhibitory compounds found in lignocellulosic hydrolysates and the secretion stressor tunicamycin (Fig. 2a). It has been hypothesised that a regulatory relationship exists between the CWI and the secretion pathway (Chen et al. 2005; Scrimale et al. 2010; Torres-Quiroz et al. 2010), although further evidence of this needs to be provided. Some evidence of this was observed in literature, with both Scrimale et al. (2010) and Torres-Quiroz et al. (2010) suggesting that tunicamycin, a chemical that activates UPR (Wimalasena et al. 2008), can also activate the yeast mitogen-activated protein (MAP) kinase Mpk1p (1, 4), an important component of the CWI. Chen et al. (2005) proved that MAP kinases signalling pathways were activated under ER stress, which was further regulated in a manner independent of the IRE1/HAC1 pathway. More recently, Tang et al. (2016) demonstrated that strains with deletions of key Golgi mannosyltransferases genes could up-regulate components in the secretory pathway and affect the CWI. Taking into account the results of this study, the pathways elicited by tunicamycin and Congo Red are not independent of each other, and a potential regulatory relationship may exist between the stress responses of the secretion pathway and CWI.

Growth tolerance in the presence of chemical stresses connected to secretion performance and ploidy state

During a previous study, we analysed the tolerance profiles of a variety of natural *S. cerevisiae* strain isolates to chemical stressor, tunicamycin and, in the process, identified a top performing secretory strain YI13 (Davison, den Haan and van Zyl 2016). In this paper, we explored the connection between secretion capacity and the ability to grow in the presence of low concentrations of the secretion stressor tunicamycin, as well as the connection between ploidy state of a strain and the ability to tolerate high concentrations of the cell wall stressor, Congo Red, as these traits would be easier to select for. We initially measured growth capacity of each strain on solid YPD medium supplemented with different concentrations of the chemical stressors, and subsequently tested tunicamycin tolerance in a more sensitive liquid medium.

Here, we completed the analysis of tunicamycin tolerance of three yeast strain lines, each with ranging secretory phenotypes by allowing the parallel measurement of the growth response (OD₆₀₀) for both diploid and haploid derivatives under a chosen stress condition (Fig. 2b). Using this chemical, we demonstrated that various forms of secretion stress could potentially be used to identify strains with higher secretory capacity. Initially, at lower concentrations of tunicamycin (1.0-1.5 μ g.mL⁻¹), the majority of the haploid strains demonstrated high inhibition (%) compared to the diploid strains (Fig. 2b), similar to the results displayed in Fig. 2a. From Fig. 2b, the superior secretor derivatives, namely YI13 derivatives, demonstrated significantly lower inhibition (%) at tunicamycin concentrations of 3.0 μ g.mL⁻¹ compared to other strain isolate derivatives (P value = 8.7E-5), with all stains inhibited at 3.5 μ g.mL⁻¹ (data not shown). Only the YI13 haploid derivatives survived concentrations up to 3.0 μ g.mL⁻¹ (Fig. 2b), which resulted in a clear distinction being observed between YI13 haploid derivatives and other strain isolate derivatives.

In parallel to the tunicamycin tolerance assay, the secretion phenotypes were evaluated using a low copy centromeric plasmid containing Talaromyces emersonii cel7A (CBHI) with a carbohydrate-binding module from Trichoderma reesei Cel7A (Ilmén et al. 2011). The YI13 derivative strains, Ethanol Red strains and laboratory strain S288c were transformed. A range of secretory capacities was demonstrated between the strains (Fig. 3a) reinforcing the hypothesis that differences in genetic background of host yeast strains have profound effects on expression on recombinant proteins (Szafraniec et al. 2003), especially with respect to heterologous protein secretion levels. The YI13 constructs had the highest activity per dry cell weight (DCW) for the time monitored, achieving up to 1.28 U.mgDCW⁻¹ (Fig. 3a). Furthermore, a range of activity levels were observed among the YI13 segregants, ranging from 0.21 to 1.10 U.mgDCW⁻¹ (Fig. 3a) with the best segregant displaying activity that was 10-fold higher than the best performing Ethanol Red derivative. In particular, the six YI13 haploid transformants

Figure 2. Summarised phenotypic response of three yeast strain lines, namely YI13, FIN1 and YI59, as well as parental and reference strains, to specific stresses known to influence the secretory stress response system. This includes (a) average growth of strains spotted onto YPD plates in a 10-fold serial dilution range starting at $OD_{600} = 0.5$. Plates were either supplemented with or incubated under specific environmental stresses prominent in a CBP industrial context including temperature ($30^{\circ}C-40^{\circ}C$), ethanol concentrations (7.8%-9.0% w/v) and a range of inhibitor cocktail concentrations (25%-40%) or direct stresses found in secretory pathways including tunicamycin ($0.5-2.0 \ \mu g.mL^{-1}$), sodium orthovanadate ($0.4-1.0 \ m g.mL^{-1}$) and Congo Red ($400-800 \ \mu g.mL^{-1}$). (b) Inhibition (%) by ER stressor, tunicamycin, was determined by average growth second or each strain cultivated under stressed and non-stressed conditions. Cultures were incubated at $30^{\circ}C$ in 250 μ l YPD medium in 96 deep well culture plates with measurements taken after 48 h, with the control supplemented with $1 \ \mu L.mL^{-1}100\%$ DMSO. Each row on both plots represents a different strain or derivative and each column indicates a given environment according to the keys shown at the bottom. Colour-scale boxes beneath the respective figures represent the average growth score of each strain.

Figure 3. Relative enzyme activity of Y113 derivatives displaying a range of secretion profiles (a) expressing *T.e.cel7A* (CBHI) cultivated in 1 mL YPD media in 96 deep wells, or expressing (b) *T.e.cel7A* (CBHI; dark grey), *T.r.cel5A* (EGII; light grey) and *S.f.cel3A* (BGLI; white), respectively, when cultivated in 10 mL YPD media in 100 mL Erlenmeyer flasks. All values represent the mean of three repeats and error bar indicates standard deviation from the mean. ANOVA test: *ns, not significant; $P \leq 0.01$. Unpaired t-tests: ** $P \leq 0.05$.

secreted significantly more T.e.Cel7A (CBHI) compared to the respective S288c (P value = 0.004) and Ethanol Red transformants (P value = 0.008; Fig. 3a). No significant difference was observed in T.e.Cel7A activities between the Ethanol Red derivative strains (P value = 0.85; Fig. 3a). Upscaling the experiments to flasks demonstrated no difference in the ranking of the strains (Fig. 3a and b). The strain ER12 was chosen for mating analysis because previous studies identified weak strains as contributors for beneficial genetic variation that is often absent from superior strains (Hu et al. 2007; Swinnen, Thevelein and Nevoigt 2012).

In addition to selection for higher secretory capacity, we also explored a selection strategy based on survival in medium containing low levels of the secretion stressor, tunicamycin. Interestingly, the tunicamycin tolerance ranking of the strains (Fig. 2b) remained similar to that exhibited by secretion profiles of the T.e.Cel7A (CBHI; Fig. 3a). Furthermore, a large range of activities (2.1-10.4 U.mgDCW⁻¹) was observed between the strains expressing another reporter cellulase gene namely T.r.cel5A (EGII; Fig. 3b). In this case, a 3.1-fold difference existed between control ER12 and the highest performing haploid YI13 derivative for T.e.Cel7A activity, namely C2 (Fig. 3b). This may be indicative of a potential 'general secretion' enhancing effect being observed in the overall highest performing haploid, namely C2. However, the lack of variance between the haploids expressing S.f.cel3A (BGLI; Fig. 3b), suggested preferential pathways for specific heterologous reporter proteins. Comparing the highly glycosylated protein of S.f.Cel3A with the physically smaller cellulases T.e.Cel7A and T.r.Cel5A, this enzyme was secreted at poor extracellular activity levels across all strain backgrounds (Fig. 3b). The observed variations in Fig. 3b can be attributed to general protein properties such as protein size, number of di-sulphide bonds, protein hydrophobicity etc. (as reviewed by Kroukamp et al. 2017). Furthermore, the cell wall-associated nature of S.f.Cel3A (as described by Gurgu *et al.* 2011) may explain the discrepancies regarding the extracellular activity levels displayed among the strains. As a result, the T.e.Cel7A was used as a reporter protein for subsequent screening of the F1 hybrids.

Targeted mating generates improved F1 hybrids

The parental reference strains for hybridisation were chosen based on the clear distinction in T.e.Cel7A activity observed between the best performing YI13 haploid derivatives C2 and 3B, and parental reference haploid strain ER12 (Fig. 3a and b). In addition to outcrossing the C2 segregant to ER12, we inbred the best performing segregants C2 and 3B using a targeted mating approach. Flow cytometric analysis was performed on the top performing YI13 derivatives, in respect to T.e.cel7A and T.r.cel5A secretion levels, namely C2, E4 and 3B, and confirmed the strains to be true haploids containing half the DNA content of diploid strains (Fig. S3, Supporting Information). The F1 hybrids from both crosses incorporated two initial genomes, with F1 segregants demonstrating a mosaic of genomes. We obtained 60 outcrossed and inbred F1 pools of hybrid segregants and assayed the extracellular T.e.Cel7A activity of these pools (Fig. 4a). An interesting result was that the average secreted T.e.Cel7A of outcrossed segregants was significantly higher than that of the inbreds (P value = 0.0006; Fig. 4a). This can partly be explained by the specific genetic combination of parents that may provide a superior genetic basis, and that inbreeding can often result in weaker hybrids as demonstrated by hybridisation studies to improve ethanol tolerance by Snoek et al. (2015). It is important to note that we focus on alleles that have been exposed to natural selection, and while it may increase the chance of introducing alleles that are beneficial for the desired trait, it could potentially be detrimental for other phenotypes of interest. Another factor to consider is epistasis, whereby two alleles that are beneficial in a specific genetic background can have a disadvantageous effects when combined in the same strain. Therefore, the effect of epistasis is more pronounced in the outbred pools due to more complex, mosaic genetic backgrounds with alleles combined from different strains.

Based on the previous analyses, we further sporulated and isolated 210 segregants from the outcrossing of C2 with ER12 segregants (known as H7 hybrids) and screened for extracellular T.e.Cel7A activity (Fig. 4b). Interestingly, some of the transformants showed peculiar behaviour as they secreted T.e.Cel7A poorly or not at all, similar to Ethanol Red strain lines and reference laboratory strains (Fig. 4b). The secretory performance in the mosaic segregants was higher than that in the parental haploid (C2) and hybrid strain (H7) for 20 out the 210 strains (Fig. 4b). Approximately 9.0%-9.5% of the total haploid derivatives screened displayed extracellular T.e.Cel7A activity less than the ER12 parental strain and more than C2 parental strain (Fig. 4b). As a next step, we re-tested pools of outbred F1 segregants that showed distinct secretory capacities i.e. lowest and highest, in comparison to a pool of randomly selected segregants in 10 mL minimal media in Erlenmeyer flasks. We found significant differences between the 'high' (P value = 7.4E-06) and 'low' pools (P value = 1.7E-05) compared to the 'random' pool, as a result confirming our screening approaches (Fig. 4c). Ten of the best performing haploid derivatives were re-cultivated in 10 mL YPD media in Erlenmeyer flasks and assayed. Under these conditions, the E7.1 haploid had the best performance for extracellular T.e.Cel7A activity compared to the other transformants, significantly outperforming the parental diploid strain YI13 by 1.7-fold (P value = 3.1E-06) and ER12 parental haploid strain by

Figure 4. Targeted mating yields hybrids with increased T.e.Cel7A secretion capability. (a) Outcrossed F1 hybrids display higher yields of extracellular T.e.Cel7A than F1 inbreds cultivated in 1 mL YPD media in 96 deep well plates (Mann–Whitney test: ***P ≤ 0.05). (b) Outcrossed F1 segregants display a gradual increase in extracellular T.e.Cel7A activity in 1 mL YPD in 96 deep well plates. (c) Distinct pools of isolated F1 outcrossed segregants demonstrate a range of significant secretory capacities cultivated in 10 mL minimal media in 100 mL Erlenmeyer flasks (Mann–Whitney test: ***P ≤ 0.05 , unpaired t-test: **P ≤ 0.05). (d) Relative enzyme activity profiles of top performing F1 generation hybrids displaying a range of secretion profiles cultivated in 10 mL YPD media in 100 mL Erlenmeyer flasks (unpaired t-test: **P ≤ 0.05).

4.9-fold (P value = 2.6E-05; Fig. 4d). Such extremes of either very high or very low phenotype, as well as the gradual increase in secreted activity (i.e. continuous and normally distributed) suggested a Gaussian-distributed trait and distinctly typifies this as a quantitative trait with multiple alleles being responsible for high *T.e.*Cel7A secretion. This further demonstrated that more than one allele is conferring the high secretion phenotype. Furthermore, past research suggested that multiple alleles are responsible for the high secretion phenotype and that small enhancements combined can contribute to a superior secretion phenotype as described by Brookfield (1996), and specifically hypothesised for *T.e.*Cel7A secretion by Kroukamp *et al.* (2017).

To confirm that some of the hybrids obtained in our outcrossed hybridisation strategy outperformed the commonly used bioethanol strain and initial parental strains, we re-tested 10 hybrids from the high secretion pool in triplicate and upscaled to Erlenmeyer flasks. The results show that some selected outcrossed F1 segregants demonstrated heterosis and outperformed both their parental strains (Fig. 4d). This superior performance of F1 generation has been demonstrated in yeast previously. Heterosis has been was demonstrated for cellulase production before by Kroukamp et al. (2017). While the precise mechanisms underlying heterosis remain unknown, future work to characterise the novel strains generated in this study with increased secretion capacity at a genetic and phenotypic level would be of interest, for example using a quantitative trait loci (QTL) mapping approach as described by Hubmann et al. (2013). In addition to selection for superior secretory capacities, we also explored a selection strategy based on survival in minimal medium containing a range of concentrations of tunicamycin. To ascertain the degree of secretion stress variation between outcrossed F1 segregants, we performed stress tolerance analysis on the selected strains from pools of segregants. In this way, we exploit strain differences that may physiologically activate the UPR. We found that the stress tolerance distribution of the F1 segregants was less broad than that of the parental strains (Fig. 5). Nevertheless, we found that some of the segregants in the 'low' pool i.e. displaying low extracellular T.e.Cel7A activity, performed worse in tunicamycin-induced stress compared to the 'high' pool i.e. displaying high extracellular T.e.Cel7A activity (Fig. 5). This evidence correlates to the hypothesis that a highly reactive secretory stress response exhibited by these strains potentially results in superior protein-folding capabilities, which had been suggested by previous studies (Ilmén et al. 2011; Davison, den Haan and van Zyl 2016).

Nevertheless, strains that cultivate well in the presence of tunicamycin are not always the best secretor strains, which was also demonstrated by the parental and hybrid strains: the best performing strain out of the collection, namely E7.1 (Fig. 4d), grows well in the presence of tunicamycin, but not as good as some of the segregants in the 'low' pool (Fig. 5). Therefore, it is important note that this method is only suitable when scoring the ultimate strain is not a necessity. However, when screening large numbers of recombinant strains, this method presents a way to screen the first selection of candidates likely resulting in a much smaller pool of recombinant strains to analyse. Hence, the presented method is a suitable way of making the first selection of high secreting strains, but a second test remains necessary to identify the best performing strain. Furthermore, the diversity

% inhibition by tunicamycin

Figure 5. Summarised phenotypic response of yeast strain lines to tunicamycin. Each row represents growth in medium with different concentrations of chemical stressor tunicamycin for F1 segregants from the outcrossed hybrid population, as well as the parental strains. Colour boxes represent the inhibition (%) determined by average growth score of each strain cultivated under stresses and non-stresses conditions in triplicate repeats, according to the key shown at the bottom. Cultures were incubated at 30°C in 250 μ l minimal medium in 96 deep well culture plates with measurements taken every 24 h for 48 h. Values represent the average of three repeats.

of functions contributing to ER integrity presents an obstacle in our efforts to use this stress as a selection tool due to complexity surrounding how unexpected factors function together to support protein folding in the ER (Jonikas *et al.* 2009). The advantage in a selectable trait such as tolerance to chemical stresses, including tunicamycin, is the ability to screen large numbers of segregants, which should increase the chances of selecting the best candidate for ER stress and, indirectly, secretion stress. It is recommended to include a combination of chemical stresses in a comprehensive screen followed by systematic analysis of secretory phenotype in order to fully understand a complex cellular process such as heterologous protein secretion.

CONCLUSIONS

By analysing phenotypic traits directly and indirectly linked to secretory stress, we were able to set up a novel standardised screening procedure suitable for recombinant protein production and potentially other traits including inhibitor tolerance. A main factor in large-scale segregant screening required for a genetic and mating studies involves the large amounts of material, costs, time and effort needed. We have developed a screening protocol applicable for large-scale haploid screening, through the use of antimicrobial compounds tunicamycin and Congo Red to substantially reduce the number of strains that have to be assayed quantitatively. This protocol is appropriate for multiparallel screenings at relatively low cost and effort and without the need for highly specialised equipment. With further development, this method could be a basis for an automated screening procedure to facilitate the high-throughput applications needed to analyse QTLs linked to a desired trait. In conclusion, evaluating and characterising the natural, intra-species hybridisation of genetically stable haploid strains allows for the selection of improved hybrids for industrial traits, as well as allowing for the easy genetic manipulation required for research on heterologous enzyme secretion.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSYR online.

FUNDING

The authors would like to thank the National Research Foundation (NRF) for financial support to the Chair of Energy Research: (grant number UID 86423 awarded to WHvZ).

Conflict of interest. None declared.

REFERENCES

- Ausubel FM, Brent R, Kingston RE et al. Current Protocols in Molecular Biology. New York: Wiley, 1987.
- Brookfield JF. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 1996;5:453–5.
- Chen Y, Feldman DE, Deng C et al. Identification of mitogenactivated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res 2005;**3**:669–77.
- Chinen T, Ota Y, Nagumo Y et al. Construction of multidrugsensitive yeast with high sporulation efficiency. *Biosci Biotechnol Biochem* 2011;**75**:1588–93.

- Coi AL, Legras J, Zara G et al. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts. FEMS Yeast Res 2018;**16**, DOI: 10.1093/femsyr/fow066.
- Cubillos FA, Billi E, Zörgö E *et al*. Assessing the complex architecture of polygenic traits in diverged yeast populations. Mol Ecol 2011;**20**:1401–13.
- Cubillos FA, Louis EJ, Liti G. Generation of a large set of genetically tractable haploid and diploid Saccharomyces strains. FEMS Yeast Res 2009;9:1217–25.
- Davison SA, den Haan R, van Zyl WH. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biot 2016;**100**:8241–54.
- Den Haan R, Kroukamp H, van Zyl J-HD *et al*. Cellobiohydrolase secretion by yeast: current state and prospects for improvement. *Process Biochem* 2013;**48**:1–12.
- Den Haan R, van Rensburg E, Rose SH et al. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. *Curr Opin Biotechnol* 2015;**33C**:32–8.
- Deutschbauer AM, Davis RW. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet 2005;**37**:1333–40.
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;**32**:1792–7.
- Fournier T, Schacherer J. Genetic backgrounds and hidden trait complexity in natural populations. *Curr Opin Genet Dev* 2017;47:48–53.
- Garay-Arroyo A, Covarrubias AA, Clark I et al. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microb Biot 2004;63:734–41.
- Gerke JP, Chen CTL, Cohen BA. Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency. *Genetics* 2006;**997**:985–97.
- Gurgu L, Lafraya Á, Polaina J et al. Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresour Technol 2011;**102**:5229–36.
- Hu X, Wang M, Tan T et al. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 2007;175:1479–87.
- Huang M, Bai Y, Sjostrom SL et al. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. P Natl Acad Sci U S A 2015;**112**:E4689–96.
- Hubmann G, Foulquié-Moreno MR, Nevoigt E et al. Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. *Metab Eng* 2013;17:68–81.
- Ilmén M, den Haan R, Brevnova E et al. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 2011;4:30.
- Jansen T, Hoff JW, Jolly N et al. Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance. Folia Microbiol (Praha) 2018;63:155–68.
- Jin M, Sarks C, Gunawan C et al. Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX[™] pretreated corn stover. Biotechnol Biofuels 2013;6:108.
- Jonikas MC, Collins SR, Denic V *et al*. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. *Science* 2009;**323**:1693–7.
- Kawakami E, Singh VK, Matsubara K et al. Network analyses based on comprehensive molecular interaction maps reveal

robust control structures in yeast stress response pathways. NPJ Syst Biol Appl 2016;**2**:15018.

- Khajeeram S, Unrean P. Techno-economic assessment of highsolid simultaneous saccharification and fermentation and economic impacts of yeast consortium and on-site enzyme production technologies. *Energy* 2017;**122**:194–203.
- Kroukamp H, den Haan R, van Wyk N et al. Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Appl Energy 2013;102: 150–6.
- Kroukamp H, den Haan R, van Zyl J et al. Rational strain engineering interventions to enhance cellulase secretion by Saccharomyces cerevisiae. *Biofuels Bioprod Bioref* 2018;**12**; 108–24.
- Kroukamp H, den Haan R, la Grange DC et al. Strain breeding enhanced heterologous cellobiohydrolase secretion by Saccharomyces cerevisiae in a protein specific manner. Biotechnol J 2017:12. DOI 10.1002/biot.201700346.
- Kuo SC, Lampen JO. Tunicamycin An inhibitor of yeast glycoprotein synthesis. Biochem Bioph Res Co 1974;**58**:287–95.
- Kvitek DJ, Will JL, Gasch AP. Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 2008;4:e1000223.
- Liti G, Louis EJ. Advances in quantitative trait analysis in yeast. PLoS Genet 2012;8. DOI: 10.1371/journal.pgen.1002912.
- Liu Z, Hou J, Martínez JL et al. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae. Appl Microbiol Biot 2013;97:8955–62.
- Liu Z, Liu L, O[°]sterlund T et al. Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering. Appl Environ Microb 2014;**80**:5542–50.
- Mattanovich D, Gasser B, Hohenblum H et al. Stress in recombinant protein producing yeasts. J Biotechnol 2004;113:121–35.
- Meijnen J-P, Randazzo P, Foulquié-Moreno MR et al. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 2016;9:5.
- Mukherjee V, Steensels J, Lievens B et al. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biot 2014;**98**:9483–98.
- Olofsson J, Barta Z, Börjesson P et al. Biotechnology for biofuels integrating enzyme fermentation in lignocellulosic ethanol production: life - cycle assessment and techno - economic analysis. Biotechnol Biofuels 2017;10:1–14.
- Parts L, Cubillos FA, Warringer J et al. Revealing the genetic structure of a trait by sequencing a population under selection. *Genome Res* 2011;**21**:1131–8.
- Ruyters S, Mukherjee V, Verstrepen KJ et al. Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol 2014:1–10.
- Salinas F, Cubillos FA, Soto D et al. The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae. PLoS One 2012;7. DOI: 10.1371/journal.pone.0049640.
- Sambrook J, Russel D. Molecular Cloning: A Laboratory Manual. New York, USA: Cold Spring Harb Lab Press, 2001.
- Schekman R, Brawley V. Localized deposition of chitin on the yeast cell surface in response to mating pheromone. P Natl Acad Sci U S A 1979;76:645–9.
- Scrimale T, Didone L, de Mesy Bentley KLet al. The unfolded protein response is induced by the cell wall integrity mitogenactivated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae. Mol Biol Cell 2010;82:327–31.

- Soellick T, Uhrig JF, Züchtungsforschung AM et al. Development of an optimized interaction-mating protocol for large-scale yeast two-hybrid analyses. *Genome* Biol Evol 2001;2:1–7.
- Snoek T, Nicolino MP, Van den Bremt S et al. Large-scale robotassisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnol Biofuels 2015;8:32.
- Steinmetz LM, Sinha H, Richards DR et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 2002;**416**:326–30.
- Swinnen S, Thevelein JM, Nevoigt E. Genetic mapping of quantitative phenotypic traits in *Saccharomyces cerevisiae*. FEMS Yeast Res 2012;**12**:215–27.
- Szafraniec K, Wloch DM, Sliwa P et al. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae. Genet Res 2003;82:19–31.
- Tamura K, Peterson D, Peterson N *et al*. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 2011;**28**:2731–9.
- Tang H, Wang S, Wang J et al. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci Rep 2016;6:1–13.
- Torres-Quiroz F, García-Marqués S, Coria R et al. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure. J Biol Chem 2010;285:20088–96.
- Travers KJ, Patil CK, Wodicka L et al. Functional and genomic analyses reveal an essential coordination between the unfold protein response and ER-associated degradation. *Cell* 2000;**101**:249–58.
- Warringer J, Zörgö E, Cubillos FA et al. Trait variation in yeast is defined by population history. PLoS Genet 2011;7:e1002111.

- Wimalasena TT, Enjalbert B, Guillemette T et al. Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol 2008;45: 1235–47.
- Wingren A, Galbe M, Zacchi G. Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. *Biotechnol Progress* 2003;19:1109–17.
- Wu H, Benjamin SHNG, Thibault G. Endoplasmic reticulum stress response in yeast and humans. Biosci Rep 2014;34:321– 30.
- Zhuang J, Marchant MA, Nokes SE et al. Economic analysis of cellulase production methods for bio-ethanol. Appl Eng Agric 2007;23:679–87.
- Van der Westhuizen TJ, Augustyn OPH, Pretorius IS. Geographical distribution of indigenous *Saccharomyces cerevisiae* strains isolated from vineyards in the coastal regions of the Western Cape in South Africa. S *Afr J Enol* Vitic 2000;**21**:3–9.
- Van Dijken JP, Bauer Brambilla et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme and Microb Technol 2000;26:706–14.
- Van Zyl JHD, den Haan R, van Zyl WH. Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biot 2016;100:505–18.
- Van Zyl WH, Lodolo EJ, Gericke M. Conversion of homothallic yeast to heterothallism through HO gene disruption. Curr Genet 1993;23:290–4.
- Verna J, Lodder A, Lee K et al. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci 1997;94:13804–9.
- Yu S, Dawson A, Henderson A et al. Nutrient supplements boost yeast transformation efficiency. Sci Rep 2016;6:1–7.