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A B S T R A C T 

Blind cleaning methods are currently the preferred strategy for handling foreground contamination in single-dish H I intensity 

mapping surv e ys. Despite the increasing sophistication of blind techniques, some signal loss will be inevitable across all scales. 
Constructing a corrective transfer function using mock signal injection into the contaminated data has been a practice relied on 

for H I intensity mapping experiments. Ho we ver, assessing whether this approach is viable for future intensity mapping surv e ys, 
where precision cosmology is the aim, remains unexplored. In this work, using simulations, we validate for the first time the 
use of a foreground transfer function to reconstruct power spectra of foreground-cleaned low-redshift intensity maps and look 

to e xpose an y limitations. We rev eal that ev en when aggressiv e fore ground cleaning is required, which causes > 50 per cent 
ne gativ e bias on the largest scales, the power spectrum can be reconstructed using a transfer function to within sub-per cent 
accuracy. We specifically outline the recipe for constructing an unbiased transfer function, highlighting the pitfalls if one deviates 
from this recipe, and also correctly identify how a transfer function should be applied in an autocorrelation power spectrum. We 
validate a method that utilizes the transfer function variance for error estimation in foreground-cleaned power spectra. Finally, 
we demonstrate how incorrect fiducial parameter assumptions (up to ±100 per cent bias) in the generation of mocks, used 

in the construction of the transfer function, do not significantly bias signal reconstruction or parameter inference (inducing 

< 5 per cent bias in reco v ered values). 

Key words: methods: data analysis – methods: statistical – large-scale structure of Universe – cosmology: observations – radio 

lines: general. 
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 I N T RO D U C T I O N  

robing fluctuations in the Universe’s density field is an excellent tool
or furthering precision cosmology. A number of large sky surveys 
ave been commissioned with this aim and ha ve contrib uted towards
onstraining parameters in the standard cosmological model (eBOSS 

ollaboration 2021 ; Heymans et al. 2021 ; DES Collaboration 2022 ).
espite cosmic microwave background (CMB) experiments leading 
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he way with constraints (Planck Collaboration VI 2020 ), it is
xpected that large-scale structure maps will soon be the lead- 
ng resource given the three-dimensional information they provide 
Slosar et al. 2008 ; Giannantonio et al. 2012 ; Alonso et al. 2015b ).
ncreases in surv e y volume will allow fluctuations across the largest
cales to be probed, improving constraints. It is within the relatively
ne xplored ultr a -large scales where no v el tests of general relativity
ill be possible and where there will be increased sensitivity to
ew physics such as non-Gaussian fluctuations in the Universe’s 
rimordial density field (Camera et al. 2013 ; Alvarez et al. 2014 ;
aker & Bull 2015 ; Camera, Maartens & Santos 2015 ; Fonseca
t al. 2015 ; Bull 2016 ; Cunnington 2022 ). Ultra-large scales are also
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ighly linear, a v oiding the complex modelling challenges facing
urv e ys attempting to exploit non-linear regimes (D’Amico et al.
020 ; Martinelli et al. 2021 ; Pourtsidou 2023 ). 
An efficient method for surv e ying large volumes is using ra-

io telescopes to map the redshifted 21cm emission from neutral
ydrogen (H I ). The H I , which mostly resides in galaxies in the
ost-reionization Universe, traces the underlying dark matter, thus
llo wing the Uni verse’s large-scale structure to be probed. By rapidly
canning the sky and recording all radiation as unresolved diffuse
mission, the faint 21cm signals are integrated allowing for a
omprehensiv e surv e y of H I density in 3D to be obtained. This
rocess is known as H I intensity mapping (Bharadwaj et al. 2001 ;
attye, Davies & Weller 2004 ; Chang et al. 2008 ; Wyithe, Loeb &
eil 2008 ). 
The H I power spectrum has been recently detected on small
pc scales (Paul et al. 2023 ) with intensity maps from the 64-dish
eerKAT array, a pathfinder telescope for the Square Kilometre
rray Observatory (SKAO) (SKA Cosmology SWG 2020 ). This
etection used MeerKAT as an interferometer which has higher
ensitivity on small scales. However, within the next few years the
eerKAT Large Area Synoptic Surv e y (MeerKLASS) plans to con-

uct a wide ( � 4 , 000 deg 2 ) H I intensity mapping surv e y, potentially
panning 0 . 4 < z < 1 . 45 in redshift if performed using the UHF band
Santos et al. 2017 ). Since the MeerKAT interferometer does not
ave sufficiently short baselines to achieve such a field of view, the
bservations will be gathered using the single-dish data from each
lement of the array. This autocorrelation mode of observation, often
eferred to as single-dish mode , is also planned for the full SKAO
n order to probe large-scale cosmology, which has been identified
s a top priority science objective (Weltman et al. 2020 ). In the pre-
KA era ho we ver, MeerKAT will pursue lo w-redshift H I intensity
apping and has already demonstrated calibration and map-making

rom single-dish mode observations with a small pilot surv e y (Wang
t al. 2021 ). This same pilot surv e y was also used to achieve the
rst single-dish mode cosmological detection with a multidish array

n cross-correlation with an o v erlapping galaxy surv e y (Cunnington
t al. 2022 ). 

Since H I intensity mapping records all emission in the frequency
ange of the instrument, the major challenge is removing any
ignals which are not cosmological H I . This can include radio
requency interference (RFI) and astrophysical foregrounds, both
f which can dominate by orders of magnitude o v er the weak
 I signal. 1 In principle, RFI should be time-varying and can be
agged when it enters the observ ations. Ho we v er, fore grounds will
onsistently enter the observations due to their fixed sky coordinates,
herefore a process for separating them from the H I is required.
he dominant sources producing foregrounds in the low-redshift
 I frequency range ( ∼ 300 < ν < 1420 MHz) are synchrotron and

ree–free radiation from within our own galaxy, along with extra-
alactic concentrated emission from strong point sources such as
ctive galactic nuclei (Oh & Mack 2003 ; Santos, Cooray & Knox
005 ; Alonso, Ferreira & Santos 2014 ). 
To date, blind foreground cleaning techniques have been the only

pproach that has led to cross-correlation detections of a cosmolog-
cal power spectrum in single-dish intensity mapping (Masui et al.
013 ; Wolz et al. 2017 , 2022 ; Anderson et al. 2018 ; Cunnington
t al. 2022 ). Blind techniques exploit the robust assumption that
NRAS 523, 2453–2477 (2023) 

 Additional contaminants come from atmospheric emission and ground 
ickup which can be approximately modelled as constant o v er time when 
 constant ele v ation scanning strategy is adopted. 
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oregrounds are a dominant and correlated contribution to the
bservations and can be statistically reduced into a few components
hich are remo v ed. This requires little prior knowledge of the

oregrounds which is a huge advantage since it is challenging to
btain a detailed understanding of the foreground’s precise amplitude
hrough frequency, or how they respond to instrumental systematics.
lind foreground removal performed at the map level has proven

o be the most successful approach and these have been validated
nd refined in simulations (Wolz et al. 2014 ; Alonso et al. 2015a ;
arucci, Irfan & Bobin 2020 ; Cunnington et al. 2021a ; Spinelli et al.
021 ). Interferometric intensity mapping can to some extent adopt a
oreground a v oidance strate gy, which assumes the y are isolated in a
oreground wedge region in ( k ⊥ 

, k � )-Fourier space (Liu, Parsons &
rott 2014 ; Paul et al. 2023 ). The foreground a v oidance technique
as the advantage of being immune to signal loss from foreground
leaning. Ho we ver, recent studies have shown some component
eparation impro v es fore ground mitigation relativ e to fore ground
 v oidance alone in interferometric surv e ys (Chen, Wolz & Battye
023 ). Hence blind fore ground remo val is likely to be an adopted
echnique beyond single-dish mode experiments. 

While blind foreground cleaning algorithms themselves have been
ell studied, the precise effects they cause on the underlying H I

eld have not been to the same extent. Broadly speaking there are
w o unf a v ourable consequences from blind foreground cleaning, and
oth will occur simultaneously to some extent. The first is foreground
esiduals , i.e. foreground contamination not removed from the data
esulting from undercleaning. The second is signal loss i.e. the
eduction in the H I power spectrum amplitude resulting from the
oreground clean. It is this second issue that is the main focus of
his paper. While foreground residuals are of course important, their
nfluence on the data is similar to RFI and instrumental noise, that
s, they cause an additive bias to the estimated H I power spectrum.
o we v er, for fore grounds, it is e xpected that their residuals should
e reducible to sub-dominant levels relative to the H I (Cunnington
t al. 2021a ). Furthermore, in cross-correlation with a foreground-
ree tracer such as a galaxy surv e y, an y additiv e bias from fore ground
esiduals will be absent and the only impact will be on the error
udget. 

For signal loss, it has been shown that even in ideal simulations,
ome loss is al w ays inevitable across all scales when blind foreground
emoval methods are applied, and this is not mitigated in cross-
orrelations (Cunnington et al. 2021a ). Ignoring or incorrectly
stimating signal loss, unsurprisingly, leads to a biased reco v ery of
he H I power spectrum. Thus signal loss is a crucial concept to un-
erstand e xhaustiv ely for precision cosmology to be possible with H I

ntensity mapping. The necessary process of signal reconstruction,
.e. correcting for the signal loss, is where there is little dedicated
tudy. A foreground transfer function T can be simply defined as
he object which delivers a reconstructed signal power spectrum that
s unbiased to the underlying truth i.e. 〈 P rec ( k ) 〉 = P true ( k ), where
 P rec ( k ) 〉 ≡P clean ( k ) / T ( k ). Previous intensity mapping detections
Masui et al. 2013 ; Anderson et al. 2018 ; Cunnington et al. 2022 ;

olz et al. 2022 ) have all relied on a process of mock signal
njection to estimate the foreground transfer function. By subjecting
he injected mocks to the same foreground cleaning process as the
bservations, we can use the drop in the measured mock power
pectra to estimate the transfer function. This method was first
 xtensiv ely analysed in Switzer et al. ( 2015 ) in the context of the
reen Bank Telescope (GBT) H I intensity maps (Masui et al.
013 ; Switzer et al. 2013 ). There have been similar methods of
ignal injection to correct for signal loss implemented for epoch of
eionization experiments where past analyses underestimated signal
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is not o v erly complicated. It acts as additional perturbations to the pure 
foreground modes in a similar way to the H I signal, as we later discuss. 
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oss leading to biased results (Cheng et al. 2018 ), highlighting the
mportance of correctly understanding this issue. To date, there has 
een no dedicated simulations-based investigation into the reliability 
f the transfer function for low-redshift H I intensity maps blindly 
leaned at the map level, despite its clear importance. 

In this work, we use various H I intensity mapping simulations
o validate the reliability of the transfer function for signal recon- 
truction in foreground-cleaned maps. We explore how signal loss 
rises in a foreground clean and illustrate the subtleties of this both
nalytically and empirically in simulation tests, demonstrating how 

 transfer function can be correctly estimated to account for all these
ubtleties. We focus e xclusiv ely on Principal Component Analysis 
PCA)-based foreground cleaning but much of the formalism and 
esults presented will be transferable to other foreground cleaning 
echniques. Furthermore, while our focus is on single-dish intensity 

apping, the conclusions will also be applicable to interferometers. 
e demonstrate how a foreground transfer function is a reliable 

ool for small pilot surv e ys, validating it on simulations constructed
sing empirical MeerKAT 2019 observations aiming to realistically 
mulate current MeerKAT intensity maps. Lastly, we look to the 
uture and pursue to what extent the transfer function can be relied
n for conducting precision cosmology with intensity mapping where 
ub-per cent accuracy on parameter estimation is the aim. 

This paper is structured as follows; in Section 2 we present an
 v erview of the formalism for a blind PCA-based foreground clean,
xplicitly highlighting where signal loss arises. Section 3 presents 
ow one should construct a foreground transfer function to correct for 
ignal loss. In Section 4 we test the transfer function on a simulation
f a MeerKAT-like intensity mapping pilot surv e y, validating the 
ransfer function in this low signal-to-noise regime. Section 5 focuses 
n how suited the transfer function is for the purposes of precision
osmology, showcasing the robustness of the transfer function 
ven where the fiducial cosmology assumed for its construction 
isagrees with the truth in the observations. Finally, we conclude in 
ection 6 . 

 S I G NA L  LOSS  F RO M  F O R E G RO U N D  

L E A N I N G  

e begin with a pedagogical introduction to the formalism describing 
lind foreground cleaning and with the aid of simulations demon- 
trate some key concepts of signal loss induced by the foreground 
lean. F or consistenc y, we largely follow the notation in Switzer et al.
 2015 ). While we focus on a PCA-based method, the formalism
e present is in principle transferable to more sophisticated blind 

ore ground remo val techniques when the y are used as linear filters
e.g. Bobin et al. 2007 ; Chapman et al. 2012 ; Alonso et al. 2015a ;
arucci et al. 2020 ; Cunnington et al. 2021a ; Irfan & Bull 2021 ;
pinelli et al. 2021 ). We use a set of simulations with separable H I

ignal and foreground contributions, allowing us to provide examples 
f the claims made in certain deri v ations. We begin by using some
eneric simulations which are similar to that used in Cunnington 
t al. ( 2021a ). The exact details of these simulations are outlined in
ppendix A1 but we include a short summary of points below. 

(i) The 1 ( Gpc /h ) 3 MULTIDARK (Klypin et al. 2016 ) N -body semi-
nalytical simulation with approximate cold gas masses is used 
or the single realization of the underlying true H I signal at a
napshot redshift of z = 0 . 39, gridded into n x , n y , n z = 256 , 256 , 256
oxels. We include redshift-space distortions (RSD) to provide the 
 I signal with an anisotropic signature. A frequency range of
00 < ν < 1156 MHz with resolution δν = 1 MHz is assumed which 
s consistent with the snapshot redshift and is reasonably consistent 
ith MeerKAT L-band intensity mapping observations. 
(ii) We simulate galactic synchrotron, galactic free–free, and 

right point source emission at these frequencies to provide a 
ore ground sk y. We use the Planck Le gac y Archiv e 2 FFP10 simula-
ions for the synchrotron and free–free emission. The point sources 
atalogue is produced following the same approach as in Battye et al.
 2013 ). 

(iii) We cut a patch of sky consistent with the 1 ( Gpc /h ) 2 H I survey
ize and chose this to be centred on the Stripe 82 region of the sky,
here a real surv e y could be targeted. The foreground component
ith n θ = n x × n y angular pixels and n ν ≡ n z frequency channels is

dded on to the H I signal simulation. 
(iv) To increase the complexity of the foreground clean, we 

imulate instrumental polarization leakage (Carucci et al. 2020 ; 
unnington et al. 2021a ) which disrupts the smooth frequency 

pectra of the foreground simulations, requiring a clean which is 
ore aggressive and consistent with real data. For this we used the
RIME 3 software (Alonso et al. 2014 ). This is used by default and we
ighlight any cases where this has not been used. 
(v) By default we add no further instrumental effects, but in some

ases we introduce instrumental noise and smoothing perpendic- 
lar to the line of sight to emulate the telescope beam. For the
oise, we assume isotropic Gaussian white noise with σn = 1 mK , 
pproximately corresponding to 30 h of observation time on a 
eerKAT-like surv e y of ∼ 3000 de g 2 sk y (see equations A3 and
4 for more details). This noise dominates o v er the H I signal
hich has an rms of σH I ∼ 0 . 14 mK . The beam we approximate as a
aussian with como ving transv erse length-scale R beam 

= 10 h 

−1 Mpc
see equation A2 for a definition). We clearly indicate cases where
oise or a beam has been added. We discuss the limitations of these
pproximations and also explore some more realistic systematics 
n Section 4 based on real MeerKAT pathfinder data, which we
ntroduce there. 

Throughout we will refer to these as the MD1GPC simulations. 
ater in the paper, we use some more specific simulations to explore
ifferent scenarios which we will introduce then, but for the majority
f our results, we use the MD1GPC by default unless otherwise
learly stated. 

To begin a PCA-based clean of the H I + foregrounds combination,
e first calculate the ν, ν

′ 
covariance of the foreground contaminated 

ata X obs , where the data matrices X have dimensions [ n ν, n θ ]. The
ovariance is estimated by C = ( n θ − 1) −1 X 

T 
obs X obs = U � U 

T , where 
he last equality is the eigen-decomposition (or diagonalization) of 
he covariance matrix, with U representing a matrix with the n ν
pectral eigenvectors U i and � is the diagonal matrix of eigenvalues. 
eglecting noise contributions, 4 i.e. X obs = X f+s ≡X f + X s , we can 
rite this as 

 = ( n θ − 1) −1 ( X f + X s ) 
T ( X f + X s ) , (1) 

hich expands to 

 f+ s = ( n θ − 1) −1 
(
X f X 

T 
f + X f X 

T 
s + X s X 

T 
f + X s X 

T 
s 

)
= C f + C � 

, (2) 
MNRAS 523, 2453–2477 (2023) 
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M

Figure 1. The first nine eigenvectors (first five in the top panel and next 
four in the bottom) from the PCA on the MD1GPC foreground contaminated 
simulations. The dashed black lines show purely foreground modes taken 
from the PCA on foreground-only sims. The solid colour lines show the 
eigenvectors perturbed by the inclusion of the H I signal in the data. These 
perturbations are the origins of signal loss in foreground cleaning. The thin 
faint solid colour lines show eigenvectors perturbed by the inclusion of the 
H I signal + noise. 
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here C � 

= ( n θ − 1) −1 ( X f X 

T 
s + X s X 

T 
f + X s X 

T 
s ) are residual contri-

utions to the estimate of the fore ground co variance. The estimate
f the foregrounds, which is to be remo v ed from the observations, is
hen given by 

ˆ 
 f = U S U 

T X obs , (3) 

here, following Switzer et al. ( 2015 ), we introduce the selection
atrix S which is zero everywhere except for the first N fg elements

long the diagonal which are set equal to one, assigning the number
f contaminated modes projected out from each line of sight. 
While we expect the foregrounds to be orders of magnitude larger

han the H I signal, and C f to be the dominant term in equation ( 2 ), it
s important for the additional perturbations from the signal through
 � 

to be considered. Due to this mix of foregrounds and signal, the
igenvectors we obtain are 

 ≡ U f+ s = U f + � , (4) 

here U f are pure foreground modes and � are the perturbed
ontributions caused by the signal. We show the difference between
he unperturbed ( U f ) and perturbed ( U f+s ) eigenvectors in Fig. 1 . This
hows the first nine most dominant eigenvectors from the MD1GPC
imulations. For the unperturbed, pure foreground eigenvectors
dashed black lines), the modes are smooth in frequency, only
howing longer wavelength oscillations caused by the polarization
eakage. Ho we ver, for the eigenvectors estimated from the fore-
round and signal mix (solid coloured lines), perturbations to the
odes caused by the signal start to arise. These perturbations are
NRAS 523, 2453–2477 (2023) 
ore severe the higher the order of the eigenvector. This is because
he eigenvectors become increasingly less dominant and are more
asily perturbed by the presence of the signal whose contributions
emain fairly consistent through all the eigenvectors due to its high-
ank properties. 

Fig. 1 demonstrates how signal loss can enter a foreground clean.
sing the eigenvectors U f+s as the basis functions which are projected
ut in the PCA clean, this will project out modes that have some
 I structure shown by the perturbations on the lower modes. It is

empting to try and address this issue at this early stage and use a low-
ass filter or smooth the perturbed modes to correct the perturbations
rom the signal. Ho we v er, we briefly e xperimented with various
moothing routines with this aim and in all cases, the results were
ade worse. Since the aim of this work is not to enhance foreground

leaning efficiency, but instead to ensure we can control signal loss,
e defer any investigations into cleaning optimization to future 
ork. 
We also show in Fig. 1 the impact on the eigenmodes by including

he dominant instrumental noise ( U f+s+n shown by faint coloured
ines). These create much larger perturbations to the pure foreground
odes, hence large noise can impact foreground cleaning. This is an

mportant issue for early pilot surv e ys where observation time is low
ince in these cases, the noise will dominate o v er the H I and will be
he main source of perturbations to the eigenvectors. We will discuss
his in more detail later and demonstrate how intensity maps with
 high level of noise, and other additive systematics like residual
FI, can still undergo signal reconstruction using a transfer function.
or the remainder of this section, we omit the instrumental noise for
implicity. 

The perturbations in Fig. 1 are dependent on the ratio between the
oreground amplitude and the other components e.g. the H I . While
he H I signal amplitude will be consistently uniform due to the
osmological principle, the foreground emission can vary with the
hoice of sky patch, e.g. being orders of magnitude higher near the
alactic plane relative to the South Celestial Pole. This was explored
n Cunnington et al. ( 2021a ) where different fore ground re gions were
ested. For the remainder of this work, ho we ver, we will stick to one
egion as most of the conclusions we draw are generic regardless
f how strong the foregrounds are, within a physically reasonable
ange. 

.1 Toy model for egr ound cleaning 

ere, we investigate some idealized foreground cleaning scenarios to
emonstrate the nature of signal loss in blind foreground cleaning. We
egin with the most ideal toy case scenario where we project out pure
oreground modes from pure foreground-only data and subtract this
rom the observed combination X f+s . Of course, if we could access
erfect foreground-only data X f this could be simply subtracted from
he observ ed fore ground and signal mix, so there would be no need
or any mode projection cleaning process. Ho we ver, we proceed with
his example since it provides valuable insight from which we can
dd complication. This first toy-case is given by 

 toy:clean1 = X f+s − U f S U 

T 
f X f , (5) 

n this ideal case, since we are projecting out perfect foreground
odes from pure foreground data, the optimal selection matrix S
ould have the diagonals filled with ones ( N fg = n ν) i.e. the identity
atrix, to remo v e all fore ground without the consequence of signal

oss. In reality, this is not possible and a balance is sought between
rojecting out enough modes to remo v e fore grounds but not so many
hat large signal loss is sustained. 
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Figure 2. Autopower spectra for different foreground cleaning cases in comparison with the true H I -only simulations (black dashed line). The first three panels 
represent idealized scenarios. Far-left shows projecting pure foreground modes ( U f ) out from pure foreground data ( X f ). The second panel shows projecting 
pure foreground modes out from foreground data mixed with signal ( X f+s ). The third panel shows projecting modes perturbed by the signal ( U f+s ) out from pure 
foreground data. Far-right shows the realistic scenario where modes are perturbed by the signal and these are then projected out from foreground data mixed 
with signal. 
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In Fig. 2 we show the measured power spectrum for the idealized
oy clean in equation ( 5 ) (far-left panel). We also show other cases of
oreground clean in the other panels which we will discuss shortly.
etails on the power spectrum estimation formalism used throughout 

he paper are presented in Appendix B . We show the power spectra in
omparison with the original H I -only (foreground-free) data, which 
e are aiming to agree with. In all cases we show two cleaned

xamples with 8 and 12 modes projected out, i.e. the first N fg = 8
nd N fg = 12 elements in the diagonal of S are set to 1. This is why
e do not reach perfect agreement in the ideal top-left panel, because
e are not projecting out all pure foreground modes, leaving some 

oreground residual in the remaining modes. Thus, there is slight 
isagreement with the H I -only, albeit at a sub-per cent level for the
 fg = 12 case. The values of N fg = 8 , 12 are chosen to sufficiently

uppress the polarized foregrounds in the increasingly more realistic 
ases shown by the other panels which we discuss next. 

In reality, the situation in equation ( 5 ) is not possible, because we
annot project out modes from foreground-only data X f because the 
bserved data we have, X f+s , are inherently mixed with signal. Signal 
oss begins to manifest in the case where we project out foreground
odes from the observed data mix 

 toy:clean2 = X f+s − U f S U 

T 
f X f+s . (6) 

his is still an idealized scenario since we are projecting out pure
oreground modes from the data. In reality, a further complication 
rises since the modes identified in the PCA will be perturbed by
he presence of signal i.e. U f → U f+s , which we will discuss shortly.
omparing the first panel with the second, where the difference is that 

n the former case, pure foreground modes are now being projected 
ut from the mix of foreground and signal (equation 6 ), evidence of
ignal loss in the cleaned power spectrum begins to show. The signal
oss is clearly dominating o v er an y fore ground residuals remaining
n the data from only projecting out a finite number of modes. In
ther words, the small ∼ 5 per cent additive bias in the far-left panel 
aused by foreground residuals is not seen in the second panel, due
o a more dominant impact from signal loss. Of course if a smaller
umber for N fg were chosen, foreground residuals would cause more 
f a problem. 
The second panel of Fig. 2 confirms that signal loss begins to
anifest when modes (even purely foreground ones) are projected 

ut of the data, which is a combination of foregrounds and signal. The
eason for this is because signal will una v oidably ha v e de generacies
ith some foreground structure. Thus when a set of foreground 

unctions are projected out of the data, some signal will leak into this
ubtraction, mainly large-scale (small- k ) modes since these are most
egenerate with the foreground structure which is highly correlated 
hrough frequency. 

The third panel of Fig. 2 shows a final idealized toy case where
e are only projecting out modes from the pure foreground map,
ut the modes are now perturbed by the presence of signal, U f+s (see
quation 4 ). This is something we have to deal with in reality where
e cannot form a perfect estimation for the foreground-only eigen- 
odes U f , from the true observed data where foreground and signal

re mixed. In this case, the eigenvectors themselves are perturbed 
nd it is these perturbed modes that we project along the data; 

 toy:clean3 = X f+s − U f+s S U 

T 
f+s X f . (7) 

his provides an interesting result with signal loss again appearing 
o be the more dominant effect with little evidence of additive bias
rom foreground residuals. Ho we ver, we are only projecting out
odes from pure foreground data, so it seems counter-intuitive that 

here is signal loss. As we will explicitly show in the following
ection, this is caused by the perturbation to the modes from the
resence of signal ( U f+s ), which creates a complicated mix of
ubtracted terms that can have signal correlating and anticorrelating 
ontributions, as identified in Switzer et al. ( 2015 ). 

.2 The origins and subtleties of signal loss 

espite seeing signal loss in the second and third panels of Fig. 2 ,
oth cases still represent unrealistic scenarios. In reality, we see a
MNRAS 523, 2453–2477 (2023) 
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Figure 3. Contributions to signal loss from the decomposed terms in equation ( 9 ). Each power spectra shows the cross-correlation between the original-H I 

and a subtracted term in the foreground clean. The different panels represent different numbers of PCA modes remo v ed ( N fg ). The solid lines indicate residual 
foreground contributions, whereas the dashed lines indicate H I signal contributions. The thin lines indicate perturbed contributions from � caused by the 
presence of signal in the eigenmode estimation. For reference, we also include the pure H I -power (black dotted) along with the total cleaned result X clean (grey 
dotted). 
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ombination of both where the presence of signal perturbs the eigen-
odes ( U f+s ) as well as complicating the clean since information

s projected out from data which contain not just foregrounds, but
ignal too ( U f+s S U 

T 
f+s X f+s ). Thus, the true resulting cleaned data are

iven by 

 clean = X f+s − U f+s S U 

T 
f+s X f+s . (8) 

he result from this foreground clean is shown in the final far-
ight panel of Fig. 2 . Results appear similar to X toy:clean2 but some
ifferences can be seen on large scales caused by the increased
omplexity of having perturbed eigenmodes ( U f+s ). 

To understand the complexity of foreground cleaning, we expand
he abo v e equation ( 8 ) into all its terms, giving 

 clean = 

[
1 − ( U f + � ) S ( U f + � ) T 

]
( X f + X s ) 

= X f + X s − U f S U 

T 
f X f − U f S U 

T 
f X s − � S U f X f − U f S � 

T X f 

−� S � 

T X s − � S � 

T X f − � S U 

T 
f X s − U f S � 

T X s . (9) 

n Fig. 3 we sho w po wer spectra for the subtracted decomposed
erms in equation ( 9 ), plotting their cross-correlation with the pure
 I signal to demonstrate where signal loss originates. Since these are

he subtracted terms, the higher their cross-power with pure-H I , the
ore they are contributing to signal loss. For reference, we also show

he pure-H I (i.e. the H I autocorrelation) as the black dotted line, and
he fully cleaned result (all terms from equation 9 combined) as the
rey dotted line. 
As expected, a large bulk of signal loss is caused by the subtraction

f the U f S U 

T 
f X s term (blue dashed line). This direct signal loss will

learly increase for higher N fg i.e. more ones along the diagonal of
 , and this is demonstrated by the growing amplitude of the blue
ashed line mostly at small- k , going left to right in the panels. The
rojected out foregrounds U f S U 

T 
f X f are entirely uncorrelated with

he H I signal as shown by the consistent with zero power spectrum
orange line). Ho we ver, we still decrease the amplitude of U f S U 

T 
f X f 

y three orders of magnitude (indicated in the legend) since this
ominant term still has large purely statistical fluctuations in the
 I cross-correlation dependent only on the foreground realization.
he thinner lines represent terms including perturbative contributions

rom the H I signal � . This is where the issue of signal loss begins
NRAS 523, 2453–2477 (2023) 
o complicate. As N fg increases, the contribution to signal loss from
 S � 

T X s (brown dashed line) becomes non-negligible. Complicating
atters further is the removal of the anticorrelating contribution

n � S U 

T 
f X s . Lastly, there are also noticeable correlations in the

erturbed fore ground remo v ed terms. The thin red line sho ws ho w
he remo v ed term � S U 

T 
f X f will also introduce a contribution to

ignal loss. This explains the previous result presented in the bottom-
eft panel of Fig. 2 where, despite only projecting out modes from
ure foreground data X f , signal loss still arose in the cleaned power
pectrum, albeit at a ∼ 5 per cent level in the largest scales. This
ill be caused by the signal perturbations � which introduce a small

orrelation with the H I signal, shown by the red line in Fig. 3 . 
The complex mix of signal correlation and anticorrelation caused

y the perturbations � from non-foreground modes can clearly affect
he o v erall signal loss. The impact of signal perturbations on the
oreground modes becomes increasingly more important the more
ggressiv e the fore ground clean due to � having more influence o v er
ess dominant foreground modes, as seen in Fig. 1 . It is therefore
rucial to model or emulate all these contributions in any signal
econstruction to a v oid unbiased results as highlighted in previous
iterature (Switzer et al. 2015 ; Cheng et al. 2018 ). In Section 3
e will explore how signal injection can be used to construct a

oreground transfer function and validate with simulations how it
s able to successfully emulate all the subtle contributions to signal
oss. We will also explicitly highlight cases where a transfer function
an be incorrectly assembled such that some of the contributions
emonstrated by Fig. 3 are not accounted for, leading to incorrect
stimations of signal loss. 

 VA LI DATI NG  T H E  TRANSFER  F U N C T I O N  

I TH  SI MULATI ONS  

s demonstrated in the previous section, signal loss from blind
oreground cleaning is complicated by the subtraction of subsets
f data that have spurious correlations and anticorrelations with the
 I signal. The spurious correlations arise because the estimated
odes projected out in the blind foreground clean are perturbed

y the presence of the H I signal itself. Thus the signal loss is
ependent on the specific realization of the signal, foregrounds,
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nd their combination. Modelling the signal loss, or measuring it 
n pure simulations, is therefore potentially problematic and could 
ead to biased results. In this section, we explore how we can
tilize the observed contaminated data itself to emulate the complex 
purious correlations in injected mock data and use the signal loss
xperienced in the mocks to construct a foreground transfer function. 
his data-driven approach has been extensively used in single-dish 

ntensity mapping detections (Masui et al. 2013 ; Anderson et al. 
018 ; Cunnington et al. 2022 ; Wolz et al. 2022 ). Here, we present
he formalism for an unbiased application of the transfer function 
nd for the first time validate its performance on simulations while 
lso trying to expose any limitations. 

Throughout this section, we treat the MD1GPC simulation as 
he observed intensity mapping data, and use lognormal mocks as 
ompletely separate simulations in the construction of the transfer 
unctions. This maintains a certain independence between the in- 
ected mocks and the simulated signal that we are trying to reco v er,
s would be the case in real observations. There is also the option of
enerating more complex mocks to inject into the data, for example 
sing field level forward modelling (Obuljen et al. 2022 ) or an H I -
alo prescription as trialled in Wolz et al. ( 2022 ); ho we ver, we found
ognormal mocks sufficient for our purposes. 

In this section, in cases where we are investigating the cleaned 
r reconstructed power spectrum, unless stated otherwise, we will 
se the cross-correlation power spectrum between the foreground- 
leaned MD1GPC map and the H I -only (foreground-free) MD1GPC 

ap. This is so that foreground residuals will be less of an issue and
heir additive bias does not confuse the investigation of signal loss and 
econstruction accuracy. In cross-correlation with the H I -only map, 
ny dif ference relati ve to the original H I -only autopower spectrum
ill be caused solely by signal loss. 

.1 Summarized recipe for the transfer function and its 
nbiased results 

e begin by providing a summary of how a transfer function can
e used for correcting signal loss from foreground cleaning, and 
alidate the performance of the process. We then go into more detail
n the remainder of this section, clarifying exactly how the transfer
unction can be constructed and used for various scenarios. In short,
he foreground transfer function is constructed by injecting mock 
ata into the observed maps. Then, by running the same foreground 
emoval routine, one will subject the mock data to a similar signal
oss that is experienced by the true underlying H I signal, thus giving
n estimate of the true signal loss. 

Below is the step-by-step recipe for how to construct and apply an
nbiased transfer function; 

(i) First, foreground clean the observed data X obs by projecting out 
 fg PCA modes i.e. X clean = X obs −U S U 

T X obs , where U is a matrix of 
igenvectors from the diagonalization of the ν, ν

′ 
covariance matrix 

stimated empirically from the data, and S is the selection matrix 
ith ones along the first N fg diagonal elements and zeros elsewhere. 
(ii) Compute the power spectrum for the foreground-cleaned 

ata, which will be ne gativ ely biased due to the signal loss
rom the foreground clean. The power spectrum is given here by 
 clean ( k) = P ( X clean , X tr ), where P ( X clean , X tr ) is an operator which
easures the cross-power spectrum between data sets X clean and X tr , 

hen reduces the power into the spherically averaged k -bins. Here, 
 tr is an y o v erlapping tracer, which can be the intensity map itself for
n autocorrelation surv e y, or a galaxy surv e y as a common example
f cross-correlation. 
(iii) Generate mock H I signal maps X m 

with the same dimensions 
s the observed data. In this work we use a fast lognormal transform
rocess to generate mocks from the H I power spectrum model given
n equation ( B4 ). We investigate the consequences of variation in the
nput mocks in Section 5 . 

(iv) Emulate signal loss in the mock by injecting it into the real data
nd foreground cleaning the observed data and mock combination, 

 

m 

clean = ( X obs + X m 

) −U obs+m 

S U 

T 
obs+m 

( X obs + X m 

) − [ X clean ] . (10) 

he term in the square brackets is subtracting the cleaned observed
ata without mocks to remo v e contributions in the map uncorrelated
o the mock signal thus reducing the variance of the transfer function,
s we will explicitly demonstrate. 

(v) The foreground transfer function is then given by 

 ( k) = 

〈P( X 

m 

clean , X m 

) 

P( X m 

, X m 

) 

〉
N mock 

, (11) 

here the angled brackets denote an averaging over iterations of a
uitably large number of mocks ( N mock ) until a converged transfer
unction is achieved. We use N mock = 100 by default unless otherwise
entioned. 
(vi) De-bias the cleaned power spectrum using the transfer func- 

ion to reconstruct the signal loss with P rec ( k ) = P clean ( k )[ T ( k )] −1 .
ote the index of −1 should also be used in autocorrelation i.e.

n autocorrelation of an intensity map should not have signal loss
orrected for twice, as we will demonstrate in Section 3.4 . 

(vii) The covariance of the reconstructed power spectrum can also 
e extracted from the mocks used in the transfer function calculation.
hile the mean of P clean T −1 

i o v er all N mock iterations provides the
econstructed power spectrum, the covariance estimates the errors 
nclusive of signal loss uncertainty. Ho we ver, as we will show, it is
rucial not to subtract the square-bracket X clean term in equation ( 10 )
hen estimating the covariance, as this will include foreground 

esiduals, instrumental noise, etc. all of which should contribute 
o the error budget. We discuss this in detail in Section 3.3 . 

The numerator in equation ( 11 ) is taking the cross-correlation
etween the cleaned mock X 

m 

clean and original mock X m 

with no 
leaning effects. This should therefore not be o v erly influenced by
oreground residuals and differences between this cross-correlation 
nd the autocorrelation in the denominator should only be caused by
ignal loss from the foreground clean, thus their ratio provides the
evel of the original signal remaining in the power spectrum of the
leaned mock X 

m 

clean . The crucial part for equation ( 11 ) is having a
rocess for obtaining X 

m 

clean such that the signal loss it experiences 
cross all scales is the same as the signal loss in the actual data X s .
o achieve this we inject mock signal X m 

into the observed data with
oregrounds and true H I signal ( X f+s+m 

≡X f + X s + X m 

) then project 
ut the same number of modes as in the original foreground clean of
he observations i.e.; 

 

m 

clean = X f+s+m 

− U f+s+m 

S U 

T 
f+s+m 

X f+s+m 

− [ X clean ] . (12) 

his is equi v alent to what we presented in the summarized recipe
n equation ( 10 ). As discussed, the term in the square bracket is
ubtracting the cleaned observed data (with no mock injection) to 
educe the transfer function variance, which we discuss in more 
etail later. The presence of mock signal will cause perturbations to
he eigenmodes, and will emulate the signal loss coming from both
rojecting out the modes with signal perturbations and the complex 
orrelations between all the cross terms discussed in Section 2.2 and
quation ( 9 ). 
MNRAS 523, 2453–2477 (2023) 
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Figure 4. Accuracy of reconstructed foreground-cleaned power spectra 
relative to the foreground-free H I -only data ( P H I ) from simulated intensity 
maps. The foreground-cleaned power spectrum has been reconstructed using 
the transfer function to correct for the signal loss from foreground cleaning. 
The transfer functions are calculated using equations ( 11 ) and ( 12 ) and 
av eraging o v er 100 lognormal mocks. The shaded bands show the rms o v er 
these 100 mocks. Results for a mild ( N fg = 8, blue lines) and more aggressive 
( N fg = 12, red lines) foreground cleans are shown. The dark thick (light-thin) 
green horizontal lines indicate sub 1 per cent (5 per cent) accuracy regions of 
the reconstructed power spectrum. 
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The presence of the true observed H I signal X s in
 f+s+m 

≡X f + X s + X m 

in equation ( 12 ) creates unwanted compli-
ations to the transfer function construction which should ideally
nly be concerned with the mock signal X m 

and its relationship
ith X f . The presence of X s will not matter from a direct signal

oss perspective, since this will not affect the cross-correlation with
 m 

in equation ( 11 ). Ho we ver, X s will perturb the estimation of the
igenvectors. This is unwanted because we ideally only want the
ock signal to perturb the eigenvectors and just produce U f+m 

, but
y injecting mocks into the true signal we will actually measure 

 f+s+m 

= U f + � s + � m 

, (13) 

here we have introduced the subscripts m and s to the perturbations
 to distinguish perturbations from mock signal and true H I signal,

espectively. The two sources of perturbation is not seen in the
oreground clean of just the observations ( X f + X s ). In other words
he eigenvectors are now being perturbed twice. As we will show
rom our results shortly, this appears to have little impact and we
till obtain an unbiased transfer function. We tested the transfer
unction in an idealized case where mock signal was injected
nto just pure foreground ( X f + X m 

) and found little difference in
erformance compared to the realistic case where true signal is
resent ( X f + X s + X m 

). 
The accuracy of the reconstructed power spectra is demonstrated

n Fig. 4 . The simulated observations are cleaned by removing
ither N fg = 8 or 12 PCA modes, then the transfer function is used
o correct for the signal loss, with the reconstructed result being
ivided by the original foreground-free simulation P H I ( k). Thus, a
erfect reconstruction would give unity across all scales. We see
xcellent performance with sub-per cent accuracy achieved across
ost scales abo v e k > 0 . 1 h Mpc −1 for the N fg = 8 case. Performance

s still good for the N fg = 12 case, albeit with a noticeable drop in
ccurac y relativ e to N fg = 8 mostly at large scales (small- k ). This
NRAS 523, 2453–2477 (2023) 
ill be caused by the increased effect from spurious correlations
etween foregrounds and mock signal, which, as we demonstrated
n Fig. 3 , increases for more aggressive (higher N fg ) foreground
leans. This will not necessarily bias the results since the variance
n the transfer function also increases for higher N fg , as shown by
he shaded regions, thus can be reflected in the error estimations
discussed in a later section). 

In general on large ( k < 0 . 1 h Mpc −1 ) scales, we see a less reliable
esult in terms of pure accuracy, but this is also accounted for by the
ransfer function variance, which can reach � 5 per cent on these
cales. The performance at large scales is ho we ver dependent on the
ize of the intensity mapping surv e y. The depth of the 1 ( Gpc /h ) 3 

D1GPC simulation at z ∼ 0 . 39 is reasonably consistent with a
eerKAT L-band surv e y, assuming it uses the complete band range

0 . 2 < z < 0 . 58). Ho we v er, future surv e ys in UHF band, and then
ventually the SKAO, will cover much wider frequency ranges.
his will mean reconstructed modes at k < 0 . 1 h Mpc −1 become
ore reliable due to a suppression of sample variance and less

ignal loss which will now be contained to even larger scales. We
ill demonstrate this point later in Section 5 with some additional

imulations which co v er a larger volume. 
The presence of the true observed H I signal in the transfer function

alculation will increase its variance because there will be residual
rue signal after the foreground clean. This will be uncorrelated from
he mocks and act like noise and increase the variance across all of
he mocks being averaged over. This is why we subtract the cleaned
ata (the X clean term in the square brackets of equation 12 ), since this
s only contributing variance to the result. We will revisit this point
n the next section where we will demonstrate that the increased
ariance coming from X clean can be utilized for error estimation.
ith the X clean subtraction, this version of the transfer function is not

nly achieving a good accuracy but also a good uncertainty on most
cales, shown by the shaded region. 

The validation of the transfer function demonstrated by Fig. 4
s an important result. This is a method for reconstructing signal
oss which is applicable on real data and delivers unbiased results
cross all scales and within sub-per cent precision across smaller
cales where the particular surv e y volume allows those modes to
e well sampled ( k > 0 . 1 h Mpc −1 for the case of the MD1GPC
imulations). The compromise of having to inject mock signal into a
ombination of both foreground and true H I signal is an una v oidable
omplication; ho we ver, there is no evidence that this causes any bias
n the reconstructed power spectrum. Furthermore, by subtracting
he cleaned data ( X clean term in the square brackets of equation 10 ),
e found the increase in variance relative to an ideal case where
o true signal ( X s ) is present in the transfer function calculation
as only ∼ 20 per cent . It is crucial that the form of the transfer

unction as defined by equations ( 11 ) and ( 10 ) be followed and in
ppendix C we explicitly highlight the consequences of deviating

rom this prescription, demonstrating the significant biases caused
hen different definitions of the transfer function are used. 
In Figs 5 and 6 we demonstrate the shape of the transfer function

n k -space and in doing so analyse where signal loss is most severe.
ig. 5 shows transfer functions for different PCA modes remo v ed
given by N fg ). This confirms that signal loss increases with N fg and
s higher at smaller- k , both as expected. We also show the impact from
dding the dominant instrumental noise. Perhaps counter-intuitively,
his causes less signal loss. This is because the noise is the dominant
ource of perturbations to the pure foreground modes (as shown by
ig. 1 ), hence these noise-dominant modes will have less contribution
rom the H I signal and removing them causes less signal loss.
o we ver, this will result in a poorer overall foreground clean. Thus
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Figure 5. F ore ground transfer functions T ( k) constructed using equa- 
tions ( 11 ) and ( 10 ) for the MD1GPC simulations for different numbers of PCA 

modes remo v ed (giv en by N fg ). The solid lines indicate noise-free simulations; 
the thin dashed lines are for cases where white noise with rms σn = 1 mK , 
which dominates o v er the H I , is added to the simulated observations. 

Figure 6. Similar to Fig. 5 , this shows the foreground transfer function 
but now in cylindrical k ⊥ , k � space where N fg = 12 PCA modes have been 
remo v ed. This is for the noise-free case. 
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oreground residuals and the high-level noise already present will 
ause problems for additive biases in autocorrelation and would also 
ead to higher errors in cross-correlation. So the presence of high 
oise is not beneficial as Fig. 5 alone may appear to suggest. We
xplore the high noise scenario further in Section 4 where we use
imulations which emulate an early pathfinder-like intensity mapping 
urv e y. 

Similarly to Fig. 5 , an example transfer function is also shown in
ig. 6 but now decomposed into cylindrical contributions in k ⊥ 

, k � .
s already well established, signal loss is o v erwhelmingly a function
f small- k � . Ho we ver, there is also some slight k ⊥ 

dependence with
ignal loss being slightly higher at small- k ⊥ 

caused by the large
ngular structures in the foregrounds. It is important to highlight 
hat the nature of signal loss will vary depending on not just the
oreground’s strength and spectral smoothness, but also on the depth 
f the surv e y in frequenc y. This means that the signal loss presented
n Figs 5 and 6 is specific to the MD1GPC simulation. Ho we ver,
he conclusions we have drawn from this are still mostly generic. 
 or e xample, signal loss is still contained in small- k � modes in more
ystematic dominated intensity maps as shown in recent MeerKAT 

nalysis (Cunnington et al. 2022 ) and as we will show later in the
imulations designed to emulate a small MeerKAT pilot intensity 
apping surv e y. While signal loss appears widespread throughout 
ll modes in the spherically averaged Fig. 5 , where > 5 per cent
ignal loss is evident even on small scales, it is clear from Fig. 6
hat signal loss does tend to zero (where T ( k ⊥ 

, k ‖ ) ∼ 1) abo v e some
 � cut. This raises an intriguing possibility of adopting a hybrid
oreground cleaning/a v oidance strate gy where a blind fore ground
lean is run on the full data, but then an avoidance strategy is used
here only modes abo v e some k � are kept for further analysis. At the
ery least this would limit the dependence on the transfer function
ut w ould unlik ely be reliable enough to completely a v oid any use of
ignal reconstruction. Furthermore, the methodology of the transfer 
unction would still be a required tool for robustly assessing where
n optimum cut in k � should be made. Scale cuts will also limit
he scope and constraints possible with the experiment. We defer 
n y inv estigations of k � cuts to future work and continue to test the
ransfer function on small- k � , especially since these are the scales that
ill test the performance of the transfer function most stringently. 

.2 1D versus 2D bandpowers in the transfer function 

ur results so far have reduced all power directly into 1D spherically
veraged k -bins and the results in Fig. 4 suggest this can be sufficient.
rovided the same k -bins are used in the 1D spherical averaging
or the transfer function construction and cleaned power spectrum, 
he transfer function should encapsulate the same anisotropic signal 
oss in each k -bin as inflicted on the cleaned data. Furthermore,
oing straight to 1D k -bins a v oids extra compression steps which
ould potentially lead to results being lossier. Ho we ver, it has been
roposed in the literature that because the signal loss is anisotropic
demonstrated by Fig. 6 ) the transfer function should be estimated
nd applied in 2D cylindrical k ⊥ 

, k � space, with these bandpowers
hen re-binned to provide the final spherically averaged 1D power 
pectrum (Masui et al. 2013 ; Switzer et al. 2015 ). 

We tested the 2D-cylindrical transfer function approach and 
ound evidence of higher variance in the standard case where 
omplicated polarized foregrounds are present in the observations. 
e demonstrate this in Fig. 7 . Here, the 1D reconstruction (blue

hading) shows our default set-up used everywhere else in the paper,
veraging straight into 1D spherical k -bins. The 2D reconstruction 
efers to a case where we average all power into 100 k ⊥ 

× 100 k ‖ 
ylindrical linear-spaced bins, with 0 < k ⊥ 

, k ‖ < 0 . 4 h Mpc −1 , in
he transfer function construction. The measured power for the 
leaned observations is also reduced into the same 2D bins and
 reconstructed power spectrum for a single i th mock iteration is
iven by P rec ,i ( k ⊥ 

, k ‖ ) = P clean ( k ⊥ 

, k ‖ ) / T i ( k ⊥ 

, k ‖ ). The 2D powers
hen undergo a weighted average into 1D k -bins to give the rebinned
D power spectrum, defined by 

 rec ,i ( k) = 

∑ 

α N αP rec ,i ( k ⊥ ,α, k ‖ ,α) ∑ 

α N α

, (14) 

here all unique 2D k ⊥ 

, k � bandpowers are inde x ed by α and
he summation is o v er all 2D powers contained in the 1D bin

 ≡
√ 

k 2 ⊥ 

+ k 2 ‖ ∈ ( k −�k/ 2 , k + �k/ 2). N α is the number of 3D

ourier modes contained in the particular 2D k ⊥ , α , k � , α bandpower. 
imilar to the direct 1D reconstruction, the mean o v er all i th mocks in
 rec, i ( k ) gives the final estimated reconstructed power spectrum, and

he variance provides an estimate of the expected errors. The results
or the 2D rebinned power are shown by the red-hatched shading
n Fig. 7 , where the large increase in variance is clear. We found
y switching off the complexity caused to the foregrounds by the
imulated polarization leakage made the 2D transfer function more 
MNRAS 523, 2453–2477 (2023) 
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Figure 7. Demonstration of the large increase in the variance of the 
reconstructed power spectrum, when the transfer function is constructed 
and applied in 2D k ⊥ , k � space. The blue results show the standard 1D 

cases (same as Fig. 4 ) with N fg = 8. The red-hatched results show the 
2D construction following steps in Section 3.2 . The purple-hatched results 
also show results with a 2D construction, but with simplified foregrounds 
excluding the polarization leakage. 
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eliable (purple hatched results), although still a higher variance is
eturned in these results, particularly at small- k , relative to the 1D
ase. 

It is likely that outliers in isolated iterations are causing the
arge variance in Fig. 7 . These outliers would then be suppressed
n the simpler case where there is no polarization leakage, thus
ess complex residuals or signal loss to cause extreme spurious
orrelations in the mocks. In an attempt to suppress the variance,
e increased the number of mocks used in the 2D polarization

eakage construction to 500, but this yielded no impro v ement. An
xtension that may be necessary to a v oid the blow-up in variance is
 more detailed weighting to the rebinning procedure we perform
n equation ( 14 ). In Switzer et al. ( 2015 ) they discuss applying an
nv erse co variance weighting to maximize the 1D signal-to-noise
atio. This could down-weight some of the outliers in our iterations
nd suppress the large variance in the 2D polarized results. We defer
his extension to future work, ideally with even more realistic sims
here a conclusive study can be performed into whether the 2D

ransfer function construction can be more optimal. Since our results
uggest that direct 1D construction is better performing, at least in
he case of the spherically averaged power spectrum, we use this
pproach for the rest of the paper, unless presenting a 2D cylindrical
ransfer functions which we now only do for demonstration purposes.

.3 Error estimation for power spectra reconstructed with a 
or egr ound transfer function 

v aluating ho w to correctly estimate the contributions to the error
rom foreground contamination and signal loss uncertainty will be
rucial for future precision cosmology with H I intensity mapping.
his is the focus of this section. An approach taken in some previous

ntensity mapping detections (Anderson et al. 2018 ) has been to
se the variance o v er the mock simulations used in the transfer
unction construction for the error estimate on cross-correlation
easurements. It is possible to capture this uncertainty from the

ariance in the transfer function i.e. the errors can be estimated
NRAS 523, 2453–2477 (2023) 
sing 

ˆ P c = σ { P clean T −1 
i } , (15) 

here T i is the transfer function from the i th mock in the construction,
nd σ{} is taking the rms o v er all i iterations. The rms o v er all transfer
unction iterations which include the injected true observations
hould provide an error estimate which incorporates thermal noise,
oreground residuals, residual RFI, sample variance, and signal loss
rom foreground cleaning. Ho we ver, crucially this approach relies
n modifying the transfer function definition so that the X clean term
n equation ( 10 ) is not subtracted. 

We begin by demonstrating the impact subtracting the cleaned
bserved data X clean has on the transfer function. Since we are
nvestigating error estimation, for this section it is helpful to use
ata with noticeable error-bar size, so we therefore add the dominant
n = 1 mK noise to the MD1GPC simulations. Fig. 8 shows the
erformance of the transfer function for the high-noise simulations,
alculated using equations ( 11 ) and ( 10 ), both with and without the
 clean subtraction. It is encouraging to see that the addition of noise

s not majorly affecting the performance of the transfer function.
or the case where X clean has been subtracted (blue results), the
ccuracy is only mildly affected relative to the noise-free results in
ig. 4 . For the noise-inclusive results of Fig. 8 , we divide by P FGfree 

n the y -axis which contains the same noise as the reconstructed
ower. This is to divide out the fluctuations caused by the presence
f the dominant noise, allowing analysis into the performance of
he reconstruction alone. For the case where X clean has not been
ubtracted (orange results), there is a slight drop in accuracy at
mall scales. This small bias is absent when we use an H I signal
ithout RSD thus it appears to be caused by the addition of uniform
oise in the presence of an anisotropic H I signal. We also found
his small bias is decreased when we use the 2D transfer function
onstruction outlined in Section 3.2 , although this relied on there
eing no polarization leakage which otherwise causes the variance
f the result to blow up, as we showed. We discuss the performance
f the transfer function in the presence of anisotropic phenomena
ater, but given this is a small bias and is absent in the subtracted
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with signal loss reconstructed by a transfer function. The black dashed line 
shows an analytical error estimate given by equation ( 16 ) which we have 
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the MD1GPC simulation where N fg = 8 PCA modes remo v ed. 
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 clean case, it is not o v erly important for this discussion on error
ovariance estimation. 

Fig. 8 suggests that subtracting X clean is the fa v ourable strategy if
ne is purely pursuing the most accurate transfer function possible. 
o we ver, the main point of this plot is the difference in variance
etween the two cases. If one is using the variance on the transfer
unction as a basis for the error estimation, the reduced variance 
aused by subtracting X clean has implications and can lead to 
nderestimated errors on the reconstructed power spectrum, as we 
ill now demonstrate. 
To quantitati vely e v aluate error estimation performance, it is

elpful to analyse how errors for a power spectrum measurement 
re analytically derived in a foreground-free case. The variance on 
 cross-correlation power spectrum P c between two tracers, 1 and 2, 
an be estimated as (Feldman, Kaiser & Peacock 1994 ) 

2 
theory = 

1 

2 N m 

[
P 

2 
c ( k) + 

(
P 1 + 

V σ 2 
1 

〈 f 1 〉 2 
)(

P 2 + 

V σ 2 
2 

〈 f 2 〉 2 
)]

, (16) 

here N m 

is the number of modes spherically averaged in each k -bin,
 is the volume of a single voxel on the Fourier grid, uncorrelated
oise in the field is represented by the variance σ 2 , which for an
deal intensity map would be the variance of the instrumental noise, 
nd 〈 f 〉 is the background mean for the field e.g. the mean brightness
emperature for intensity mapping. For galaxy surv e ys, the noise 
omponent given by the second terms in the curved brackets will 
educe to shot-noise i.e. V σ 2 / 〈 f 〉 2 = 1 / ̄n g , where n̄ g is the galaxy
umber density. We refer the reader to Blake ( 2019 ) where a detailed
eri v ation of the abo v e is pro vided with applications to intensity
apping and its cross-correlations with galaxy surv e ys. 
Extending equation ( 16 ) to incorporate contributions from fore- 

round contamination is challenging. F ore ground residuals could 
resumably be estimated and would provide an additive variance, or 
e assumed sub-dominant enough not to warrant inclusion. Ho we ver, 
he uncertainty from the transfer function, which for high signal 
oss is non-negligible at large scales, requires careful inclusion. The 
ncertainty in the transfer function can be estimated from the variance 
 v er the mocks used to construct it as we have sho wn; ho we ver,
nalytically adding this into the error budget of equation ( 16 ) is
on-trivial since this will not necessarily be a contribution entirely 
ndependent of the noise and cosmic variance already being factored 
or in equation ( 16 ). This is why some previous analyses have used
he transfer function variance as a basis for o v erall error estimation.
o e v aluate whether this is a robust method, we can use the analytical
rrors as a benchmark. Errors estimated based on the variance in the
ransfer function should approximately agree on small scales with 
he analytical ones where foreground contamination and signal loss 
re minimal, but the large noise still dominates. 

We validated that the analytical errors (equation 16 ) are a good
stimate for the foreground-free case. Using the MD1GPC simu- 
ations with the large σn = 1 mK Gaussian white-noise but with no 
oregrounds, we measure the cross-correlation power spectrum with 
 noise-free equi v alent, then estimate the errors using equation ( 16 )
nd e v aluate the χ2 

dof gi ven by 

2 
dof = 

∑ 

k 

P data ( k) − P mod ( k) 

σP ( k) 

/ 

( N k − 1) , (17) 

here N k is the number of k -bins. P mod is the model defined in
ppendix B1 with parameters matched to the MULTI-DARK inputs 
sed in the MD1GPC simulation. The analytical errors return a 
2 
dof ∼ 1 as expected, evidence that the errors are a reasonable size, 
iven the reliable model. 
Using the analytical errors σ theory as a validated benchmark, 
ig. 9 sho ws ho w the error estimation based on the variance in

he transfer function compares for the same simulations but with 
leaned foregrounds. The blue line shows the case using a transfer
unction defined by equations ( 11 ) and ( 10 ), where the cleaned
bserved data ( X clean ) have been subtracted to reduce the variance.
his is underestimating the errors relative to the analytical ones, 

ikely caused by subtracting the X clean term which will contain noise 
nd foreground residuals, which contribute to the error budget. Fig. 9
herefore shows that subtracting the cleaned data X clean in the transfer 
unction construction results in the transfer function variance no 
onger being a reliable means for estimating the errors. Ho we ver,
t is clear from the orange line, which is equi v alent to the blue but
ithout the X clean subtraction, that the variance from this version 
f the transfer function leads to an excellent agreement with the
nalytical errors at high- k as required. Furthermore, it also shows an
ncrease in error at small- k as one would expect where signal loss is
ighest, thus it is incorporating the increased uncertainty from signal 
econstruction, not accounted for in the analytical errors. 

Using the variance in the transfer function mocks for analysing 
ncertainties also has the advantage of being able to examine off-
iagonal covariance of the data, something not trivially possible with 
he analytical approach. In Fig. 10 we show the k i k j covariance matrix
 ij (top row) as well as the normalized correlation matrix defined
y R ij = C ij / 

√ 

C ii C jj . The left column shows the foreground-free
cenario where we inject mocks into the H I + high-noise simulations
o get an estimate of the covariance without a foreground cleaning
tep. The right column is equi v alent but with cleaned foregrounds
nd a transfer function constructed without the subtraction of 
 clean . The co variance o v er all iterations in the reconstructed power

pectra (equation 15 , but now including off-diagonal elements i �= j )
stimates the covariance of the observed data. As expected, and 
onsistent with the orange line of Fig. 9 , the cleaned foregrounds are
ncreasing covariance on large scales, but encouragingly they do not 
ppear to increase off-diagonal correlations between k -bins. 

We conclude from this investigation that the variance in the 
ransfer function is a reliable tool for error estimation in the final
MNRAS 523, 2453–2477 (2023) 

art/stad1567_f9.eps


2464 S. Cunnington et al. 

M

Figure 10. Covariance and correlation matrices for foreground-free (left 
column) and foreground cleaned with transfer function reconstructed signal 
loss (right column), without the X clean subtraction in the transfer function. 
Produced using the MD1GPC simulations with N fg = 8 PCA modes remo v ed, 
as in Fig. 9 . The covariance matrices have been multiplied by the product 
of the two- k -bins cubed times 10 3 for demonstration purposes so high- k 
covariance can be seen. 
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Figure 11. Demonstrating the correct application of the transfer function 
in an autocorrelation analysis. The black dashed line shows the original 
foreground-free power spectrum. The blue dotted line shows the cross- 
correlation with the foreground-free. The orange line shows the autocorrela- 
tion. F or this aggressiv e ( N fg = 12) fore ground clean, fore ground residuals 
should be minimal and the similar amplitude between P auto and P cross suggests 
the signal loss is similar in both. The green line shows the correct application 
of the transfer function and the red line shows the o v ercorrection where T −2 

is used. 
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econstructed power spectrum, provided the cleaned data X clean term
s not subtracted in its construction. This becomes similar in approach
o galaxy surv e ys which use vast suites of mocks as their primary
ethod for estimating the covariance in their data (e.g. Zhao et al.

021 ). If opting to use the transfer function variance for error
stimation, it becomes important to ensure that all aspects of the
rror budget are emulated in the mocks used in the transfer function
onstruction. An example of this would be in a galaxy survey cross-
orrelation where the galaxy shot noise would need to be captured
sing galaxy mocks with the correct number densities and surv e y
o v erage. With the observational data injected into the mocks, we
re also including variance from signal loss, foreground residuals,
esidual RFI, instrumental noise, etc. all of which are currently not
ell enough understood to reliably emulate in mock intensity maps. 5 

.4 Autocorrelation and cross-correlation applications 

o far in this section, we have considered the cross-power spectrum
etween a foreground-cleaned H I intensity map and the original
oreground-free, H I -only map. This is so that any foreground
esiduals or noise in the cleaned maps do not complicate the analysis
f H I signal loss in the power spectra. Since foreground residuals and
oise will not correlate with the H I -only maps, the additive biases
hey cause are a v oided in cross-correlation; thus the only departure
rom the true-H I power should be just from signal loss. Ho we ver,
 I intensity mapping surv e ys will also aim to conduct analysis in

utocorrelation and we need to consider how signal loss behaves in
his scenario. 

It has been previously suggested that there would be twice as much
ignal lost in the autocorrelation power spectrum because its effects
re present twice in the map product P H I ( k ) ∝ | ̃  X ( k ) | 2 . This would
ean a T ( k) −2 correction factor is needed to reconstruct the power
NRAS 523, 2453–2477 (2023) 

 Jackknife resampling will also be a useful tool when unknown systematics 
re present. 
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pectrum. Ho we ver, we found from our simulations that this is not
he case, and the same degree of signal loss is also present in an
utocorrelation as is in cross-correlation. In other words, the same
orrection of T ( k) −1 is also needed in the autocorrelation as well as
n cross-correlation. Fig. 11 demonstrates this finding showing how
he cross-correlation (blue dotted line) and autocorrelation (orange-
olid) appear to have approximately equi v alent le vels of signal loss.
or this test, we return to the noise-free simulations and use an
ggressive N fg = 12 PCA clean which will suppress foreground
esiduals significantly, making it reasonable to ignore their influence
n the results. The green line shows what appears to be the correct ap-
lication of the T ( k) −1 transfer function, whereas the red line shows
he consequential o v ercorrection from applying the T ( k) −2 to the 
utocorrelation. 

To provide a deeper understanding for why signal loss to the power
pectrum is the same for autocorrelation and cross-correlations, we
resent in Fig. 12 the amplitude of all 3D-Fourier mode products
or a randomly chosen k -bin. The spherically averaged P ( k ) value
or the chosen 0 . 0590 < k < 0 . 0687 h Mpc −1 bin is then simply the
verage of all these amplitudes, which is stated in the legend for
ach scenario. The top panel shows the comparison between an
utocorrelation with foreground cleaning and the cross-correlation
etween foreground-cleaned and foreground-free (H I -only) data. As
an be seen, the average of the modes is approximately the same
n both cases and thus consistent with Fig. 11 , demonstrating that
ignal loss is equi v alent in autocorrelation and cross-correlation. The
eason for this is related to the fact that the same modes are projected
ut of the analysis in both cases and signal loss does not compound
hen two maps with the same remo v ed modes are combined in an

utocorrelation. We confirm this to be the case in the bottom panel of
ig. 12 where we use simulations with a foreground from a different
e gion of sk y so that we produce a cleaned map X 

clean 
FG2 which will

av e different fore ground modes remo v ed compared to the original
 

clean 
FG1 used in the rest of the paper for the MD1GPC simulation.
he exact regions are not overly important just the fact that they
ill generate a different set of modes which are projected out in
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Figure 12. Amplitude of all Fourier modes P ( k ) ∝ Re 
{

˜ X A ( k ) · ˜ X 

∗
B ( k ) 

}
in 

the range 0 . 0590 < k < 0 . 0687 h Mpc −1 , which corresponds to one chosen k - 
bin in the spherically averaged power spectrum. The average of these modes, 
stated in the legend for each scenario, will represent the spherically averaged 
power spectrum value for the particular k -bin. The top panel shows the 
equi v alence in signal-loss between autocorrelation and cross-correlation. The 
lower panel shows how signal loss can be larger where a different set of modes 
has been projected out in the foreground clean shown by the red results which 
is the cross-correlation between two different simulated foreground regions. 
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he foreground clean. When these two foreground-cleaned maps are 
ross-correlated (red results) we now get a drop in power relative to
he cross-correlation between X 

clean 
FG1 and the H I -only map (see the 

ean power in the legend) showing that the signal loss is related
o the modes being projected out in the foreground clean, and it is
nly a difference in these which will create further signal loss in an
 I autocorrelation. 
The results demonstrated by Fig. 12 have consequences for 

utocorrelation analyses with H I intensity mapping. Not just because 
t further confirms that signal loss should be the same in autocor-
elation and cross-correlation where the same foreground modes 
re projected out, but also because the results in the bottom panel
how when two differently cleaned maps are cross-correlated, the 
ignal loss becomes more complex to estimate. This is relatable 
o a method that is likely to be pursued when attempting an
utocorrelation detection whereby cross-correlations are measured 
etween different subsets of the observations, created either by 
plitting data into different time-blocks (sub-seasons) as done in 
BT analysis (Masui et al. 2013 ; Wolz et al. 2022 ), or by splitting
ifferent dishes as is possible with a multidish telescope such as
eerKAT. This is pursued in order to a v oid the additive biases

rom noise and time- or dish-dependent systematics. While this 
ethod would still observe the same foreground, the response to 

ystematics may be different in each subset creating a scenario 
imilar to the red results in Fig. 12 . We leave further investigation
nto this specific form of autocorrelation method for future dedicated 
tudies. 
 APPLI CATI ONS  TO  PATHFI NDER  

NTENSITY  MAPPI NG  WI TH  MEERKLAS S  

n the previous sections, the MD1GPC simulations used have been 
eliberately kept free of further observational effects (except for 
 couple of identified cases) besides the foreground contamination 
hich included simulated polarization leakage. Ho we ver, a rele v ant
uestion for current pathfinder single-dish experiments is whether 
he early pilot surv e ys, which typically have low signal-to-noise
nd additional systematic observ ational ef fects, can also rely on
he foreground transfer function to correct for signal loss. In these
athfinder surv e ys (e.g. Cunnington et al. 2022 ; Wolz et al. 2022 )
oreground cleaning is typically aggressive and signal loss can reach 
igh levels, thus one could argue that we are more reliant on signal
econstruction in these early surv e ys, compared with future surv e ys
here foreground cleaning and systematics will be more controlled. 
The cosmological detection in Cunnington et al. ( 2022 ) (like

ll other intensity mapping detections preceding it) relied on a 
oreground transfer function to reconstruct the signal loss from fore- 
round cleaning. The 7.7 σ cross-correlation detection significance 
ell to ∼ 4 σ without signal reconstruction. The surv e y co v ered just
00 deg 2 and only the frequency channels spanning 1015 –973 MHz 
0.4 < z < 0.46) were used to a v oid the worst RFI. Furthermore, the
bservation gathered just 10 . 5 hours of data per dish. This means
k y co v erage and signal-to-noise were low and foregrounds could be
asily impacted by systematics, rendering signal loss more complex 
nd widespread than the examples we have investigated so far. 

The reliability of the transfer function was validated for the results
n Cunnington et al. ( 2022 ) and here we demonstrate these validation
ests by utilizing a different set of simulations which we refer to as the

DMK simulations, which aim to emulate the MeerKAT 2019 pilot 
ntensity mapping surv e y (Wang et al. 2021 ). We use the surv e y’s
on-uniform mask and use fluctuations in the uncleaned foreground 
ky to generate systematic perturbations in the MDMK foreground 
imulations creating a demanding cleaning requirement. We outline 
he details of how this is achieved in the following section. 

.1 MDMK MeerKLASS simulations 

o emulate current MeerKAT pathfinder data and investigate the 
erformance of the transfer function when signal loss is spread 
cross a wide range of scales, we utilize the MeerKAT 2019 pilot
urv e y data (Wang et al. 2021 ; Cunnington et al. 2022 ). The surv e y
argeted a single patch of ∼ 200 deg 2 in the WiggleZ 11hr field,
o v ering 153 ◦ < RA < 172 ◦ and −1 ◦ < Dec. < 8 ◦. The telescope
bserved at constant ele v ation, scanning back and forth through
zimuth taking 1 . 5 h to complete one time-block. Seven time-blocks
ere obtained with a mix of rising and setting scans, creating
ffset co v erage pro viding the footprint which can be seen in the
DMK simulation maps in Fig. 13 . Holes in the footprint are

vident and are caused from the multistage RFI flagging which 
an leave gaps in the scanning. For the MeerKAT H I simulation
top-panel of Fig. 13 ), we use the same MULTI-DARK simulation
s in MK1GPC (Section A1 ) but calculate the physical volume
o v ered by the MeerKAT 2019 data and cut a volume of this size
rom the 1 ( Gpc /h ) 3 cube. We use a similar pixelization as the
019 data ( n x , n y , n z = 133 , 41 , 250), and then apply the exact same
ootprint mask. The MeerKAT 2019 observations were performed 
n L band but to avoid dominant RFI, only 199 channels with a
73 . 2 –1014 . 6 MHz frequency range (0 . 400 < z < 0 . 459) were used.
dditionally, of the 199 channels selected to use, a further 32 are

emo v ed due to evidence of RFI contribution in their eigenmodes.
MNRAS 523, 2453–2477 (2023) 
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Figure 13. MDMK simulated maps aiming to emulate MeerKAT 2019 
intensity mapping data, averaged along the 973 . 2 −1014 . 6 MHz frequency 
range. The top panel shows H I only, produced using the MULTI-DARK N - 
body semi-analytical simulation. The middle panel shows the foregrounds 
simulated using a perturbed version from the Planck Sky Model. The points 
on the foreground map indicate the positions of the example spectra plotted 
in Fig. 14 , with the green and red points representing pixels near the centre 
or edge of the MeerKAT footprint respectively. The bottom panel shows 
an estimate for some MeerKAT noise and residual systematics obtained by 
subtracting data observed at different times (see Section 4.1.2 ). 
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Figure 14. Example spectra from the MDMK foreground simulations aiming 
to emulate MeerKAT pilot surv e y data. The perturbations to the spectra have 
been produced using the MeerKAT 2019 data to create realistic foreground 
simulations with systematic effects (see Section 4.1.1 ). The green dashed 
lines represent pixels taken from a central position in the MeerKAT footprint 
(corresponding to green points in Fig. 13 ). The red solid lines represent pixels 
near from the edge of the footprint (corresponding to red points in Fig. 13 ) and 
are more vulnerable to systematics, hence the more noticeable perturbations. 
The gre y-shaded re gions represent channels which were flagged in the cross- 
correlation analysis (Cunnington et al. 2022 ), which we also flag in this 
simulation for consistency. 
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e also replicated this exact channel flagging in the MDMK
imulations. 

.1.1 Frequency perturbed foregrounds 

vidence of systematics was seen in the MeerKAT 2019 data, which
as e xpected giv en the lo w amount of observ ational time and it being
 first of its kind pilot surv e y. One way systematics were evident was
n the perturbations to what should be smooth spectra in the raw
ore ground sk y. The e xact cause of these systematic perturbations is
eyond the aim of this paper but we can still use the distorted spectra
rom the real data to perturb an idealized foreground simulation,
mulating the main impact from these systematics on the foreground
lean and signal reconstruction. 

To create foregrounds for the MDMK simulations we begin by
sing the Planck Sky Model to generate synchrotron and free–
ree emission at the rele v ant frequencies and sky position, as with
he MD1GPC simulation. The bottom panel of Fig. 13 shows the
oreground simulation for the MeerKAT 2019 footprint. Unlike the

D1GPC simulation, we do not include any simulated polarization
eakage and instead use the MeerKAT 2019 data itself, aiming to
reate more realistic systematic perturbations to the foregrounds.
his is done by fitting a smooth polynomial to each line of sight in

he 2019 data, then the systematic perturbations to the foreground
pectra can be approximated by the ratio between the data and the
olynomial i.e. 

 perturbation ( x , ν) = 

T 2019-data ( x , ν) 

T smooth-poly ( x , ν) 
. (18) 
NRAS 523, 2453–2477 (2023) 
e found on average these perturbations were small sub-per cent
 alues; ho we v er, the y could be as high as 3.7 per cent. We multiply
hese perturbations with the PSM foreground and Fig. 14 shows
ome example perturbed spectra from the final simulation. The
erturbations are worse near the edge of the map (shown as red
olid lines) where due to the lower co v erage, systematics can hav e
ore impact. This is consistent with what was found in the actual

ata and in the cross-correlation analysis these edge pixels are down-
eighted (Cunnington et al. 2022 ). Fig. 14 also shows the flagged

hannels (gre y re gions) used in the cross-correlation analysis which
e also adopt in the MDMK simulation. 

.1.2 Anisotropic systematics and RFI residuals 

he analysis of the autocorrelation power spectrum for the 2019
eerKAT surv e y in Cunnington et al. ( 2022 ) sho wed e vidence of

dditive biases most likely from instrumental noise, residual RFI, or
ther systematics. Their contribution appears to dominate o v er the
 I signal because the autopower spectra amplitude was larger than
ne would expect from H I only power. We also include a contribution
o the MDMK simulation which attempts to emulate these types of
dditional components. Again, we use the real MeerKAT 2019 surv e y
tself to produce a map of time-varying anisotropic contributions and
dd these on to the MDMK H I and perturbed foreground maps. This
s achieved by taking the residuals from different time blocks in the

eerKAT 2019 surv e y. We take the difference between the first four
ime-blocks and the last three where these residuals will represent
omponents that vary in time. Therefore, in principle, this should
ot include the H I signal or the foregrounds since these would be
onsistent in time, but instead only include time-varying systematic
ontributions, which is what we are aiming to emulate. 

The map of the MeerKAT time-block residuals is shown in the
ottom panel of Fig. 13 . In some instances, there are no shared
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Figure 15. Power spectra for MDMK simulations which are small in volume, 
have a more complex non-continuous survey footprint, high anisotropic noise 
and residual systematics, as well as systematically perturbed foregrounds, all 
to emulate actual MeerKAT pathfinder data. We show the cross-correlation 
with the H I -only maps. Signal loss from the N fg = 10 PCA clean (red line) 
is larger and more widespread into high k compared with previous results in 
the more idealized MD1GPC simulation. Despite this the transfer function 
is encouragingly still able to reconstruct a reasonably unbiased result shown 
by the blue data points. Error bars are given by the limits of the central 68th 
percentile region from the distribution of reconstructed power spectra using 
the transfer function mocks. 
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ixels in both time-block groups so the residual is undefined. For
hese pixels we instead resort to adding a large level of Gaussian
andom noise whose variance dominates the H I signal by one order
f magnitude. Ho we ver, when these are plotted in Fig. 13 , which
s the average along the line of sight, their contribution is averaged
own which is why the amplitude appears relatively low around 
he edges where most of the missing pixels between time-blocks 
re. The pixels from the actual MeerKAT residuals, which are most
oncentrated in the centre where shared co v erage is better, appear
igher relative to the Gaussian noise. This will be due to the residuals
eing more correlated in frequency, thus do not average down in 
he plot. The frequency correlation and apparent anisotropies of the 
esiduals as evident in Fig. 13 suggest they are contributions beyond 
imple instrumental noise. While this is a complication for the pilot 
urv e y analysis, it is useful for our purposes, providing additional
omplications to foreground cleaning and signal loss in the MDMK 

imulations. 
In these simulations, while we do not explicitly include the effects 

rom a realistic telescope beam, some of the impacts it has on the
oregrounds will be included in the perturbations we add to the 
imulations from equation ( 18 ). A simple Gaussian beam is trivial
o include and assuming it is approximately matched in the transfer
unction construction, it makes no difference to the performance 
f the transfer function as we will explicitly show in Section 5.1 .
o we ver, in reality, the MeerKAT beam will be more complex
ith wide-reaching frequency-dependent side lobes which could 

omplicate foreground cleaning (Matshawule et al. 2021 ; Spinelli 
t al. 2021 ). Trying to replicate this in the mocks in the transfer
unction construction may be difficult and an investigation into what 
evel this needs to be considered should be pursued. This requires a

ore detailed simulation which we will pursue in follow-up work. 

.2 Correcting signal loss in pathfinder data 

ig. 15 shows power spectra for the MDMK (MeerKAT-based) 
imulations presented in the previous sub-section. The black dashed 
ine shows the foreground-free H I -only result, and the red solid
ine shows the result from adding the perturbed foregrounds and 
esidual time-varying systematics based on real MeerKAT data, 
hen performing a N fg = 10 PCA clean. We find that using the
erturbed foregrounds (described in Section 4.1.1 ) is the main 
ause for requiring an aggressiv e fore ground clean, highlighting 
he importance of instrument calibration so that smooth spectra 
re maintained in the observed data. Similar to MeerKAT data 
Cunnington et al. 2022 ), signal loss in the foreground-cleaned 
ata is widespread throughout all scales, with noticeable signal loss 
ccurring even in the highest k . The main reason for this is due
o the decreased depth of the frequency/redshift range. We tested 
his with the main MD1GPC simulation. Reducing the number of 
ixels along the LoS by a factor of 4 to 64 pixels with 0 . 25 Gpc h 

−1 

f depth produced > 75 per cent signal loss in the smallest four 
 -bins, and still 13 per cent in the highest k -bins. This was even
ithout the polarization leakage and just removing four PCA modes. 
or an equi v alent scenario but using the full 1 Gpc h 

−1 depth, the
ignal loss is never greater than 30 per cent and only 3 per cent at
he highest k . This can be understood by considering that modes
rojected out of narrow frequency-range data will be confined to a 
igher k � space. Thus the signal loss will also spread into higher k -
odes. Encouragingly this means that signal loss should be naturally 
itigated in future observations using a larger frequency range. This 
ill be possible with MeerKAT UHF-band observations which will 
robe lower frequencies where RFI is expected to be less dominant,
hus a more complete frequency range can be used. 

Despite the more complex and widespread signal loss in Fig. 15
red line), when we construct a transfer function using the process
ummarized in Section 3.1 , we are able to reconstruct the correct
 I power spectrum. As in previous tests, the clean and corrected
ower spectra are cross-correlations with the original-H I to a v oid
ny issues with residual foreground contamination confusing the 
ssessment of signal loss. The power spectra are naturally more 
oisy than the previous MD1GPC simulations due to the decreased 
olume, the systematically perturbed foregrounds (see Fig. 14 ) and 
he large time-varying systematics (Fig. 13 bottom panel) inserted 
nto the simulation. The instrumental noise and additive systematics 
s an important consideration that we did not include in the default

D1GPC simulations of previous sections. This additional noise 
ill introduce extra perturbations to the foreground modes, in the 

ame way the signal introduces perturbations (see Fig. 1 ). If the
oise is large, as is the case for pathfinder observations with low
bservational time, these perturbations will be large. Encouragingly, 
his does not appear to cause noticeable problems for the transfer
unction, evidenced by the corrected result in Fig. 15 , which includes
arge additional contributions that dominate o v er the H I signal. 

Given the more complex nature of the pilot survey simulation, 
ome reconstructed power spectra from the transfer function mocks 
roduced outliers and returned non-Gaussian distributions for each 
 -mode. In this scenario, using the rms o v er the mocks for the
rrors would be a poor estimation and would be o v erly distorted
y the outliers. We therefore instead use the 68th percentiles limits
o provide the asymmetric error bars, which is what are presented in
ig. 15 . To obtain the converged distribution, we used 1000 mocks

n the transfer function calculation. This presents a further advantage 
f using the transfer function mocks for error estimation, providing 
ore options to handle non-Gaussian uncertainties. This of course 
MNRAS 523, 2453–2477 (2023) 
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Figure 16. F ore ground transfer function in cylindrical k ⊥ , k � space for the 
MDMK simulations emulating MeerKAT pathfinder data. N fg = 10 PCA 

modes have been removed for the foreground clean. The 1D spherically 
av eraged v ersion of this is used for the corrected results in Fig. 15 . 
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ould hav e comple x implications for further analysis and parameter
stimation, which we do not investigate here. Ho we ver, errors should
aturally become more Gaussian as intensity map quality impro v es
nd noise, systematics, etc. are reduced. 

Fig. 16 shows the computed transfer function in cylindrical k ⊥ 

,
 � space for the MDMK simulations. It is interesting to analyse
he differences between this more realistic case and that from
he more idealized MD1GPC simulations in Fig. 6 . This again
eveals that signal loss is more widespread into larger k � modes,
hich is consistent with the more widespread signal loss evident

n Fig. 15 . We still see large regions where T ∼ 1 suggesting that
he approach of discarding some regions of k -space to massively
educe the dependence on the transfer function (as we discussed in
ection 3 ) could still be pursued even with small intensity mapping
ilot surv e ys. 
The results from the MDMK simulations provide validation

or using the foreground transfer function with pathfinder survey
ntensity maps. We have used MeerKAT data to attempt to complicate
he foreground clean and signal loss to stress-test the current signal
econstruction process. The simulations produced make no attempt
o understand the source of the perturbations to foreground spectra
r additi ve time-v arying systematics, simply emulating them as
ealistically as possible to mimic the challenge they pose. While the
uccess is encouraging, the investigation would be completed further
y including specific simulations of known observational effects such
s directly simulating RFI, 1/ f correlated noise, non-uniform noise, a
on-Gaussian beam etc. This would allow more analysis into exactly
hat observational effects are most troublesome for foreground

leaning and signal loss. The development of a robust simulation
ipeline for MeerKAT single-dish intensity maps including a realistic
eam and all these observational effects is outside the aims of
his paper but is being pursued in other MeerKLASS collaboration
rojects (e.g. Irfan et al. 2023 ). 

 PR ECISION  C O S M O L O G Y  SUITABILITY  

n this section, we look to future H I intensity mapping observations
nd test how reliable a transfer function would be where sub-per cent
ccuracy on parameter estimates is required. We return to the more
NRAS 523, 2453–2477 (2023) 
eneric simulations of MD1GPC to a v oid the investigation being
onfused by the large statistical noise present in the previous section’s
ealistic simulations of a MeerKAT pilot surv e y. 

.1 Mock parameter dependence 

p until now, it has not been investigated how robust the accuracy
f the transfer function is when there are discrepancies between
arameters used in the transfer function construction and their true
ducial values in the real observed data. If the parameter assumptions
sed for the generation of 100 mocks strongly influence the final
ccuracy of the reconstructed power spectrum then this is a large
oncern for precision cosmology since this would lead to biased
osmological parameter estimates. 

In this section, we demonstrate how mild the mock parameter
ependency is and show how large + / − 100 per cent discrepancies
etween the assumed parameters in the mocks used for transfer
onstruction and the underlying truth in the data, mostly only
ield small � 1 per cent inaccuracies in the reco v ered param-
ter estimations. We test this by treating the MD1GPC as the
bserved data with the underlying ‘true’ parameters, then vary
ome of the values { 
H I ∝ T H I , f , σv , R beam 

} in the lognormal
ocks which are used to construct the transfer functions. The
odel power spectrum we use to generate the lognormal mocks

s described in more detail in Appendix B1 but we repeat it here for
onvenience 

 mod ( k, μ) = T 
2 
H I 

(
b 2 H I + f μ2 

)2 

1 + ( kμσv /H 0 ) 2 
P m 

( k) 

× exp 
[−(1 − μ2 ) k 2 R 

2 
beam 

]
. (19) 

or this test we used the MD1GPC simulations with a σn = 1 mK
ominant white noise and a default Gaussian beam where
 beam 

= 10 h 

−1 Mpc . 
Fig. 17 sho ws ho w subtle the impact on parameter estimation is

hen parameters used in the mock’s model power spectra, given by
he panel titles, are biased by an amount indicated by the x -axis.
he y -axis shows the percentage bias relative to the foreground-free
arameter estimation. In all cases, we sample the parameter posterior
istribution in a Bayesian MCMC only varying one parameter at
 time, fixing all other parameters in the model (equation 19 ) to
ducial values fitted to the foreground-free MD1GPC simulation.
he error bars represent the 68 per cent confidence regions in the
osterior distributions and they are plotted relative to the median of
he foreground-free posterior. To a v oid non-linear complications in
he modelling we only use modes where k < 0 . 3 h Mpc −1 . While
hese scales are still quite non-linear, our model w ork ed reasonably
ell on these scales and since we are testing its performance relative

o the foreground-free case, any shortcomings caused by non-linear
ffects will be present in both. 

H I , which is proportional to T H I (see equation B5 ), will only

hange the amplitude of the H I power spectrum in our simple linear
odel, and the transfer function appears extremely robust to these

cale-independent amplitude changes, with no > 1 per cent bias
eing induced. We even tested going to 4 × the fiducial truth on 
H I ,
ince this is a very unconstrained parameter, but this still yielded a
ub-per cent bias. Note that the red-cross indicates an undefined result
or the 
H I − 100 per cent case since the intensity maps are zero
hen T H I ∝ 
H I = 0. The increase in uncertainties with a decreasing
H I mock parameter input is caused by the white noise having a
ore dominant impact relative to these lower amplitude mocks in

he transfer function construction. 
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Figure 17. Robustness of the transfer function in response to biased 
parameter assumptions. Each panel shows a different parameter used in 
the mocks which construct the transfer function. The x -axis shows different 
per cent-biases relative to the correct fiducial values. The y -axis shows the 
estimated parameter posterior from an MCMC on the reconstructed data using 
a transfer function. The error bars represent the 68 per cent confidence region 
in the estimated posteriors. These are plotted relative to the foreground-free 
parameter estimates to demonstrate that only small biases are induced from 

incorrect parameter assumptions in the transfer function construction. These 
results are produced with the MD1GPC simulation with σn = 1 mK dominant 
noise and a Gaussian beam with R beam 

= 10 h −1 Mpc . All results are for a 
N fg = 12 PCA clean. 
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The growth rate f is included to model the RSD which are present
n the MD1GPC simulations. f will be an anisotropic parameter 
ince RSD are a line-of-sight-only effect. This appeared to induce 
ore of a bias in the reconstructed power spectra, but it still only

aused < 2 per cent in most cases tested. For certain cosmological 
arameters such as the growth rate, much tighter priors will be 
pplicable such that the biased parameter values we have used for
 will be unrealistic. It is interesting to see that failing to include a
inear RSD model in the mocks at all, as shown by the −100 per cent
esult (i.e. f = 0), induces a ∼ 5 per cent bias which suggests that it
s important to include some basic anisotropic RSD in the mocks for
econstruction accuracy. 

σ v is again used to model RSD but as a phenomenological attempt 
o model fingers-of-god (FoG) on mildly non-linear scales. This will 
lso be an anisotropic parameter but is also directly scale-dependent 
oo, having a greater influence at high- k . This shows ∼ 3 per cent bias
f the parameter is set to zero. Even though this is a phenomenological 
arameter without a physically defined fiducial value, it is still 
nlikely that the parameter will be completely omitted without a 
uitable method for replacing its modelling effects. We highlight that 
he increase in error bars for the f and σ v parameters is not necessarily
oreground-related. Some parameters will be constrained better than 
thers and σ v relies more on small scales which are damped by
he beam. Furthermore, both parameters would be more suitably 
onstrained by including the quadrupole as opposed to the spherically 
veraged monopole we are using here. 

Lastly, we introduce the size of the beam R beam 

as a varying
uisance parameter. This is defined as the rms of the beam profile
n comoving units at the probed redshift. Similarly to σ v this is
nother scale-dependent anisotropic parameter, although this time 
ffecting high- k ⊥ 

modes. This can reach a ∼ 5 per cent ne gativ e bias
f completely unaccounted for, shown by the −100 per cent result. 
or nuisance parameters linked to the instrument such as R beam 

,
e should have a much tighter prior on its value effectively ruling
ut a > 20 per cent incorrect assumption. The small ∼ 1 per cent 
ias relative to the truth in the case where the correct fiducial beam
as been used (see 0 per cent input mock parameter bias result),
uggests there could be some discrepancy in high- k ⊥ 

modes between
oreground-free and reconstructed foreground-cleaned data, where 
 beam 

has the most impact, leading to inaccuracies in its estimation.
iven this is only a very small bias and is only in a nuisance
arameter, we defer this to future work, where we will investigate
he impact on signal reconstruction in the presence of more complex
eams. 
Given that the small biases appear to be caused by anisotropic

ivergences between mocks and observations, we investigated 
hether the 2D transfer function (discussed in Fig. 7 ) could yield

mpro v ements. We found that when there is no polarization leakage
n the simulations, the average bias on the reconstructed power 
pectrum from using f = 0 in the mocks is 3.8 per cent relative
o the foreground-free power spectrum. Interestingly though, when 
e construct and apply the transfer function in 2D, then rebin into
D following the same procedure in equation ( 14 ), the bias is only
.9 per cent. Ho we ver, as we found from the results in Fig. 7 , the
 ariance blo ws up when we reintroduce the more comple x fore ground
ith polarization leakage. We thus leave further investigation to 

uture work with more realistic simulations where we will definitely 
est if the large variance in the 2D transfer function can be reliably
educed, and if it then still decreases the small biases from anisotropic
nconsistencies we see in Fig. 17 . 

There are some important conclusions to draw from the results 
n Fig. 17 . First, the results demonstrate how the transfer function
orks. It is not a process where an exact replica of the real data

s required to measure the precise impact of signal loss. Rather the
ocks injected act as a test field to construct a response function

aused by the foreground cleaning. Broadly speaking, it appears that 
he parameters used in the mocks for the transfer function do not
ave a strong influence on the final accuracy of the reconstructed
o wer spectrum. Ho we v er, where sub-per cent accurac y is the aim,
t is clearly beneficial to have the mocks attempt emulation of some
f the features inherent in the observational data. For example, 
ompletely neglecting the telescope beam or linear RSD in the mocks
an have a noticeable impact on the reconstruction accuracy. This 
ays the foundation for many further inquiries into this topic. For
xample; will a more realistic frequency-dependent beam with a 
ide-lobe structure be sufficiently emulated by a Gaussian beam in 
he mocks for the purposes of the foreground transfer function? Do
ny of the other multitude of parameters that we want to probe or
re forced to include in our model as nuisance parameters, have a
tronger influence on reconstruction accuracy? What happens when 
e allow multiple parameters to vary simultaneously as opposed to 
arying one parameter at a time as done for the results in Fig. 17 ?
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hile these results are strong evidence that a transfer function will
ot bias parameter inference, the most robust way to confirm this
ould be with more realistic simulated observational effects e.g. a
eerKAT model of the beam, and to perform detailed modelling with

 multiparameter MCMC fit to the reconstructed power spectrum,
ncluding shape parameters e.g. h , n s , ω c , ω b , under a range of
ifferent scenarios. This is beyond the scope of this work but is
omething we will aim to showcase in a follow-up study. 

Since it seems the fiducial mock parameters have a sub-dominant
nfluence o v er the reconstruction accurac y, one prospect to consider
s a process whereby the mock parameters are updated based on
he parameter inference from the real data. In this way an iterative
ransfer function could be developed whereby as the parameter
osteriors for the observed data are estimated and converge on a
nal parameter estimate, these values can be used to update the

ransfer function calculation and a v oid any possibility of it biasing
he parameter inference. We discuss some of the early investigations
or this possibility in Appendix D , but also largely leave this to further
edicated investigation. 

.2 Probing exotic physics on ultra-large scales 

s a final test of the transfer function’s performance, we examine
ts ability to reconstruct signal on the largest scales, even when the
nderlying true signal has some unknown ‘non-standard’ properties.
or this test, we focus on primordial non-Gaussianity (PNG) which
an be probed on the largest scales in galaxy surv e ys (Mueller et al.
022 ) and soon in H I intensity maps (Li & Ma 2017 ; Witzemann
t al. 2019 ; Karagiannis et al. 2021 ). 

The nature of the fluctuations in the primordial Universe which
rise during inflation carry a wealth of information regarding the
hysical mechanisms that shaped the early Universe. The parameter
 NL quantifies the departure from Gaussianity in the primordial
niverse (Komatsu & Spergel 2001 ) and for the so-called local-type
f PNG, f NL �= 0 would be evidence of non-Gaussian fluctuations,
uling out slow roll, single-field inflation in fa v our of more exotic
ultifield models (Creminelli & Zaldarriaga 2004 ). Constraints on
NG so far come from CMB anisotropies and results are consistent
ith Gaussian fluctuations with f NL = 0 . 9 ± 5 . 1 (Planck Collabora-

ion VI 2020 ). Ho we v er, large-scale structure surv e ys, in particular
ntensity mapping, are expected to soon lead the way in improving
NG precision. Evidence for PNG in large-scale structure surv e ys
ill manifest as a scale-dependent correction to the linear bias (Dalal

t al. 2008 ). This correction scales as k −2 thus it is at ultra -large scales
here sensitivity to f NL becomes most prominent. 
In this section, we generate a new underlying H I intensity map

imulation, no longer using the MD1GPC simulation. The reason for
his is first because we wish to add a clear signature of PNG into
he field, and secondly, because we need to co v er much larger scales
here we will be able to probe the scales that are sensitive to the f NL 

arameter. We use the N -body COmoving Lagrangian Acceleration
COLA) 6 (Tassev, Zaldarriaga & Eisenstein 2013 ; Tassev et al. 2015 )
ode to generate a fast N -body simulation on a (8 , 000 h 

−1 Mpc ) 3 grid
ith 256 3 pixels which approximately represents a wide and deep
 I intensity mapping surv e y with something like SKAO. We seed

he simulation with an H I power spectrum given by 

P H I ( k, μ, z) = 

T 
2 
H I ( z ) 

[
b H I ( z ) + �b H I ( k, z) f NL + f ( z) μ2 

]2 
P m 

( k, z ) , (20) 
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here 

b H I ( k, z) = [ b H I ( z) − 1 ] 
3 
m 

H 

2 
0 δc 

c 2 k 2 T ( k ) D ( z) 
(21) 

nd δc = 1 . 686 is the critical matter density contrast for spherical
ollapse, T ( k ) is the matter (not foreground) transfer function, and
astly the growth function can be defined by 

( z ) = 

5 

2 

m 

H 

2 
0 H ( z ) 

∫ ∞ 

z 

1 + z ′ 

H 

3 ( z ′ ) 
d z ′ . (22) 

e set f NL = 100 in equation ( 20 ) to provide a clear scale-dependent
ias on large scales in the new observed data simulation. We
dd foreground contamination to this following the same steps as
he MD1GPC foreground model, run the PCA foreground clean,
hen construct the foreground transfer function following the same

ethods in the rest of this section. The lognormal mocks which
onstruct the transfer function will assume f NL = 0 and we will be
esting if this transfer function can still reco v er the true underlying
 I power spectrum with a scale-dependent bias induced by the
 NL = 100 PNG signature. Despite f NL = 100 being confidently ruled
ut by Planck18 observations, we still use this to set up a highly
iverged underlying cosmology from that assumed in the transfer
unction construction, similar to the extreme biases we tested in
ig. 17 . 
Fig. 18 shows the results for the large-scale PNG COLA simula-

ion. The black dashed line shows the foreground-free result where
he impact from the f NL = 100 input is clearly evident on small-
 . For reference we also plot the f NL = 0 equi v alent case shown
y the purple dotted line. Adding foreground contamination and
leaning is enough to greatly distort the PNG signature (shown by
he red-solid line). For this simulation, we do not add polarized
oregrounds, therefore only a N fg = 4 PCA clean is required. This is
ore representative of a future large sky survey where it is safer to

ssume an enhanced level of calibration has been achieved. The blue
ata points show the result where we have used the transfer function
o reconstruct the signal loss from the foreground clean. The errors
re estimated from the variance of the transfer function as outlined
n Section 3.3 . There is good agreement between the reconstructed
ower spectrum and the true underlying power spectrum (black
ashed) where f NL = 100, shown in more detail by the residuals
n the bottom panel. We emphasize that this is an extreme case where
he underlying true cosmology is very different from that assumed
y the mocks in the transfer function, and despite this only three of
he measured modes in the reconstructed power spectrum are more
han 1 σ beyond sub-per cent accuracy. 

Previous work in Cunnington, Camera & Pourtsidou ( 2020 )
nvestigated signal loss from foreground cleaning in the context
f PNG and demonstrated how a phenomenological model could
e implemented to account for the signal loss. While this delivered
uccessful simulation-based results, there was a worrying de generac y
etween the parameters in the signal loss model and f NL , thus
ight priors would be needed for such a method to allow good
onstraints on f NL . These tight priors would only come from a very
ood understanding of foreground contamination and signal loss.
he advantage behind the foreground transfer function approach is

hat no phenomenological model is required and the signal loss is
econstructed using the observed data itself without the need for
dditional nuisance parameters. We emphasize that this is a prelim-
nary investigation into PNG with a foreground transfer function
nd a more complete study with robust large-scale simulations is
equired, including more detailed modelling and MCMC parameter
stimation, which we defer to future work. 

https://pypi.org/project/pycola3/
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Figure 18. Capability to detect ‘non-standard’ cosmology on ultra-large 
scales when the fiducial cosmology used in the transfer function construction 
assumed standard. For this test, we use the PNG parameter f NL . We let 
the underlying truth have an extreme f NL = 100, produced using COLA 

simulations (black dashed line). Despite an incorrect f NL = 0 assumption 
used in the mocks for the transfer function, the correct f NL signature is still 
reco v ered in the reconstructed power spectrum (blue data points) across most 
scales. 
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The previous results in Fig. 17 supported the claim that a dis-
repancy between parameters assumed for the transfer function and 
he underlying truth in the data, only has a mild influence on results.
ig. 18 extends this conclusion to the largest scales where foreground 
ontamination is most troublesome and thus is a very encouraging 
esult. A slight ne gativ e bias in the reconstructed power spectrum is
pparent, likely caused by the lower f NL in the mocks, thus we cannot
laim complete independence from the mocks. Sensible assumptions 
hould therefore still be made when fixing a fiducial cosmology for
he transfer function construction. Ho we ver, there is potential for
his small bias to be eradicated by adopting the iterative approach to
ransfer function calculation as discussed in Appendix D . In this case,
he reco v ered f NL inferred from the reconstructed power spectrum, 
ould be used again to seed new mocks used in a new transfer function
alculation, thus achieving enhanced accuracy. This is another item 

e leave for follow-up work, extending beyond the initial discussion 
nd tests in Appendix D . 

 C O N C L U S I O N S  

 I intensity mapping has the potential to be a leading resource
or precision cosmology. A major challenge involves removing 
strophysical foregrounds that dominate the underlying H I cos- 
ological signal by several orders of magnitude. Simulations and 
eal observations are providing evidence that foregrounds can be 
ufficiently cleaned using blind separation techniques. Ho we ver, 
uantifying the precise impact foreground cleaning has on the H I

ower spectrum is crucial for a v oiding biased analyses. In this
ork, we validate a method involving mock signal injection into 

he observed data as a means for accurately estimating the signal
oss induced in the H I as a consequence of the foreground clean.
his method, referred to as the foreground transfer function, has 
een used in real data analysis before and its accuracy was validated
or the results in Cunnington et al. ( 2022 ), but its reliability for the
urposes of precision cosmology has not been studied until now. For
he first time, we present simulation-based tests demonstrating the 
oreground transfer function’s accuracy as a tool for reconstructing 
stimated H I power spectra to sub-per cent accuracies. 

This work used a selection of simulations to enable tests on a range
f scenarios. In all cases we used an underlying H I intensity map
enerated from an N -body simulation, from which we could measure
he ‘true’ signal. Simulated foreground maps were then added and 
 PCA-based foreground clean was performed, the consequences of 
hich were analysed relative to the truth. We varied the complexity of 

he foregrounds and observ ational ef fects providing scenarios with 
iffering demands from the foreground clean, hence presenting a 
ange in signal loss. F ore ground transfer functions were constructed
sing lognormal H I intensity mapping mocks and their ability to
eco v er the true signal could be scrutinized. In this work, our
ocus was on signal loss from o v ercleaning, as opposed to the
ther undesirable consequence of foreground residuals caused by 
ndercleaning. F ore ground residuals should be reducible to sub- 
ominant contributions or circumvented in cross-correlation with 
.g. galaxy surv e ys, hence are less problematic than signal loss for
recision cosmology. In the majority of tests, we therefore inspected 
he reconstructed cross-correlation of the cleaned intensity map 
ith the original foreground-free (H I -only) map. This way, only

he effects from signal loss would manifest and the impact from
oreground residuals would be mitigated, which cause a positive bias 
n the H I autocorrelation. 

We summarize our main conclusions below; 

(i) We summarized the recipe for estimating a foreground transfer 
unction (Section 3.1 ) using mock signal injection into the observed
ata, which delivers an unbiased reconstructed power spectrum 

Fig. 4 ). These results included simulated polarization leakage which 
emanded an aggressive foreground clean, resulting in > 50 per cent 
ignal loss on the largest scales. In Fig. C1 we demonstrated
he potential consequences of deviating from this unbiased recipe 
esulting in underestimated signal loss of up to ∼ 30 per cent . 

(ii) We validated a technique for estimating the covariance in 
econstructed power spectra which involves calculating the covari- 
nce across the reconstructed power spectra from all injected mock 
ealizations (Fig. 9 ). Crucially, when adopting this approach, the 
leaned observed data X clean must not be subtracted when calculating 
he transfer function, which is otherwise remo v ed to reduce the
ariance in the transfer function and optimize its accuracy. 

(iii) It has been previously assumed that the transfer function 
hould be applied twice to correct for autocorrelation signal-loss 
.e. P 

auto 
rec = P 

auto 
clean T −2 . Ho we ver, our simulations tests show that this

s not the case (Fig. 11 ). At the fundamental 3D Fourier transform
ev el, the av erage suppression in signal is the same in autocorrelation
nd cross-correlations with a foreground-free tracer (Fig. 12 ). Thus 
 T −1 transfer function is the correct reconstruction in both cross-
nd autocorrelation power spectra. 
MNRAS 523, 2453–2477 (2023) 
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(iv) When calculating the transfer function, we estimated power
irectly in 1D spherically averaged k -bins, finding this performed
ell on all our simulations. This deviates from some previous

pproaches which instead calculate and apply a transfer function
n 2D cylindrically averaged k ⊥ 

, k � -bins, then re-projects these
andpowers into 1D k -bins. However, we found evidence that this
ade results prone to a higher variance (Fig. 7 ), which may require a
ore detailed weighted average in the 2D to 1D projection to mitigate

he issue. 
(v) To ‘stress-test’ the transfer function performance, we applied

t on a pathfinder-like intensity map where the surv e y volume is
elatively small, systematic effects are present, and signal-to-noise is
ow. To do this we produced the MDMK simulation that emulated the

eerKAT 2019 pilot surv e y using the same footprint, non-uniform
requenc y co v erage, and perturbed fore ground spectra, produced
sing the MeerKAT data itself (Section 4.1 ). Despite these increased
hallenges which result in more widespread signal loss, the transfer
unction was still able to reconstruct an unbiased power spectrum
Fig. 15 ), validating the approach in Cunnington et al. ( 2022 ). 

(vi) Finally, we confirmed how the transfer function accuracy
as a relati vely lo w dependency on the input parameters used
or the mock generation in the transfer function calculation. To
emonstrate this we chose some example parameters and biased
hem relative to their true fiducial values. Even going to extreme
 / − 100 per cent biases, yielded small biases in the reconstructed

ower spectra and < 5 per cent bias in the reco v ered parameter
stimates relative to the foreground-free case (Fig. 17 ). We also ran
n extreme test where the underlying fiducial cosmology had an
 NL = 100 value producing a scale-dependent bias on the largest
cales. Despite a foreground clean heavily distorting this PNG
ignature, we demonstrated that an unbiased reco v ery is still ob-
ained even if assuming f NL = 0 in the transfer function calculation
Fig. 18 ). 

These results place increased confidence in using a foreground
ransfer function as H I intensity mapping ventures into precision
osmology. There is also some flexibility in regard to the depen-
ency on reconstruction. Where levels of signal loss are high (e.g.
 50 per cent on large scales), post-cleaning scale cuts can be

mposed to limit the dependency on the reconstruction. We discussed
his in Section 3.1 and argued that excluding small- k � modes from
he analysis will massively reduce signal loss. A transfer function
s still an essential tool in these scenarios since some reconstruction
cross all scales will be required. Importantly, the transfer function
ill also estimate the regions where signal loss is high, informing

cale cut locations. 
We have strived to demonstrate our results on a range of simula-

ions with differing observational effects and surv e y sizes. Howev er,
imulations can have approximations not present in reality, thus
alidating the transfer function for signal loss reconstruction will
emain an ongoing pursuit with more specific tests. One rele v ant
xtension we discussed will be to use simulations with a complex
eam pattern, as opposed to the Gaussian beam assumed in this work.
n incorrect beam model can have a high impact beyond the transfer

unction hence, we decided to leave this to a future more dedicated
tudy, extending on the work of Matshawule et al. ( 2021 ) and Spinelli
t al. ( 2021 ). We will also aim to include 1/f noise in the simulations
hich can impact foreground cleaning (Harper et al. 2018 ; Li et al.
021 ; Irfan et al. 2023 ). Investigating how the transfer function can
e constructed and applied in other clustering estimators will also
e crucial. F or e xample, e xtending the transfer function formalism
o higher order multipoles, applying it to correct the quadrupole and
NRAS 523, 2453–2477 (2023) 
exadecapole. There also needs to be investigation into whether it
an be applied in configuration space to the correlation function or
hether it can be used for correcting foreground cleaning effects in
 -point statistics such as the bispectrum (Cunnington, Watkinson &
ourtsidou 2021b ). 
There is continual impro v ement in foreground removal (Irfan &

ull 2021 ; Makinen et al. 2021 ; Gao et al. 2022 ; Soares et al. 2022 )
ostly owing to machine learning and it may be that blind routines

nd the signal loss they cause become obsolete. Forward modelling
rameworks have also been proposed as a means for reconstructing
oreground contaminated modes (Modi et al. 2019 ). Furthermore,
here is a possibility that future surv e ys and understanding will
e sufficiently sophisticated to allow precise modelling of the
oregrounds without requiring removal (Fonseca & Liguori 2021 ).
o we ver, the reliability of these methods on real data is yet to be

howcased and it is likely that blind foreground removal techniques
ill be the preferred method for some time. It is therefore crucial

hat we continue to understand how to correct for the signal loss they
ause. 
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PPENDI X  A :  SIMULATED  I NTENSI TY  M A P  

ATA  

n this work, we use three different simulations to allow testing of the
ransfer function under different scenarios. These three simulations 
re referred to as 

(1) MD1GPC : The standard MULTI-DARK 1 Gpc 3 h 

−3 simulation 
e used as the default in the majority of the paper unless otherwise
entioned. 
(2) MDMK : MULTI-DARK simulations but applied to a MeerKAT 

ilot-surv e y footprint to test applications of the transfer function in
ata representative of current single-dish intensity maps. Used for 
he investigation in Section 4 and the details of its construction are
xplained there. 

(3) COLA : N -body simulation which can be run for large physical
imensions to allow investigation into the robustness of transfer 
MNRAS 523, 2453–2477 (2023) 
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unction on ultra-large-scales in future data sets. Used only for the
 NL investigation in Section 5.2 . 

The MDMK and COLA simulations are mostly extensions of the
D1GPC simulations, explained in the rele v ant sections (Section 4

nd Section 5.2 respectively). The details of the default MDMK
imulation are outlined below. 

1 MULTI-DARK H I simulation (MD1GPC) 

or our main simulated H I intensity maps, which are used in all
arts of the paper unless clearly stated, we use the same simulations
s those adopted in (Cunnington et al. 2021a ; Cunnington et al.
021b ). These used the MULTIDARK-GALAXIES N -body simulation
ata (Knebe et al. 2018 ) and the catalogue produced from the SAGE
Croton et al. 2016 ) semi-analytical model application. These galax-
es were produced from the dark matter cosmological simulation

ULTIDARK-PLANCK (MDPL2) (Klypin et al. 2016 ), which follows
he evolution of 3840 3 particles in a cubical volume of 1 ( Gpc /h ) 3 

ith mass resolution of 1.51 × 10 9 h −1 M � per dark matter particle.
he cosmology adopted for this simulation is based on PLANCK 15
osmological parameters (Planck Collaboration XIII 2016 ), with
m 

= 0 . 307, 
b = 0 . 048, 
� 

= 0 . 693, σ8 = 0 . 823, n s = 0 . 96 and
ubble parameter h = 0.678. The catalogues are split into 126

napshots between redshifts z = 17 and z = 0. In this work we chose
ow-redshift, post-reionization data to test the transfer function and
se the snapshot at z = 0 . 39 to emulate a MeerKAT-like surv e y
erformed in the L-band (899 < ν < 1184 MHz , or equi v alently
 . 2 < z < 0 . 58). Although there is no reason to suspect conclusions
ill be any different for any reasonable redshift choice between
 < z < 3. We obtained this publicly available data from the Skies &
niverses web page. 7 

We used each galaxies (x, y and z) coordinates and placed them
n to a grid with n x , n y , n z = 256 , 256 , 256 pixels and 1 ( Gpc /h ) 3 

n physical size. To simulate observations in redshift space inclusive
f RSD, we used the peculiar velocities of the galaxies. Assuming
he LoS is along the z-dimension and given the plane-parallel
pproximation is exact for this Cartesian data, RSD can be simulated
y displacing each galaxy’s position to a new coordinate z RSD given
y z RSD = z + v ‖ (1 + z ) h/H ( z ), where v � is the galaxy’s peculiar
elocity along the LoS (z-dimension) which is given as an output of
he simulation in units of km s −1 . 

To simulate the contribution to the signal from each galaxy, we
sed the cold gas mass M cgm 

output from the MULTIDARK data
nd from this we can infer an H I mass with M H I = f H M cgm 

(1 −
 mol ) where f H = 0.75 represents the fraction of hydrogen
resent in the cold gas mass and the molecular fraction is
iven by f mol = R mol / ( R mol + 1) (Blitz & Rosolowsky 2006 ), with
 mol ≡M H 2 /M H I = 0 . 4 (Zoldan et al. 2017 ). It is this H I mass that
e binned into each voxel with position x , to generate a data cube of
 I masses M H I ( x ), which should trace the underlying matter density
enerated by the catalogue’s N -body simulation for the snapshot
edshift z. These H I masses are converted into an H I brightness
emperature for a frequency width of δν subtending a solid angle δ

iven by 

 H I ( x , z) = 

3 h P c 
2 A 12 

32 πm h k B ν21 

1 

[ (1 + z) r( z) ] 2 
M H I ( x ) 
δν δ


, (A1) 

here h P is the Planck constant, A 12 the Einstein coefficient that
uantifies the rate of spontaneous photon emission by the hydrogen
NRAS 523, 2453–2477 (2023) 
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9

tom, m h is the mass of the hydrogen atom, k B is Boltzmann’s
onstant, ν21 the rest frequency of the 21cm emission and r ( z) is the
omoving distance out to redshift z (we will assume a flat universe).
ince H I simulations on this scale have a finite halo-mass resolution,

here will be some contribution from the H I within the lowest mass
ost haloes which is not included in the final T H I signal. To account
or this, it is typical for a rescaling of the final T H I to be performed to
ring the mean H I temperature, T H I , in agreement with the modest
ata constraints we have for this value. For the ef fecti ve redshift
f our data, z = 0 . 39, we used a fiducial value of T H I = 0 . 0743 mK
hich our maps were re-scaled to. 

D1GPC for egr ound simulations 

o produce the foreground contamination we simulated different
oreground processes, including galactic synchrotron, free–free
mission and point source emission. We also included the effects
f polarization leakage which will act as an extra component of
oreground with non-smooth spectra (Cunnington et al. 2021a ),
hus posing an increased challenge for the foreground clean. The
oregrounds we used can thus be decomposed as T fg = T sync +
 free + T point + T pol , which represent the synchrotron, free–free, point
ources and polarization leakage. 

We briefly summarize the simulation technique for these compo-
ents but for a full outline we refer the reader to Cunnington et al.
 2021a ) and Carucci et al. ( 2020 ) where they were also used. The
ynchrotron emission is based on Planck Le gac y Archiv e 8 FFP10
imulations of synchrotron emission at 217 and 353 GHz formed
rom the source-subtracted and destriped 0 . 408 GHz map. The free–
ree simulation is from the FFP10 217 GHz free–free simulation
hich is a composite of the Dickinson, Davies & Davis ( 2003 )

ree–free template and the WMAP MEM free–free templates. The
oint sources are based on the empirical model of Battye et al.
 2013 ) and makes the assumption that point sources o v er 10 mJy
ill be identifiable and thus can be remo v ed. Lastly, we simulated
olarization leakage with the use of the CRIME 9 software (Alonso
t al. 2014 ), which provides maps of Stokes Q emission at each
requency and we fix the polarization leakage to 0.5 per cent of the
tokes Q signal. 
For the foregrounds we assumed they have been observed in a fre-

uency range of 900 < ν < 1156 MHz , consistent with the z = 0 . 39
edshift for the cosmological simulation. Each of the 256 map slices
long the z-direction acts as an observation in a frequency channel
iving a channel width of δν = 1 MHz . This therefore emulates the
pectral distinction between the cosmological H I and foregrounds
tilized in the foreground clean. From the full-sk y fore ground map
e cut a region of sky centred on the Stripe 82, a field well observed
y surv e ys. The size of this sky region is 54 . 1 × 54 . 1 deg 2 which
orresponds to the size of a 1 ( Gpc /h ) 2 patch at the z = 0 . 39 snapshot
edshift of our cosmological simulation. 

2 Instrumental effects 

ere, we outline some of the additional observ ational ef fects which
e switch on and off for different scenarios throughout the paper.
nless clearly mentioned, the reader can assume these effects have
ot been included for simplicity. 
 pla.esac.esa.int/pla 
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elescope beam 

he effect from the telescope beam is a smoothing to the temperature
eld in directions perpendicular to the LoS. A simple, and often 
ufficient, method to simulate these beam effects is to convolve the 
ensity field with a Gaussian kernel whose FWHM ( θFWHM 

) is chosen
o match the model of the radio telescope one is trying to emulate.

e can define this Gaussian smoothing kernel with 

 G ( ν, s ⊥ 

) = exp 

[ 

−4 ln 2 

(
s ⊥ 

r( ν) θFWHM 

( ν) 

)2 
] 

= exp 

[ 

1 

2 

(
s ⊥ 

R beam 

)2 
] 

, (A2) 

here s ⊥ 

= 

√ 

�x 2 + �y 2 is the perpendicular spatial separa- 
ion from the centre of the beam. R beam 

= r( z) σbeam 

defines 
he physical size of the beam’s central lobe in Mpc/ h , where
beam 

= θFWHM 

/ (2 
√ 

2 ln 2 ) represents the standard deviation of the 
aussian kernel in radians. R beam 

is dependent on frequency through 
he comoving distance out to the density fluctuations which changes 
ith frequency ( r ( ν)). It also has a further frequency dependence

rom the intrinsic beam size of the instrument, which is itself a
unction of frequency, generically given by θFWHM 

≈ c/vD dish , where 
 dish is the diameter of the radio telescope dish. 
As we discussed in the main body of the paper, including a more

ophisticated model of the beam is worth investigating since this 
ould have implications for foreground removal, signal loss, and thus 
ignal reconstruction. A more complex beam with far-reaching side 
obes and frequency dependence has been shown to create additional 
hallenges for foreground cleaning (Matshawule et al. 2021 ; Spinelli 
t al. 2021 ). This is an upgrade which will be targeted in future work.

nstrumental noise 

n una v oidable source of noise in intensity mapping comes from the
hermal motion of electrons inside the electronics of the instrument 
hich produce Gaussian-like fluctuating currents, with a mean 

urrent of zero but a non-zero rms. The consequence from this
s a component of white-noise contained in the maps. From the 
adiometer equation, the rms of the thermal noise contained in 
ime-ordered data for an instrument with system temperature T sys , 
requency resolution δν and time per pointing t p , will be given by
Wilson, Rohlfs & H ̈uttemeister 2009 ) 

n = T sys 

/ √ 

2 δν t p . (A3) 

t map level this will create a field of white noise added into the
ata, with rms σ n . In the case of the power spectrum this produces an
dditive component; P H I → P H I + P N where P N = σ 2 

n /V cell . Since
his should be uncorrelated and independent at different observation 
imes and for different dishes, this thermal noise can be averaged 
own as surv e y time increases. Thus, it is not seen as a major
roblem for future intensity mapping surv e ys where long observation 
ampaigns will be conducted. In all cases where we include noise 
n the simulations we use Gaussian white noise with a value of
n = 1 mK . This is designed to dominate o v er the H I which has an
ms of σH I ∼ 0 . 14 mK . The time per pointing is defined as 

 p = N dish t obs ( θFWHM 

/ 3 ) 2 /A sky , (A4) 

here we have assumed the pixel size will be 1/3 of the beam size.
or a MeerKAT-like A sky ∼ 3 , 000 deg 2 survey with N dish = 64 dishes,
ν = 0 . 2 MHz frequency resolution and T sys = 16 K (Wang et al. 
021 ), the σn = 1 mK dominant noise will correspond to t obs ∼ 30 hrs
f observation time. 

PPENDI X  B:  POWER  SPECTRUM  

STIMATION  

ere, we briefly outline the method for measuring power spectra, 
sed throughout the paper. This follows the same methodology as 
he MeerKAT intensity mapping pipeline (Cunnington et al. 2022 ). 

We define the Fourier transform of the H I intensity maps δT H I as 

˜ 
 H I ( k ) = 

∑ 

x 

δT H I ( x ) w H I ( x ) exp ( i k ·x ) , (B1) 

here w H I are the weights that can be applied to optimize the
ower spectrum measurement. For our simulations we simply assume 
 H I = 1 everywhere. The H I power spectrum is then estimated by 

ˆ 
 H I ( k ) = 

V cell ∑ 

x 
w 

2 
H I ( x ) 

| ̃  F H I ( k ) | 2 . (B2) 

n many of the results, we use the cross-correlations between an H I -
nly (foreground-free) simulation ˜ F H I and a foreground-cleaned one 
˜ 
 clean . In this case the cross-correlation is similarly defined by 

ˆ 
 X ( k ) = 

V cell ∑ 

x 
w 

2 
H I ( x ) 

Re 
{

˜ F H I ( k ) · ˜ F 

∗
clean ( k ) 

}
. (B3) 

hese power spectra are either spherically averaged into bandpowers 
 k | ≡ k to provide the 1D power spectra results, or cylindrically
veraged into k ⊥ 

, k � bins to produce the demonstrati ve 2D po wer
pectra plots. 

1 Modelling the H I intensity mapping power spectrum 

herever we require a model for the observational simulations, we 
se the below prescription; 

 mod ( k, μ) = T 
2 
H I 

(
b 2 H I + f μ2 

)2 

1 + ( kμσv /H 0 ) 2 
P m 

( k) 

× exp 
[−(1 − μ2 ) k 2 R 

2 
beam 

]
, (B4) 

here b H I is the linear bias for the H I field and T H I is the mean
 I temperature in mK and approximately related to the H I density

raction by 

 H I ( z) = 180 
H I ( z) h 

(1 + z) 2 √ 


m 

(1 + z) 3 + 
� 

mK , (B5) 

here 
m 

and 
� 

are the density fractions for matter and the 
osmological constant, respectively. The linear RSD are accounted 
or in equation ( B4 ) by the f μ2 term (Kaiser 1987 ), where f is the
rowth rate of structure and μ is the cosine of the angle from the
ine of sight. In the denominator, we approximately account for 
he non-linear effects of RSD, commonly referred to as Fingers- 
f-God, and σ v is the velocity dispersion of the H I , with H 0 as
he Hubble constant. P m 

is the matter power spectrum produced 
sing CAMB 10 (Lewis, Challinor & Lasenby 2000 ) with a Planck18
Planck Collaboration VI 2020 ) cosmology. The exponential factor 
ccounts for the smoothing of perpendicular modes due to the beam,
here R beam 

is the standard deviation of the Gaussian beam profile
n comoving units, as explained in Appendix A . 
MNRAS 523, 2453–2477 (2023) 
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PPENDIX  C :  EXAMPLES  O F  BIASED  

RANSFER  F U N C T I O N S  

s demonstrated in Section 2 and explicitly highlighted in Switzer
t al. ( 2015 ), when estimating the impact from blind foreground
leaning on the signal, it is insufficient to consider only the direct
oss to the signal in the remo v ed U f S U 

T 
f X s piece. One must also

nclude the impact of spurious correlations caused by the presence of
on-foreground data such as the H I signal itself and the perturbations
 these cause to the estimated eigenmodes. This is particularly

mportant when considering how to estimate signal loss using mock
ata. F or e xample, adopting an approach which simply looks to
roject out the observed data modes U f+s from realizations of mock
ata X m 

, will neglect the signal loss from the perturbed terms. Even
hough the foreground modes are perturbed by the true signal X s ,
ross-terms from these perturbations will be uncorrelated with the
ock signal X m 

, which is what matters in the construction of the
ransfer function where signal loss to the mocks is being e v aluated.
s an example, if we assume the cleaned mocks can be defined by 

 

m 

clean:bias1 = X m 

− U f+s S U 

T 
f+s X m 

, (C1) 
NRAS 523, 2453–2477 (2023) 

igure C1. Same as Fig. 4 but for versions of the transfer function that 
eliver biased results. The transfer functions versions vary based on their 
efinition of X 

m 

clean , which are defined by the panel titles in each version and 
re discussed further in the appendix text. All transfer functions are calculated 
y averaging over 100 lognormal mocks and the shaded bands show the rms 
 v er these 100 mocks. For each version, results for a mild ( N fg = 8, blue lines) 
nd more aggressive ( N fg = 12, red lines) foreground cleans are shown. Dark 
light) green regions indicate sub 1 per cent (5 per cent) accuracy of the 
econstructed power spectrum. 
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hen use this in the transfer function (equation 11 ), the resulting
econstructed power spectrum will be slightly biased ( > 1 per cent )
n small scales (as shown by the top panel of Fig. C1 ), and more ex-
remely biased on larger scales, reaching 10 per cent departure from
he truth at k ∼ 0 . 1 h Mpc −1 for the N fg = 12 case. This is because
he source of the perturbations to the eigenmodes, which in this case
s only the true signal U f+s = U f + � s , is being projected out of data
 X m 

) which will have no correlation with these perturbations, thus
his contribution is neglected, hence the bias. This also explains why
he bias is worse for higher N fg , because the neglected correlations
re larger for higher N fg (shown by Fig. 3 ). 

A slight impro v ement can be attempted on equation ( C1 ) by
rojecting out the data modes U f+s o v er the true data with mock
ignal injected X f+s+m 

 

m 

clean:bias2 = X f+s+m 

− U f+s S U 

T 
f+s X f+s+m 

. (C2) 

o we ver, as the bottom panel of Fig. C1 shows, the bias is still
resent since it still lacks any correlation in perturbed modes and
ock signal, thus fails to emulate the correlations between signal

nd foregrounds. 
These results from the biased versions of the transfer function

hus highlight the importance of emulating the spurious correlations
etween foregrounds and signal in the construction of the transfer
unction. The correct approach from equation ( 10 ) should thus al w ays
e adopted. Along with the discussion of this point in Switzer et al.
 2015 ), it has also been investigated in epoch of reionization studies
Cheng et al. 2018 ) where it was acknowledged how neglecting these
dditional complications leads to an underestimation of the signal
oss. 

PPENDI X  D :  I TERATI VE  F O R E G RO U N D  

RANSFER  F U N C T I O N  &  A  BAY ESIA N  

PPROACH?  

ur investigation which varied the input parameters for the mocks
sed in the transfer function construction provided encouraging
esults (demonstrated by Figs 17 and 18 ). This showed that the
ransfer function only has a very mild dependence on the mock input
arameters. For the parameters we tested, we found they can be
ighly biased relative to the truth in observed data, but this does
ot have a significant impact on the reconstructed power spectra.
o we ver, some dependence was still noticed, and if one is striving

o maximize accuracy in parameter inference then this dependence
ay be enough to cause concern. 
We raised the idea in the main text of an iterative transfer function.

ince the reconstructed power spectra show good agreement with the
ruth despite large mock parameter biases, there is a strong possibility
hat the parameters inferred from a reconstructed power spectrum
ill be much closer to the truth. Using these updated parameter

stimates to seed new mocks and construct a new transfer function,
t is highly likely the new reconstructed power spectrum based on the
pdated transfer function will have an even better agreement with
he truth. This process could then be repeated indefinitely, iteratively
mproving the accuracy of the transfer function until convergence on
ll inferred parameters is achieved. 

A challenge for an iterative transfer function is the computational
emand required to repeatedly calculate one. The larger surv e ys
ecome, the larger the mocks need to be thus computational expense
ill only increase. Thus, time wasted on mock generation when

onvergence has already been reached would be an unnecessary
ottleneck. To provide some guidance on the issue we consider how
any mocks are required for a stable transfer function. In Fig. D1

art/stad1567_fC1.eps


The foreground transfer function for H I IM 2477 

F
r  

f  

m  

k  

t  

c  

o  

a

w
o
a  

f  

p −1 
 

i  

c  

n  

i
 

t
t  

t  

i
a  

t  

N
c
f  

c
s  

f  

w  

a  

r  

a
i  

e
r  

g

T

©
P
(

igure D1. Number of mocks required in transfer function computation to 
each a conv erged lev el of accuracy in the reconstructed power spectrum
or two levels of foreground cleaning given by N fg . The y -axis shows the
ean bias for each number of mocks in the reconstructed power spectrum at
 > 0 . 1 h Mpc −1 v alues relati ve to the truth (H I -only power). We average
he absolute values of the the power spectrum biases to a v oid potential
ancellation to zero in highly fluctuating results around zero. For each number
f mocks tested, we average over 100 realized combinations to get a stable
ccurac y lev el. 

e investigate how many mocks are required before the accuracy 
f the transfer function reaches a converged level. We define the 
ccuracy of the transfer function by the average bias across k -modes
or the reconstructed power spectrum relative to the original H I -only
2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and repr
ower i.e. [ P ( k ) T ( k ) ] /P H I ( k ). In this accuracy calculation, we
gnore large scales ( k < 0 . 1 h Mpc −1 ) where accuracy fluctuations
an be quite large. We calculate the transfer function using different
umbers of mocks and for each number tested we average over 100
terations so that the returned accuracy is stable. 

Fig. D1 suggests that when using just two mocks to construct the
ransfer function, excellent accuracy is already achie v able, although 
hese results would be prone to fluctuating performance based on the
wo mocks used each time. We see that accuracy can be improved by
ncreasing the number of mocks but convergence is quickly reached 
t around 20. For the different levels of foreground clean, shown by
he different N fg results, the accuracy levels differ with the higher
 fg returning poorer accuracy as expected due to the increased 
ontribution from the spurious foreground and signal correlations 
or higher N fg . Ho we ver, we see that convergence is reached at a
onsistent number of mocks for both N fg cases. Despite the evidence 
uggesting that only 20 mocks would be needed for any reasonably
oreground clean, this would need to be tested further in real cases
here the data could be more contaminated and thus may require
 higher number of mocks for convergence. Ho we ver, e ven in
eality, the convergence level could be tested to ensure a Bayesian
nalysis is not computing an unnecessary number of mocks. What 
s encouraging from Fig. D1 is how quick convergence is reached
ven for our fairly complex foreground simulations. We remind the 
eader that these mocks are only lognormal mocks and thus can be
enerated rapidly. 
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