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A B S T R A C T 

While Galactic dust emission is often accounted for in cosmic microwave background (CMB) analyses by fitting a two-parameter 
modified blackbody (MBB) model in each pixel, typically a number of such clouds are found along each line of sight and within 

each angular pixel, resulting in a superposition of their spectra. We study the effects of this superposition on pixel-based 

foreground fitting strategies by modeling the spectral energy distribution (SED) in each pixel as the integral of individual MBB 

spectra o v er v arious physically moti v ated statistical distributions of dust cloud properties. We sho w that fitting these SEDs 
with the two-parameter MBB model generally results in unbiased estimates of the CMB Stokes Q and U amplitudes per pixel, 
unless there are significant changes in both the dust SED and polarization angle along the line of sight, in which case significant 
( > 10 σ ) biases are observed in an illustrative model. We find that the best-fitting values of the dust temperature, T d , and spectral 
index, βd , are significantly biased from the mean/median of the corresponding statistical distributions when the distributions 
are broad, suggesting that MBB model fits can give an unrepresentative picture of the physical properties of dust at microwave 
wavelengths if not interpreted carefully. Using Fisher matrix analysis, we determine the experimental sensitivity required to 

reco v er the parameters of the T d and βd distributions by fitting a probabilistic MBB model, finding that only the parameters of 
broad distributions can be measured by SED fitting on a single line of sight. 

Key words: polarization – dust, extinction – cosmic background radiation. 
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 I N T RO D U C T I O N  

s cosmic microwave background (CMB) polarization experiments
apidly gain in sensitivity, it is becoming increasingly important
o build a detailed understanding of Galactic dust emission. As
ell as being the brightest component of the polarized microwave

ky at frequencies above ∼100 GHz, dust emission is also one of
he most complex, with evidence of significant spectral and spatial
tructure in polarization (Planck Collaboration XXII 2015 ; Planck
ollaboration XXIX 2016 ; Guillet et al. 2018 ; Pelgrims et al. 2021 ;
itacco et al. 2022 ) that is non-trivial to model and remo v e (e.g.
ICEP2/Keck and Planck Collaboration 2015 ; Kogut & Fixsen 2016 ;
lanck Collaboration X 2016 ; Hensley & Bull 2018 ; Mangilli et al.
021 ). This is concerning for the low amplitude, large angular scale
henomena that many CMB polarization experiments are targeting,
articularly the B-mode signal from primordial gravitational waves
hat has the potential to constrain fundamental physics and provide
oncrete physical constraints on an inflationary period in the early
ni verse (Kamionko wski & Ko v etz 2016 ). Upcoming e xperiments

ike Simons Observatory (Ade et al. 2019 ), LiteBIRD (LiteBIRD
ollaboration 2022 ), and CMB-S4 (Abazajian et al. 2016 ) aim
 E-mail: elizabeth.mcbride@mail.mcgill.ca 

o  

o  

v  

Pub
o make a measurement of the tensor to scalar ratio, r , with an
ncertainty of the order of σ ( r ) ∼ 10 −3 or below. In order to achieve
his, residual foreground power must be reduced to below the level
f D 

BB 
� ∼ 10 −5 μK 

2 in the BB power spectrum on scales � � 100
Remazeilles et al. 2016 ; Abazajian et al. 2022 ). 

A common approach has been to assume a simple empirical
odel for the thermal dust emission, the modified blackbody (MBB),
hich takes a thermal (blackbody) spectrum characterized by the
ust temperature, T d , and modifies it with an opacity factor that
cales with frequency as ν βd . While employing only two spectral
arameters, plus an amplitude per pixel, this model has pro v en
dequate for modelling both total and polarized dust emission at
he sensitivities of current CMB experiments both at the map level
Planck Collaboration X 2016 ) and power spectrum level (BICEP2
ollaboration 2018 ; Planck Collaboration IX 2020 ). 
A question that immediately arises is whether the simple MBB

tting approach gives rise to model errors that can bias the recovered
MB signal when applied to the real sky at the sensitivities of next-
eneration experiments. The physical properties of interstellar dust
rains, such as temperature and composition, are known to vary
n the interstellar medium (ISM), resulting in spatial variability
f the dust spectral energy distribution (SED). Indeed, analysis
f component-separated maps of the microwave sky has revealed
ariations of the dust SED on the � 1 ◦ scales relevant to CMB
© 2022 The Author(s) 
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-mode analyses (Planck Collaboration X 2016 ; Planck Collab- 
ration IX 2020 ; Ritacco et al. 2022 ). These variations give rise
o ‘frequency decorrelation,’ i.e. the map of dust emission at one 
requency is not simply equi v alent to the map at another frequency
escaled by a spatially constant frequenc y-dependent multiplicativ e 
actor. The level of frequency decorrelation between microwave 
requencies is a major uncertainty in current CMB analyses (BICEP2 
ollaboration et al. 2018 ; Adak et al. 2021 ; Abazajian et al.
022 ). 
Just as dust properties can vary across the sk y, the y can also vary

long the line of sight. If a sightline intersects clouds with different
ust SEDs, e.g. due to the dust having different compositions 
r temperatures, and if the magnetic fields in these clouds are 
isaligned, then the polarization angle of the dust emission becomes 

ecorrelated across frequencies (Tassis & Pavlidou 2015 ). This ‘line- 
f-sight frequency decorrelation’ is a clear indicator of spatially 
ariable dust SEDs, and has recently been detected in Planck data 
Pelgrims et al. 2021 ). In order to produce the observ ed lev el of line-
f-sight frequency decorrelation, Pelgrims et al. ( 2021 ) found that 
he shape of the polarized dust SED between 217 and 353 GHz must
ary at the �10 per cent level from cloud to cloud. 

In addition to complexity induced by spatial variability, dust 
mission even from a single grain population localized along the 
ine of sight is unlikely to correspond perfectly to an MBB. Detailed
hysical models of dust polarization have been constructed based 
n derived material properties of interstellar grains (e.g. Draine 
 Fraisse 2009 ; Guillet et al. 2018 ; Draine & Hensley 2021 ).
he models elucidate how the polarized dust SED changes in 

esponse to different grain-sized distributions, grain shapes, grain 
orosities, dust alignment properties, the intensity and spectrum of 
he ambient radiation field, and the relative abundances of different 
rain materials. These models are described by a large number of
arameters connected to the physics of dust and the interstellar 
nvironments in which dust resides, each of which may vary both 
cross the sky and along the line of sight. 

Given these complications, but also lack of evidence for inade- 
uacy of the MBB in current data, it is imperative to understand
hether and how the MBB parametrization could lead to biases when 
sed in CMB data analyses. It has already been demonstrated that 
easurements can indeed be biased if more complicated underlying 

ust models are assumed (e.g. Kogut & Fixsen 2016 ; Remazeilles 
t al. 2016 ; Hensley & Bull 2018 ; Errard et al. 2022 ). Even assuming a
odest ‘2MBB’ extension, where a single MBB model is replaced by 

he combination of two separate MBB signals, can cause a significant 
ias in the reco v ered tensor to scalar ratio measurement (Remazeilles
t al. 2016 ). 

In this paper, we use parametric MBB model fitting as a convenient
eference case. Our aims are to study not only possible biases in
eco v ery of polarized CMB information, but also the reco v ery of the
ust model parameters themselves. In particular, we quantify whether 
BB fits are capable of reliably reco v ering summary information 

bout more complex true distributions of dust cloud properties along 
ach line of sight, or whether physical conclusions drawn from such 
odel fits may be misleading. We do this by studying a range of
ore complex dust SEDs for individual lines of sight, constructed 

y integrating simple MBB models over various probability dis- 
ributions with physically moti v ated properties, including one that 
llows line-of-sight variations in polarization angle that can lead to 
ore complex spectral structure. For simplicity, we consider only 

he Stokes Q and U parameters, which allows us to a v oid making
dditional model assumptions about the unpolarized fraction of the 
ust emission. 
The analysis presented here is complementary to recent devel- 
pments in foreground modeling techniques, such as the moment 
xpansion approach proposed by Chluba, Hill & Abitbol ( 2017 ),
hich allows for models that involve spatial averaging of emission 

long the line of sight. This technique has been demonstrated to be
exible enough to fit SEDs that vary spatially. Our work moti v ates

he use of such moment-based methods, applied o v er large sk y areas,
s a promising way to constrain the true distributions of physical
arameters using upcoming polarization data (e.g. Chluba et al. 2017 ; 
emazeilles, Rotti & Chluba 2021 ; Vacher et al. 2022 ). 
The paper is organized as follows. In Section 2 , we present the

et of dust models used in our analysis, and we set out our single-
ixel simulation and parameter-fitting methodology in Section 3 . 
e investigate the implications of each dust model scenario in 

ection 4 , both for producing biased model fits, and to learn how
ell the statistical parameters of the model can be constrained from
bservations, and then summarize our results in Section 5 . 

 LI NE-OF-SI GHT  DUST  SED  M O D E L S  

n this section, we outline the various dust models used in our
nalysis. These include a simple single modified blackbody (sMBB) 
odel; a generic ‘probabilistic’ (pMBB) model based on integrating 

he basic MBB SED o v er a distribution of model parameters; and
 Turbulent Magnetic Field model (TMFM) based on integrating a 
arying polarization angle o v er the line of sight. These models are
hen used, in conjunction with a synchrotron and CMB model, to
enerate our simulated data. 

.1 Single-population dust models 

n the optically thin limit, thermal dust emission at CMB frequencies
as been shown empirically (Planck Collaboration X 2016 ; Planck 
ollaboration XI 2020 ) to be well-described by an MBB of the form 

 

MBB 
ν = A 

i 
d 

(
ν

νd 
0 

)βd 

B ν( T d ) , (1) 

here the function B ν( T ) is the Planck function with temperature T d ,
nd the power-law term represents a frequency-dependent opacity 
ith spectral index βd . In terms of the physical interpretation of this
odel, T d represents an assumed uniform ef fecti ve temperature for

he dust, and βd is determined by its composition. A final parameter,
 

i 
d , is the intensity of the emission for polarization i at the reference

requency, νd 
0 = 353 GHz. 

As discussed in the previous section, we adopt this ‘sMBB’
odel as our reference model. For our analysis, the amplitude 

arameters are chosen such that the amplitude at the reference 
requency is consistent the observed high Galactic latitude values 
rom the Commander analysis in Planck Collaboration X ( 2016 ),
.e. A 

Q 

d = A 

U 
d = 3 . 5 μK RJ . We adopt fiducial values of T d = 20 K

nd βd = 1.6, which are also broadly representative of the Planck
ata (Planck Collaboration IX 2020 ). We ignore any polarization 
ffects that could lead to a different frequency dependence of the Q
ersus U polarization, only relaxing this assumption for the TMFM 

odel in Section 2.2.2 . 

.2 Probabilistic models 

he observed dust emission in an angular pixel on the sky is an
ntegral of the flux along the line of sight, which based on obser-
ations including the distribution of neutral hydrogen, is believed 
o encompass different physical dust emission regions (i.e. ‘clouds’, 
MNRAS 519, 4370–4383 (2023) 
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M

Figure 1. A simplified picture of dust populations along a single line of 
sight with angular extent. Polarized emission from dust is due to alignment of 
non-spherical grains with the Galactic magnetic field. Different dust clouds 
sample different regions along the line of sight and therefore could have 
different magnetic field orientations. The composition and temperature of 
dust in each cloud can also differ. All of the emission within the conic 
column is collapsed into a single combined SED, which is measured at the 
antenna. 
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Table 1. Fiducial parameter values for the foreground models used in our 
analysis. For the statistical dust models, hyperparameters of the Gaussian 
spectral parameter distributions are specified, while the sMBB and syn- 
chrotron models are deterministic. The reference frequencies for all models 
are νref = 353 GHz, except synchrotron, which has νref = 30 GHz. 

Component β T (K) σβ σ T (K) κ

sMBB 1 .6 20 – – –

pMBB narrow 1 .6 20 0.02 0.4 –
pMBB inter. 1 .6 20 0.10 2.0 –
pMBB broad 1 .6 20 0.20 4.0 –

TMFM narrow 1 .6 20 0.02 – 0.1 
TMFM inter. 1 .6 20 0.10 – 1 
TMFM broad 1 .6 20 0.20 – 100 

Synchrotron − 1 .2 – – – –
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lark & Hensley 2019 ; Panopoulou & Lenz 2020 ; Pelgrims et al.
021 ). It is physically unlikely that the dust emission will be uniform
long any given line of sight; instead, there will be variability both
etween, and within, different regions. The physical properties of
ach cloud, as well as the distribution from which their properties
re drawn, are currently unknowns. Constraints on these quantities
ould be of tremendous interest to efforts to characterize the ISM. 
For the purposes of our model, we assume that thermal dust

mission can be described, in generality, by a single model, I model 
ν ( � θ ),

ith only the values of the model parameters � θ varying both
nternally, and from region to region (see Fig. 1 ). The possible values
f these parameters are then described by a continuous statistical
istribution under the assumption that along a single LOS there is
uf ficient v ariability both between regions, and within individual
louds themselves, such that the entire statistical distribution is well-
ampled. 

The resulting model for the intensity along a single line of sight
s 

 ν( � σ ) = 

∫ 
I model 
ν ( � θ) p( � θ ; � σ ) d � θ, (2) 

here p( � θ ; � σ ) is the probability distribution function (pdf) for the pa-
ameters, which itself is parametrized by a set of hyperparameters � σ

hat describe its shape. The pdf also carries an implicit normalization
hich is subsumed into the o v erall amplitude parameter. 

.2.1 Probabilistic MBB model 

e now consider a specific case of the statistical model described
bo v e. We assume a functional form for the model SED that is given
y a single MBB model (equation 1 ), and a joint pdf for the dust
emperature and spectral index parameters that is an uncorrelated
aussian distribution, 

( βd , T d ; T d , β̄d , σT , σβ ) ∝ exp 

(
− ( T d − T d ) 2 

2 σ 2 
T 

)

× exp 

( 

− ( βd − β̄d ) 2 

2 σ 2 
β

) 

, 

here T d and β̄d are the means of the dust temperature and spectral
ndex pdfs, and σ T and σβ are the standard deviations. The Gaussian
ormalizations and all other normalizing factors are subsumed into
n o v erall amplitude factor per polarization, A 

i 
d . We call this the

robabilistic MBB (pMBB) model. 
NRAS 519, 4370–4383 (2023) 
For the fiducial values of the hyperparameters, we again use the
lanck results as our guide. Mean values of T d = 20 K and β̄d = 1 . 6
ere chosen to be consistent with the sMBB model parameters (see
ection 2.1 and Table 1 ), such that, in the limit that the variance of

he pdf goes to zero, the sMBB model is reco v ered. 
For the standard deviation parameters, three illustrative cases were

onsidered, corresponding to narrow, intermediate, and broad spreads
n the distribution of possible values of the physical parameters.
he values taken for each case are summarized in Table 1 . These
alues are roughly consistent with the dispersion between pixels,
s derived by Planck Collaboration XLVIII ( 2016 ). We plot the
ractional difference of the SED for each case with that of the sMBB
odel in Fig. 2 . 
The abo v e model is e xtensible and allows for an y form of

oth emission model, and probability distribution. Ho we ver, for
ompleteness, we also considered whether alternative forms for the
df (e.g. with heavier tails, or skewness) could substantially affect the
ED. Replacement of the Gaussian pdf with Lognormal and Gamma
dfs did yield slightly different SEDs, but on fitting single MBB
odels to each model and fixing the pdfs to the same mean and

ariance, the resulting best-fitting values of the sMBB parameters
ere very similar. 

.2.2 Turbulent Magnetic Field model 

n the abo v e set of pMBB models, we hav e ignored an y polarization-
ependent effects on the dust SEDs. Different regions along the line
f sight can have different dust physical properties and magnetic
eld orientations. While the emission from each region simply adds

n total intensity, they add vectorially in polarization. This leads to
referential amplifications and cancellations of the signal at some
requencies, imparting additional spectral structure in the Stokes Q
nd U channels compared with total intensity (Tassis & Pavlidou
015 ; Poh & Dodelson 2017 ; Pelgrims et al. 2021 ). As a result,
e can no longer treat the shape of the SED as being the same

n Stokes Q as in Stokes U, necessitating the addition of more
pectral model parameters. The shapes of the polarized SEDs also
ecome position-dependent, with differences in magnetic fields along
ifferent lines of sight causing spatial variations in the resulting
EDs, and cancellations along the line of sight also reduce the o v erall
olarized fraction. 
To investigate the potential impact of these ‘decorrelation’ effects

n the fitting process, we construct a simple model in which there
s a distribution of polarization angles along each line of sight. We

art/stac3754_f1.eps
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Figure 2. Fractional difference in dust SEDs between each input model and a base model (sMBB), divided by the base model, for probabilistic MBB models 
with broad, intermediate, and narrow temperature and spectral index distributions are shown in blue (see Table 1 for the explicit values of the statistical 
parameters). Equi v alent cases for the TMFM model are shown separately for the Stokes Q (green) and U (orange) channels. Vertical grey lines correspond to 
the frequency bands of the PICO mission (Hanany et al. 2019 ). 

Figure 3. A simplified picture of the TMFM for a single line of sight. In 
this model, dust clouds are allowed to have different polarization angles χ , 
which are randomly drawn from a von Mises distribution, and are assumed 
uncorrelated. The vectorial nature of the polarization signal leads to variations 
in the SEDs between the Stokes Q and U channels. 
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all this the TMFM, as it describes a scenario in which the Galactic
agnetic field structure is dominated by approximately uncorrelated 

andom fluctuations in orientation on small scales (Fig. 3 ). This is
onsistent with the phenomenological model used for analysis in 
lanck Collaboration XII ( 2020 ), and agrees with the relationships
etween various polarization statistics like the polarization fraction 
nd polarization angle dispersion. 

For the distribution of polarization angles χ , we assume a von 
ises distribution, P ( χ ; χ̄ , κ), with mean angle χ̄ and shape

arameter κ that go v erns the width of the distrib ution. The v on
ises distribution is an analogue of the Gaussian distribution on the 

nit circle. Since dust at different orientations is expected to come 
rom physically distinct regions, we model the dust temperature in 
ach region, T d , as a simple function of the polarisation angle, χ , 

 d ( χ ) = T ′ d + 

T χ 
χ

π/ 2 
, (3) 

here T ′ d is a fixed reference dust temperature, and T χ = 4 K defines
he maximum contribution to the ef fecti ve dust temperature due to
he alignment of the polarised emission. Lastly, 
χ ∈ [0, π /2) is the
ifference between χ and χ̄ . This is a convenient toy model used
o illustrate the physical effects of correlation between the polarized 
ust SED and the polarization angle; we do not intend to suggest that
here is any causal relationship between the magnetic field orientation 
nd the dust temperature. 

In the following analysis, the reference dust temperature is set to
he previous mean of the pMBB models, T ′ d = 20 K . The intensities
or the Q and U channels are then defined via inte grals o v er the von

ises distribution for χ , 

 

′ 
ν( β) = 

(
ν

ν0 

)β ∫ 
B ν ( T d ( χ ) ) cos (2 χ ) 

d P 

d χ
d χ (4) 

 

′ 
ν( β) = 

(
ν

ν0 

)β ∫ 
B ν ( T d ( χ ) ) sin (2 χ ) 

d P 

d χ
d χ. (5) 

s in all of the other cases, we assume that the Q and U amplitudes
re equal, resulting in a mean angle, χ̄ = π/ 8. In contrast to the
MBB model, the parameter model with a statistical distribution is 
he polarization angle of the dust emission in each cloud rather than its
ust temperature (although the dust temperature also fluctuates due 
o its dependence on χ ). We again assume that the dust temperature is
ncorrelated with the opacity parameter, βd , which as in our previous
odels follows a Gaussian distribution. The final SED for this model

s then 

 ν = A Q 

∫ 
Q 

′ 
ν( β) exp 

( 

− ( βd − β̄d ) 2 

2 σ 2 
β

) 

d β, (6) 

ith a similar expression holding for U ν . In what follows, we will
onsider three dif ferent v alues of the von Mises shape parameter, κ ,
o illustrate the effects of line-of-sight frequency decorrelation (see 
able 1 ). 

.3 Other signal components 

he microwav e sk y is a superposition of many radiation sources,
ncluding synchrotron emission, anomalous microwave emission 
MNRAS 519, 4370–4383 (2023) 
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Table 2. Uniform prior ranges used for the MCMC fitting procedure. 

Parameter Notation Prior range 

sMBB amplitudes Q , U A 

Q,U 
sMBB [1,100] μK 

pMBB amplitudes Q , U A 

Q,U 
pMBB [1,100] μK 

Dust temperature T d [16, 24] K 

Dust spectral index βd [1.4, 1.8] 
Dust temperature std. dev. σ T [0.1, 10] K 

Dust spectral index std. dev. σβ [0.01, 1] 
Synchrotron spectral index βs [ −1.6, −0.8] 
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AME), free–free emission, and the CMB in addition to Galactic dust.
ince our focus is only on the polarized emission in this paper, we
eglect two of these sources: free–free (bremsstrahlung) emission,
hich is mostly present at low Galactic latitudes and is only weakly
olarized, and AME, for which there is a stringent empirical upper
ound of ∼2 per cent on its polarization fraction (Kogut et al. 2007 ;
acellari et al. 2011 ; Planck Collaboration XXII 2015 ; Herman et al.

022 ) and theoretical arguments predicting negligible polarization
Draine & Hensley 2016 ). 

With this in mind, we consider a sky signal composed only of the
MB signal, synchrotron emission, and thermal dust emission in our
nalysis. We adopt values of the synchrotron signal to be consistent
ith the Planck Commander results at high Galactic latitudes, i.e.
olarization amplitudes of A 

Q 

s = A 

U 
s = 10 . 23 μK CMB at a reference

requency of 30 GHz. We also set the synchrotron spectral index
o βs = −1.2 in units of flux density. For the CMB polarization
ignal, we adopt representative values of Q ν = U ν = 0 . 6 μK CMB . In
ll models, we assume a constant polarization angle for both the
MB and synchrotron emission, the latter agreeing with the dust
olarization angle (or, in the case of the TMFM, the mean dust
olarization angle). An o v erview of the parameters used for each
oreground model is given in Table 1 . 

 R E C OV E R I N G  DUST  PROPERTIES  F RO M  

ED  FITS  

n this section, we describe the noise properties of our single-pixel
imulations and give an o v erview of the single-pixel model fitting
rocedure that was previously presented in Hensley & Bull ( 2018 ). 

.1 Single-pixel simulations 

imulated data vectors of the Stokes Q and U intensity per pixel were
enerated using the SinglePixel 1 package. Each data vector
epresents the intensity along a single line of sight for a set of
requency bands, assuming a common angular smoothing of 1 ◦

WHM for all bands, which is appropriate for a CMB B-mode
nalysis. 

We adopt the noise properties and band specification of PICO
Sutin et al. 2018 ; Hanany et al. 2019 ), a proposed space-based
olarimeter intended to conduct full-sk y surv e ys with a few arcmin.
esolution in each band across 21 bands between 21 and 799 GHz.

e assumed a delta function bandpass at each center frequency,
nd added uncorrelated Gaussian noise according to the noise rms
er frequency band specified in Sutin et al. ( 2018 ) (and adjusting
o 1 de g 2 pix els). Each data vector contains contributions from the
MB, synchrotron, and a particular thermal dust emission model.
s discussed abo v e, we neglected the Stokes I channel. 
In what follows, data vectors constructed with the single MBB
odel for the thermal dust will be referred to as ‘sMBB data’, and

imilarly for the other dust models. We include the same CMB and
ynchrotron components in all data vectors, and generate 200 noise
ealizations for each dust model. The explicit values for all of the
nput models are presented in Table 1 . 

.2 MCMC-based model fitting pr ocedur e 

e constructed a simple Gaussian likelihood for the simulated data,
sing the input noise covariance per frequency band (which assumes
NRAS 519, 4370–4383 (2023) 
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m  

d
r

o correlations between bands), and assuming only a single pixel per
ataset. Uniform priors are assumed for all parameters; see Table 2 for
he corresponding ranges. Note that these priors will be informative
or some parameters; alternatively a Jeffreys prior could be adopted
or (e.g.) the spectral index parameters (Eriksen et al. 2008 ; Jew et al.
019 ), but we do not study this question further here. We then used the
mcee af fine-inv ariant ensemble sampler (F oreman-Macke y et al.
013 ) to sample from the joint posterior distribution of the CMB
mplitude parameters, and amplitude and spectral parameters for
he synchrotron component and a chosen dust model. We initialized
8 w alk ers per run, allowing 1000 steps of burn-in before running
ach w alk er for 10 000 steps. Note that in all cases considered in
his paper, we fit only to the Stokes Q and U data, and al w ays
nclude synchrotron and CMB models with free Q and U amplitude
arameters, and free spectral parameter βs for the synchrotron
omponent. 

The fitting procedure was repeated for each of 200 noise real-
zations for each of the cases we considered. We then calculated
ummary statistics such as the marginal median and standard devi-
tion for each parameter from the posterior for each run, and used
hese to calculate the error-normalized bias, 


θ

σθ

= 

θfit − θ̄

σθ

, (7) 

here θfit is the best-fitting value from the MCMC (the median of
he marginal posterior in all cases considered here), and θ̄ is the input
arameter value, or the mean of the input Gaussian distribution that
as used to generate the simulated signal. In this context, σ θ is the
arginal standard deviation calculated from the posterior for each

oise realization, found by determining the 68 per cent confidence
nterval for the parameter. 

The error-normalized bias quantifies the level of discrepancy
etween the reco v ered best-fitting value of a parameter and the input
alue to the simulation. It is similar to a ‘Z-score’ or ‘standard score’
xcept that the normalizing factor is the standard deviation calculated
rom the posterior rather than the population standard deviation. In
he cases where θ̄ is the mean of an input parameter distribution,
.g. for the pMBB models, this quantity gives an indication of how
ell the best-fitting model parameters represent the mean of that
istribution. 
If the error-normalized bias differs systematically from zero

 v er man y realizations, this is an indication that the best-fitting
odel parameters are either biased or not representative of the

roperties of the input parameter distribution, potentially leading
o flawed physical inferences. A simple measure of this is the
ean error-normalized bias, 〈 
θ / σ θ 〉 , where the angle brackets

enote averaging over the ensemble of runs with different noise 
ealizations. 

http://philbull.com/singlepixel/
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Table 3. Mean error-normalized bias, 〈 
θ / σ θ 〉 , for all free model parameters in each scenario, where an sMBB + CMB + synchrotron model is being fitted 
to Stokes Q and U data in all cases. Absolute values of this quantity greater than ∼1 denote large biases. The maximum log-posterior value and the number of 
degrees of freedom are shown in the final two columns, giving an indication of the goodness of fit of each model. 

Dust model A 

Q 

MBB A 

U 
MBB A 

Q 

CMB A 

U 
CMB A 

Q 

S A 

U 
S βd T d βS max(ln p ) dof 

sMBB − 0 .11 − 0 .10 − 0 .02 − 0 .01 0 .01 0 .11 0 .17 − 0 .17 0 .03 − 15 .5 12 

pMBB narrow 0 .03 − 0 .0041 0 .11 − 0 .07 − 0 .04 − 0 .023 − 0 .15 0 .14 − 0 .07 − 16 .1 14 
pMBB intermediate 0 .11 0 .13 − 0 .10 − 0 .17 0 .19 0 .13 − 2 .7 2 .2 0 .25 − 15 .5 14 
pMBB broad 0 .19 0 .22 0 .037 0 .070 0 .19 0 .27 − 12 9 .9 0 .037 − 16 .3 14 

TMFM narrow 41 −46 −14 16 4 .1 − 4 .5 0 .18 7 .1 − 0 .054 − 4740 14 
TMFM intermediate 41 −46 −14 17 3 .9 − 4 .6 − 0 .52 8 .9 − 0 .023 − 4820 14 
TMFM broad 40 −47 − 0 .0015 18 3 .7 − 5 .0 − 2 .5 14 − 0 .51 − 4850 14 

sMBB (decoupled) 0 .039 − 0 .031 − 0 .079 − 0 .020 − 0 .026 0 .57 − 0 .081 − 0 .069 − 0 .0029 − 12 .1 18 
pMBB broad (decoup.) 0 .16 0 .14 0 .063 0 .00090 0 .21 0 .23 − 0 .085 − 0 .071 − 0 .0030 − 14 .0 18 
TMFM broad (decoup.) − 0 .77 − 1 .1 1 .5 1 .8 − 0 .31 − 0 .33 − 0 .086 − 0 .054 0 .0045 − 11 .2 18 
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 RESULTS  

n this section, we consider three sets of scenarios: fitting an sMBB
odel to the data when the underlying dust model is actually a more

omplex probabilistic MBB model (Section 4.1 ); the same, but for an
nderlying TMFM model (Section 4.2 ); and reco v ering the pMBB
odel hyperparameters from the data to infer the dust parameter 

istributions themselves (Section 4.3 ). A summary of results for the 
arameter biases in each case is shown in Table 3 . 

.1 Fitting the sMBB model to pMBB data 

n this section, we consider data vectors that have been generated 
sing each of the pMBB models, but which we fit using an sMBB
odel. The key questions that we would like to answer are whether

eco v ery of the polarized CMB can be biased as a result of the greater
omplexity of the underlying dust SEDs, and whether the best-fitting 
MBB model parameters are representative of the average properties 
f the population of dust clouds along each line of sight. Recall that
e are performing fits only on polarized data; including Stokes I data

s well would require further model assumptions about how the polar- 
zed and unpolarized SEDs are related, which we leave to future work. 

We considered four cases for the underlying (input) dust model. 
he first is simply an sMBB model, which we used as a check on
ur fitting procedure. We then selected three options for the pMBB
odel, centered on the same mean value, but with varying widths 

or the βd and T d distributions: narrow, intermediate, and broad. The 
alues of the widths of the distributions were summarized in Table 1 .

Fig. 4 shows the error-normalized bias for the reco v ered best-
tting parameters (including sMBB, CMB, and synchrotron param- 
ters) in each of the four cases, for fits to each of 200 noise realizations
er model. It can be seen that fitting an sMBB model to data that
ruly contains an sMBB model reco v ers unbiased estimates of all of
he parameters on average, as expected. The same is largely true for
he narrow pMBB model too, with no significant biases seen for any
f the parameters. 
The picture starts to change for the intermediate pMBB model; 

o we ver, while most parameters remain unbiased on average (in-
luding the CMB polarization amplitudes), the reco v ered dust 
emperature and spectral index parameters are significantly biased 
by approximately 3 σ and 2 σ , respectively). This is a sign that
hat the sMBB parameter fits are no longer representative of the 
roperties of the underlying dust cloud population. The bias is even 
ore pronounced for the broad pMBB case, where on average a 10 σ
iscrepancy from the mean dust temperature is observed, and a 12 σ
iscrepancy from the mean dust spectral index. Notably, T d and βd 

re inversely biased, which may be an artefact of the well-known
e generac y between these two parameters (Shetty et al. 2009 ). 
Next, we consider whether these biases would be detectable, in 

he sense that fitting the wrong model to the data could produce
 noticeably poor goodness of fit. Fig. 5 plots the maximum
og-posterior value (i.e. log p for the best-fitting model) for each
ealization against the error-normalized bias. There are no significant 
ifferences in the goodness of fit between the different cases, despite
he significant biases in the reco v ered parameters, suggesting that an
nalyst would be unable to distinguish between the four scenarios by
tting sMBB models to the data alone. 

.2 Fitting the sMBB model to TMFM data 

ext, we repeat our analysis but for the case of an sMBB model being
tted to data with an underlying TMFM dust model, i.e. now allowing
ignificant polarization-dependent effects. Results for this model are 
hown as histograms in Fig. 6 corresponding to three different values
f the shape parameter, κ (these three values again representing a 
arrow, intermediate, and broad case). In sharp contrast to the results
or the pMBB models, the best-fitting CMB amplitudes are now 

ignificantly biased on average, and in fact only the dust amplitude
nd synchrotron spectral index do not exhibit strong biases. As 
xpected, the biases become more pronounced as the size of κ
ncreases. The size of the bias is also more strongly dependent on the
pecific noise realization than for the pMBB models. 

Ho we ver, in this case the standard goodness of fit metric (i.e.
aximum log-posterior values) is very low, indicating that the sMBB
odel is identified as giving a very poor fit to the data assuming
ICO-like noise characteristics. Therefore these biases would be 
asily detectable. It is perhaps unsurprising that the sMBB model is
ot a good fit in this case, as it does not allow differences in SED
etween the different polarization channels, while the Stokes Q and 
 SEDs can be quite different for TMFM, as seen from the significant

ow-frequency residual shown in Fig. 7 . 
Because of the decorrelation between the Stokes Q and U channels

n the TMFM model, we investigate whether it may be more practical
o fit the two polarization channels independently. We performed the 
ame analysis as for the abo v e cases, but this time fitting the Q and
 channels separately. The results are shown in Figs 8 and 9 . In this

ase, the results are not biased; ho we ver, the resultant uncertainties
re considerably larger. This is in line with what is expected from
MNRAS 519, 4370–4383 (2023) 
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Figure 4. The error-normalized bias values (see equation 7 ) of sMBB model parameters o v er N = 200 noise realizations, for the four pMBB dust models 
considered. The input value (or input mean, for pMBB) is shown as the ‘truth’ value in the upper left of each panel. Vertical black lines denote unbiased 
measurements. 
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ntroducing a more flexible model – there is more freedom to fit the
ifferent SEDs in the Q and U channels, but more parameters to fit
n total, which increases the uncertainty on all parameters across the
oard. 
We have also checked the median log-posterior values for each
odel, in analogy to Fig. 5 . We again found that the log-posterior

alues are consistent across all cases, with a reasonable goodness of
t for each of them; hence, studying the goodness of fit would not
llow an analyst to distinguish between these scenarios. 

These results, coupled with recent detections of frequency decor-
elation related to the dust polarization angle in Planck data (Pelgrims
t al. 2021 ; Ritacco et al. 2022 ), illustrate the importance of testing
omponent separation methodologies with simulations of Galactic
mission that include line of sight frequency decorrelation. Such
odels include the 3D ‘layer’ model of Mart ́ınez-Solaeche, Karakci
 Delabrouille ( 2018 ), those based on the 3D magnetohydrodynamic

imulations (e.g. Kritsuk, Ustyugov & Norman 2017 ; Kim, Choi &
lauger 2019 ), and the 3D filament model of Herv ́ıas-Caimapo &
NRAS 519, 4370–4383 (2023) 
uffenberger ( 2022 ). Examples of studies employing these models
nclude Adak et al. ( 2021 ), Abazajian et al. ( 2022 ), and Errard et al.
 2022 ). 

.3 Inferring the hyperparameters of the dust parameter 
istributions 

e now turn to the question of whether the hyperparameters of the
ust cloud parameter distributions themselves can be reco v ered from
he data. This would be of significant interest in understanding the
tructure of the dusty ISM for example, as well as informing the
onstruction of more realistic dust models for foreground removal.
o this end, we first attempted to perform the same MCMC analysis
utlined abo v e, but now fitting the hyperparameters of the pMBB
odel instead of the sMBB parameters. 
We found that fitting the pMBB model suffered from convergence

ssues for data simulated from narrow pdf distributions (i.e. the
MBB, and pMBB narrow models). The MCMC chains for the

art/stac3754_f4.eps
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Figure 5. Error-normalized bias values of the sMBB model parameters ( x -axis) corresponding to the median value of the log posterior ( y -axis), for the four 
dust models considered. For each input model, the values and spread of the log posterior median values are roughly the same, implying that the sMBB model 
produces equally good fits to the data in each case. 
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ider distributions (the pMBB intermediate and broad models) were 
ble to converge, and so we could study the reco v erability of the
yperparameters in these cases. The confidence intervals derived 
rom the MCMC samples were much smaller than those calculated 
rom the Fisher matrix formalism, ho we ver (see below), which 
mplies that the MCMC is not fully exploring the rele v ant portions of
he posterior distribution. 2 A comparison between the MCMC and 
isher approaches is shown in Fig. 10 . 
 An exploration of ways to improve the convergence of the MCMC fitting 
o the pMBB model was conducted. Techniques that were tried included a 
uite a different initialization positions for the w alk ers, running noiseless 
imulations, and fitting modified functions of the hyperparameters (e.g. as a 
roxy for alternative prior distributions), which appear to be the cause of the 
onvergence issues. While these various changes did improve convergence, 
hey ultimately did not prove successful enough to confidently determine the 
onstraints on the hyperparameters. 

a  

c
 

c

F

w
m  

4

As an alternative to the MCMC-based method, we also performed 
isher matrix forecasts to understand how well the statistical dust 
odel hyperparameters could be constrained by future CMB exper- 

ments. While approximate, Fisher forecasting has the advantage of 
eing fast and comparatively simple, allowing forecasts for many 
ifferent experimental configurations to be studied en masse. While 
he forecasts are by nature optimistic (they constitute a ‘best-case’ es-
imate of uncertainty given a particular experimental configuration), 
nd do not account for non-Gaussianities in posteriors and other such
omplications, they are a useful method of comparison. 

For the single pixel SED-fitting problem, the Fisher matrix can be
alculated as 

 ij = 

∑ 

ν

1 

σ 2 
ν

∂m ( � θ ) 

∂θi 

∂m ( � θ ) 

∂θj 

∣∣∣∣∣� θ0 

, (8) 

here σ ν is the noise rms per frequency band (assumed uncorrelated), 
 ( � θ) = 

∑ 

A k f k ( ν; � θ ) is the signal model along the line of sight,
MNRAS 519, 4370–4383 (2023) 

k 
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Figure 6. Error-normalized bias values of sMBB model parameters o v er N = 200 noise realizations, for the three widths of TMFM models considered. Of 
particular note is the strong biasing of the CMB amplitudes in both polarization channels. 

Figure 7. Fractional residuals of the Q (left) and U (right) polarization channels, for the three different distribution widths for the TMFM model. Only the 
lower frequencies are shown to zoom in on the region of interest; a clear residual is seen at the lowest frequencies. 
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Figure 8. Error-normalized bias values of sMBB model parameters o v er N = 200 noise realizations, for one illustrative decoupled case for each model (sMBB, 
pMBB, and TMFM). The broadest distributions for both probabilistic models were used. Decoupling the two polarization channels greatly reduces the bias on 
the reco v ered parameters, at the e xpense of increasing the estimated uncertainties. F or comparison, the 1 σ estimated errors from a non-decoupled MCMC run 
of each model are o v erlaid on each histogram (colored vertical lines in each panel). While each model’s errors are o v erlaid, the y are too close together to be 
easily distinguishable. The marginal distributions in the non-decoupled case are much narrower (the parameters are much better constrained). 
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ummed o v er all components k , and � θ0 is a set of fiducial model
arameters. As in our MCMC studies, we assume that all frequency 
ands have been smoothed to the same angular resolution, and that 
here is a δ-function bandpass response. The predicted parameter 
ovariance matrix can then be approximated by inverting the Fisher 
atrix, C ij ≈ ( F 

−1 ) ij , where the elements of C ij are the expected
ovariance of parameters θ i and θ j marginalized over all other 
arameters. The free parameters included in the Fisher matrix are 
he same as those included in the MCMC fits, i.e. we marginalize
 v er the CMB, synchrotron, and dust amplitude parameters, as well
s the synchrotron spectral index. 

The Fisher formalism was first applied to the case of fitting an
MBB model to data generated from an underlying sMBB model. All 
eri v ati ves for both this case and the pMBB model were calculated
umerically using a simple finite difference method. The estimated 
8 per cent CL result is o v erlaid onto an illustrative MCMC run in
ig. 10 , where the input data vector was a noiseless sMBB SED
or the same set of fiducial model parameters. The two different
ethodologies are in good agreement with one another, which 

rovides a check on our Fisher matrix machinery. 
Next, the Fisher matrix was calculated for the scenarios of fitting

he pMBB model hyperparameters to the narrow, intermediate, and 
road pMBB fiducial models in a single pixel. This allows us to better
nderstand how well the statistical properties of the dust distribution 
an be constrained assuming the pMBB model. The results are shown
n Table 4 as signal-to-noise ratios, i.e. the ratio of the fiducial value
o the forecast 1 σ error for each parameter. Taking the ratio of the
redicted order of magnitude of the parameter o v er the projected
ize of the error derived from the Fisher formalism gives an ef fecti ve
NR on each parameter of interest. 
In general, we found that the means of the β and T d distributions

re measurable, but the widths (standard deviations) are not, at 
MNRAS 519, 4370–4383 (2023) 
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M

Figure 9. Error-normalized bias values of sMBB model parameters ( x -axis) versus the median value of the log posterior ( y -axis), for the same illustrative 
decoupled cases for each model as shown in Fig. 8 . 
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east for a single pixel. The broad distribution is the easiest to
haracterize, with our forecasts predicting good measurements of
¯ and T d (SNRs of 13 and 5, respectively), and a 3.6 σ measurement
f σ T . The width of the spectral index distribution, σβ , is not
easurable ho we ver, with a predicted SNR of only 0.4. The picture

or the intermediate and narrow distributions is less encouraging,
ith very poor constraints on both width parameters, but reasonable

SNR ∼ 3–6) measurements of the means of the distributions.
ote that the means can actually be measured slightly better in the
arrow case than in the intermediate case; this appears to be due
o correlations between parameters changing as the constraints on
he distribution width parameters impro v e significantly (most other
arameter constraints, e.g. for the synchrotron and CMB parameters,
re quite similar between the narrow and intermediate cases). 

Some additional context for these results is provided by Fig. 2 ,
hich shows the fractional difference of the pMBB SEDs with the

eference sMBB model. The broad distribution is the only one that
eviates substantially from sMBB at both high and low frequencies,
NRAS 519, 4370–4383 (2023) 
hich goes some way to explaining its better forecast constraints. It
lso has a larger deviation from sMBB at low frequencies, where the
ICO mission has more bands, but the dust SED itself is lower in

ntensity (not shown in the figure; the thermal dust polarized intensity
ecomes sub-dominant to other foregrounds at around 60 GHz;
lanck Collaboration X 2016 ). The narrow case is essentially
egenerate with sMBB, so the distribution mean parameters β̄ and
 d can be identified with the β and T d parameters of sMBB. The

ntermediate case only deviates from sMBB significantly at low
requencies, with a deviation that is approximately five times smaller
han the one for the broad distribution. 

In terms of prospects for measuring the dust parameter distribu-
ions with future microwav e e xperiments, the main implication of
ur Fisher analysis is that the distributions along individual lines of
ight will probably only be characterizable if they are quite broad,
.e. if there is substantial variation in physical properties from dust
loud to dust cloud. This is because narrower parameter distributions
esult in SEDs that deviate comparatively little from simple single

art/stac3754_f9.eps
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Figure 10. A corner plot of one MCMC run, fitting the sMBB model to noiseless sMBB data (for noiseless data, we expect the best-fitting model to be the 
true input model if the fitting procedure is working correctly). Fisher confidence intervals for the sMBB model (red) and pMBB model (dark blue), using the 
same simulated sMBB model as the fiducial model, are o v erlaid on the contours. Note the substantial degradation of all of the constraints once the means and 
widths of the dust parameter distributions are marginalized in the pMBB case. The vertical and horizontal lines (light blue) show the positions of the true input 
parameters (which are the same as the fiducial parameters for the Fisher analysis). All quantities have the same dimensions as in Table 2 . 

Table 4. Forecast signal-to-noise ratios for the pMBB hyperparameters, 
derived from the Fisher matrix analysis. 

Dust model SNR( ̄β) SNR( σβ ) SNR( T d ) SNR( σ T ) 

pMBB narrow 5 .68 0.002 3.08 0 .004 
pMBB inter. 4 .91 0.045 2.53 0 .101 
pMBB broad 13 .4 0.414 5.38 3 .61 
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BB models. While we have only looked at a few particular cases,
nd have not explored distributions with correlations between β and 
 d for example, we did consider different shapes of distribution 
see Section 2.2 ), finding little difference in the resulting SEDs. We
herefore expect this conclusion to be reasonably robust. Indeed, as 
e showed in the previous section, the polarization properties of the

louds seem to have a much stronger effect on the SEDs. 
MNRAS 519, 4370–4383 (2023) 
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 C O N C L U S I O N S  

n this paper, we studied a probabilistic thermal dust model based on
he MBB model commonly used for component separation in CMB
xperiments. This ‘probabilistic MBB’ (pMBB) model was intended
o account for the variation of physical properties that occurs between
he many individual dust clouds within the angular beam of a CMB
xperiment along each line of sight. We investigated the implications
f fitting simulated data generated with this probabilistic model to
oth the simplistic single MBB (sMBB) model, and the pMBB model
tself. 

In Section 2 , we described the single-population MBB dust model,
n addition to introducing our statistical models, both the probabilistic

BB models, and a TMFM. The latter model incorporates line-of-
ight frequency decorrelation effects that lead to different frequency
ependence in Stokes Q versus U (Tassis & Pavlidou 2015 ). 
We found that even in the most extreme pMBB case considered

that of a broad distribution in the physical dust parameters), the
MB signal remains unbiased when fitting a simple sMBB model to

he data. The fitted dust parameters are biased from the mean values
f the pMBB distribution by several σ , however, which suggests that
ny physical conclusions drawn about the dust cloud population from
he sMBB parameters could be misleading. The biases of these values
ppear to be inversely related, in that a lower fitted temperature T d is
ffset by a higher value of βd . This reproduces the well-known dust
emperature-spectral index degeneracy (e.g. Shetty et al. 2009 ). 

When polarization effects exist, as illustrated by the TMFM model,
e find that fitting an sMBB model does tend to lead to significant
iases in most parameters, including the polarized CMB amplitudes.
ssentially, the sMBB model is unable to absorb differences in

he shapes of the SEDs between polarization channels that arise,
articularly at lower frequencies. However, this also gives rise to
oor goodness of fit statistics, which w ould mak e it relatively clear
o an analyst that an sMBB model fit is inappropriate in this scenario.
his is in contrast to the pMBB models, for which the goodness-of-fit
tatistics are equally good for all three pMBB data sets, and much the
ame as for the sMBB data. In other words, the pMBB data without
olarization effects gives rise to biases in the dust model parameters
hat are hard to detect, whereas the TMFM data give rise to biases
hat are easy to detect. 

As a further check, we also tried fitting ‘decoupled’ sMBB models
o the pMBB and TMFM scenarios, in which a different sMBB
odel was fitted per polarization. This largely mitigated the biases

bserved for both models, at the expense of broadening the marginal
istributions of the reco v ered parameters as more parameters were
eing fitted in total. We note that the CMB amplitudes could remain
iased by around 1 σ on average for the TMFM model with the
roadest distribution, ho we ver (see Fig. 8 ), at least for the PICO-like
xperimental setup we considered. 

Finally, we also considered the possibility of trying to reco v er
he (hyper)parameters of the pMBB model from the data. Fitting
he pMBB model directly using an MCMC approach pro v ed to
e difficult from a numerical standpoint, and we have deferred a
olution to this issue to later work. Instead, we performed Fisher
orecasts to understand how well the pMBB hyperparameters could
n principle be constrained in each 1 deg 2 pixel of an experiment like
ICO, with frequency coverage over a wide range of the microwave
pectrum. We found that all hyperparameters except the width of the
pectral index distribution, σβ , could be reco v ered with a reasonable
ignal-to-noise ratio ( � 4) in the case of a fiducial model with the
roadest distribution. Only the means of the dust temperature and
pectral index distributions were reco v erable for models with narrow-
NRAS 519, 4370–4383 (2023) 
nd intermediate-width distributions, ho we ver, with little prospect
f measuring the widths of those distributions according to our
orecasts. This places an interesting limitation on how well we may
e able to infer the properties of the dust cloud distribution in the
ilky Way from future CMB data alone; only if there is substantial

ariation from dust cloud to dust cloud along each line of sight will
e be able to actually measure the properties of the distributions in
 single sky pixel. 

In conclusion, we find that the single MBB model can reasonably
e used for per-pixel foreground cleaning in CMB polarization
xperiments in the absence of depolarization effects, but that physical
onclusions about the dust properties obtained from such fits should
e treated with caution. Conversely, single MBB models should not
e used in the presence of depolarization effects, as strong biases in
oth the reco v ered CMB and dust parameters can be obtained. This
s partly, but not fully, ameliorated if separate sMBB models are fit
o each of Stokes Q and U, at the cost of increased uncertainties on
he reco v ered parameters. 

As a final note, we point out that we have only considered relatively
d hoc models and distributions in this paper. Physical parametric
odels that more accurately describe the actual composition of the

ust, and thus the associated statistical parameters, if they could be
eco v ered, could yield information about the nature of dust in the
SM itself. The construction of sufficiently realistic physical models
s an on-going process, and one that requires observations of dust
ot just at microwa ve frequencies, b ut across the electromagnetic
pectrum. 
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