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Abstract: After the discovery of the fractal structures of financial markets, enormous effort has
been dedicated to finding accurate and stable numerical schemes to solve fractional Black-Scholes
partial differential equations. This work, therefore, proposes a numerical scheme for pricing double-
barrier options, written on an underlying stock whose dynamics are governed by a non-standard
fractal stochastic process. The resultant model is time-fractional and is herein referred to as a time-
fractional Black-Scholes model. The presence of the time-fractional derivative helps to capture the
time-decaying effects of the underlying stock while capturing the globalized change in underlying
prices and barriers. In this paper, we present the construction of the proposed scheme, analyse it
in terms of its stability and convergence, and present two numerical examples of pricing double
knock-in barrier-option problems. The results suggest that the proposed scheme is unconditionally
stable and convergent with order O(h2 + k2).
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1. Introduction

Over the years, exotic options have become very popular. Today, a wide variety of
exotic options are readily available to investors as they are cheaper, and many offer specific
tailor-made protections that have been formulated; see [1–4] and references therein. Several
factors can explain the wide popularity of exotic options, one is their almost unlimited
flexibility in addressing investors’ specific needs, which may not be possible with standard
options for which initial formulations are attributed to Black & Scholes [5] the early 70s.
Therefore, with exotic options, an investor who would like to hedge against a large drop in
an underlying asset price, for example, can sell a down-and-in put option with the barrier
set at a lower level as the cheapest way to purchase the underlying asset.

On the other hand, exotic options play a significant hedging role in meeting investors’
needs in very cost-effective ways; see for example [1,6,7] and references therein. Rational
investors are moving away from buying general protections, and rather focus on designing
complex strategies that serve to address their specific exposures at any given point in time.
Most of these complex strategies are based on exotic options.

The oldest type of exotic option is the barrier option. Barrier options in general come in
two forms—knock-out option (disappearing) or knock-in (appearing), when the underlying
asset price triggers some pre-set price levels [8]. Barrier options are thus conditional options,
and depend on whether the barrier(s) have been breached during the lifetime of the option.

Barrier options are also part of a class of option called path-dependent. According
to Buchen and Konstandatos [1], barrier options are usually cheaper than their vanilla
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counterparts. This is due to the fact that a buyer of a barrier option has a more specific
view of the underlying asset price dynamics within the time to maturity of the option
as compared to its vanilla counterpart. Another hybrid barrier option is the so-called
partial-time barrier options [1]. Here, the barrier is monitored (or active) for a time period
that is shorter than the expiry time. These options are also called window-barrier options.
Another refinement of these kinds of barrier options are those options where barrier(s) are
monitored discretely in time. Comprehensive coverage of these kinds of options can be
found for example in [8–10] to mention a few.

Another style of barrier options is a double-barrier option, some references to which
can be found in [11–14], among others. Under the double-barrier case, there is an upper
and a lower barrier. The upper barrier is set above and the lower barrier is below the
current underlying asset price. Double knock-in options come to life, and double knock-out
options terminate if either of the barriers is hit. It is worth noting that, under double-barrier
options, investors can enjoy a greater leverage potential, e.g., under a knock-out option,
the barriers can be set too close for comfort, and for knock-ins, the odds of knocking in can
also be reduced without much discount [13].

Fractional calculus, and specifically fractional differential equations, are useful math-
ematical tools for modelling the dynamics of systems and phenomena in very diverse
fields in the applied sciences. Some applications can be found in [7,15–20] among others.
The discovery of the fractal nature of financial markets, and the subsequent development
of fractal-based asset-pricing models, has intensified the search for accurate and stable
numerical methods for solving these somewhat involved yet useful asset-pricing models.

Though numerical methods for classical asset-pricing models are abundant, numerical
methods for fractional calculus-based models are very much limited. Since fractional
models are, to some extent, a generalisation of classical models, several already existing
numerical techniques for classical models can be extended to solving fractional ones.

In terms of the Black-Scholes model, there exists a very distinct difference between
fractional Black-Scholes and classical Black-Scholes models, in the sense that the derivatives
involved in fractional Black-Scholes models are globally defined, while classical models can
only capture localized information about a function in a point-wise manner. As such, the
non-locality nature of fractional derivatives-based models, among other things, contributes
greatly to the complexity of the design, analysis, and implementation of the solution
methods for fractional models.

At present, several numerical methods for fractional Black-Scholes models have been
suggested. The existing methods can be categorised into three classes: methods based
on finite difference [16,19–25], finite elements [26–28] and those based on the spectral
approach [29–31]. Compared to the other two classes, the finite difference-based methods
are proven to be more robust, efficient and tractable in solving fractional Black-Scholes
equations.

In the current work, we extend the concept of double-barrier-option pricing into a
time-fractional Black-Scholes framework. Pricing of double-barrier options via the time-
fractional Black-Scholes framework is justified by evidence of “long memory” in the time
direction observed in many asset time series; see, for example, [32–37]. It is imperative to
note that, this desired long decay in the underlying asset in the time direction does not
deteriorate the no-arbitrage constraint of asset-pricing theory. For more scientific evidence,
see, [19,38,39] and references therein.

The combination of time-fractional Black-Scholes and double-barrier conditions adds
additional degrees of complexity in designing solutions to the proposed model. Given
the complexity involved, we designed a new robust numerical scheme for solving a time-
fractional Black-Scholes model for pricing discrete-monitored double-barrier European
options. This paper, therefore, serves to suggest an efficient numerical scheme for solving a
time-fractional Black-Scholes model for pricing a discrete double-barrier-option problem.

The rest of this paper is organised as follows. Section 2 presents preliminary concepts
and definitions while specifying the model under consideration. Section 3 presents the
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detailed construction of the numerical scheme. A comprehensive theoretical analysis of
the method in terms of convergence and stability is presented in Section 4. Two practical
examples of the use of the approach for pricing double knock-in European put stock options
can be found in Section 5. Lastly, Section 6 presents some concluding remarks and sets the
scope for future research.

2. Model

This section presents an overview of the preliminary knowledge of the subject of
fractional differentiation while specifying the involved tfBS model and its brief derivation
background.

2.1. Preliminaries

The most commonly used fractional derivative definitions in modelling financial data
are the Caputo, Riemann–Liouville and the Jumarie-revised Riemann–Liouville definition.
Though there exist numerous other definitions, these three possess specific properties that
make them more appropriate for modelling financial data.

To develop the basis of our model, as well as touch base with the concept of fractional
calculus in application to financial modelling and analysis, we will briefly revisit the above
three definitions in terms of their mathematical formulations, merits, and demerits.

Definition 1. Caputo Derivative
Let f : R → R be a continuous, but not necessarily a differentiable function. The Caputo

fractional derivative of order α is defined as

Dα
t f (t) =

1
Γ(η − α)

∫ t

0

1
(t− τ)α−η+1

dη f (τ)
dtη dτ, η − 1 < α ≤ η. (1)

Though the Caputo fractional derivative of a non-differentiable function may have a
kernel at the origin, and that Caputo derivative of a constant function is not zero, according
to [19], the Caputo definition allows for the incorporation of traditional initial and bound-
ary conditions into the formulation of the problem, which provides a framework that is
consistent with the classical definition.

Definition 2. Riemann–Liouville Derivative
Let f : R → R be a continuous function, but not necessarily differentiable. Then, the

Riemann–Liouville fractional derivative of order α is given by

Dα f (t) =
1

Γ(η − α)

dη

dtη

∫ t

0

f (τ)
(t− τ)α−η+1 dτ, η − 1 < α ≤ η. (2)

Just as with the Caputo derivative, the Riemann–Liouville derivative of a constant
is non-zero, and the derivative of any function that is constant at the origin, for example,
the exponential or Mittag–Leffler function, have singularities at the origins. Due to short-
comings in the Caputo and Riemann–Liouville definitions, their applications to modelling
several non-linear real-life problems are limited [40].

A modified definition by Jumarie [41] with aid from the definition based on the
Generalised Taylor series found in [19,41,42] addresses issues of singularities regarding the
origin as well the non-zero constraint of constant functions.

Definition 3. Jumarie Derivative
Let f : R→ R be a continuous function, but not necessarily a differentiable, and suppose that

f (t) is

(i) a constant K, then its Jumarie fractional derivative of order α is defined by

Dα
t f (t) =

{ K
Γ(η−α)

t−α+1−η , α ≤ η − 1,

0, α > η − 1,
(3)



Fractal Fract. 2023, 7, 389 4 of 15

(ii) not a constant, then

Dα
t f (t) =

1
Γ(η − α)

dη

dtη

∫ t

0

{ f (τ)− f (0)}
(t− τ)α

dτ, η − 1 < α < η, (4)

Dα
t f (t) =

∂η f (t)
∂tη , α = η (5)

The Jumarie [37,41,43,44] definition above takes into account the existence of a frac-
tional derivative at the origin, and the existence of a fractional derivative of a constant,
therefore aligning the definition consistently well with local derivative-based differen-
tial calculus.

2.2. Model Specification

Let S be the stock price that follows the following non-random fractional stochas-
tic process

dS = (r− δ)Sdt + σSω(t)(dt)α/2, 0 < α ≤ 1, (6)

which is driven by a fractal process βα(t) governed by Gaussian white noise ω(t) such that

dβα(t) = ω(t)(dt)α/2. (7)

In (6), σ2 represents the underlying stock volatility and r and δ represents the risk-free
interest rate and the continuous dividend yield, respectively.

We note that in the fractional stochastic process (6), the standard Brownian motion is
generalised by βα(t) defined in (7). Furthermore, when α = 1, Equation (6) is equivalent to
a geometric Brownian motion.

Unlike in the standard Brownian motion, the non-Gaussian fractional process (6) does
not make any prior assumptions about the underlying distribution of the stock price (S);
see, for example, [20] and references therein. However, (6) does give insights on how the
market is scaling with respect to time.

Using (6), we arrive at the time-fractional Black-Scholes (tfBS)-PDE (8) for pricing
double-barrier put options, where the fractional derivative is defined in the Caputo sense.
Detailed derivations of similar models for pricing standard options can be found in, among
others, [19,41,43,44] and references therein.

∂αv
∂tα =

(
rv− (r− δ) S∂v

∂S

)
t1−α

Γ(2−α)
− σ2Γ(1+α)

2
S2∂2v
∂S2 , 0 < α ≤ 1,

Bl ≤ S ≤ Bu, t ∈ (0, T)

v(Bl , t) = Rl , V(Bu, t) = Ru.

(8)

In the above model, (8) Bl and Bu represent the lower and upper knock-in barriers,
with Rl and Ru denoting the respective rebates paid when the corresponding barriers are
hit. Moreover, r represents the risk-free interest rate and δ the dividend yield paid by the
underlying dividend-paying stock.

To the best of our knowledge, there is a limited amount of literature on the subject of
high-order solution schemes for barrier-option pricing time-fractional Black-Scholes PDEs,
as the topic is still relatively new and limited to vanilla option problems.

Using variable transform (τ = T − t) time to maturity, (8) can be transformed into the
following initial value problem (IVP)

τα−1(T − τ)1−α ∂αv
∂τα
−
(

rv
Γ(2− α)

− (r− δ)Sα ∂αv
∂Sα

)
(T − τ)1−α +

Γ(1 + α)σ2S2

2
∂2v
∂S2 = 0,

which simplifies to
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∂αv
∂τα
−
(

rv
Γ(2− α)

− (r− δ)S
∂v

Γ(2− α)∂S

)
τ1−α +

Γ(1 + α)σ2S2

2
∂2v
∂S2 = 0, (9)

0 < α ≤ 1,

with initial and boundary conditions

S ∈ (Bl , Bu),

τ ∈ (T, 0),

v(Bl , τ) = Rl , v(Bu, τ) = Ru.

 (10)

Considering the following change in variables x = ln(S) and v(x, τ) = erτv(S, τ) and
without loss of notations, after simplification, we obtain

∂αv(x, τ)

∂τα
=

(
rv(x, τ)

Γ(2− α)
− (r− δ)x

∂v(x, τ)

Γ(2− α)∂x

)
τ1−α − Γ(1 + α)σ2x2

2
∂2v
∂S2 , (11)

0 < α ≤ 1,

with the following initial and barrier conditions

v(x, 0) = max(K− ex, 0), 0 < τ < T,

v(bl , τ) = rl , v(bu, τ) = ru, bl < x < bu.

}
(12)

3. Numerical Scheme

This section presents the construction of the involved numerical scheme in solving
(11), subject to initial and barrier conditions (12).

3.1. Model Discretization

Let L and N be positive integers and define h = (bu − bl)/L and k = T/N the
space and time step-sizes, respectively. We denote xl = bl + lh; for l = 0, 1, 2, . . . , L and
τn = nk; n = 0, 1, 2, . . . , N, such that xl ∈ [bl , bu] and τn ∈ [0, T]. Furthermore, we define
vn

l = v(xl , τn) as the solution at the grid point (xl , τn) = (bl + lh, nk).

3.1.1. Temporal Discretization

Let us define

∆tvn
l = ∆tv(xl , τn) =

v(xl , τn)− v(xl , τn−1)

kα
=

vn
l − vn−1

l
kα

, (13)

and discretize the time-fractional derivative in (11) at the grid point (xl , τn+1) by the
following quadrature formula

∂αv(xl , τn+1)

∂τα
=

k−α

Γ(2− α)

n

∑
j=0

σj
(
v(xl , τn−j+1)− v(xl , τn−j)

)
+

τ1−α
n

Γ(2− α)
k,

=
1

Γ(2− α)

n

∑
j=0

σj∆tv(xl , tn−j+1) +O(k2), (14)

where
σj = (j + 1)1−α − j1−α, j = 0, 1, 2, · · · , n, (15)

such that 1 = σ0 > σ1 > σ2 > · · · >→ 0 as j→ n.

3.1.2. Spatial Discretization

Let us define

∆xvn
l = ∆xv(xl , τn) =

v(xl+1, τn)− v(xl−1, τn)

h2 =
vn

l+1 − vn
l−1

h2 , (16)
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∆xxvn
l = ∆xv(xl , τn) =

v(xl+1, τn)− 2v(xl , τn) + v(xl−1, τn)

h2 =
vn

l+1 − 2vn
l + vn

l−1
h2 . (17)

We approximate the spatial derivatives in (11), as follows:

∂v(xl , τn+1)

∂x
=

v(xl+1, τn+1)− v(xl−1, τn+1)

2h
− h2

6
∂3v(xl , τn+1)

∂x3 +O(h4), (18)

and

∂2v(xl , τn+1)

∂x2 =
v(xl+1, τn+1)− 2v(xl , τn+1) + v(xl−1, τn+1)

h2 − h2

12
∂4v(xl , τn+1)

∂x4 +O(h2). (19)

3.2. The Full Scheme

To obtain the full numerical scheme, we substitute (14), (18) and (19) into (11) and we
obtain the following scheme

1
Γ(2− α)

n

∑
j=0

σj∆tv
n−j+1
l =

(
rvn+1

l − q∆xvn+1
l

) τ1−α

Γ(2− α)
−ω(α)∆xxvn+1

l − Rn+1
l (20)

q = r− δ, n ≥ 0, ω(α) =
Γ(1 + α)σ2x2

2
.

which, after some algebraic manipulations, can be simplified into

n+1

∑
j=1

ϕj−1vn−j+1
l = avn+1

l−1 + bvn+1
l + cvn+1

l+1 + Rn+1
l (21)

where by

a = −kαq τ1−α−ω′

h2 , b = kα τ1−αr+2ω′

h2 , c = −kαq τ1−α−ω′

h2 − 1,

ω′ = kαΓ(2− α)ω(α), ϕj = σj − σj+1.

The final scheme is explicitly given by

ϕ0vn
l + · · ·+ ϕn−1v1

l + ϕnv0
l = avn+1

l−1 + bvn+1
l + cvn+1

l+1 , (22)

whereby the left-hand side of the scheme (22) captures the memory effects.
Furthermore, Rn+1

l in (21) represents the remainder after truncation, which is given by

Rn+1
l =

h2

12

(
τ1−α

Γ(2− α)

∂3vn+1
l

∂x3 + ω(α)
∂4vn+1

l
∂x4

)
+O

(
h2 + k2

)
, (23)

which implies that, ∣∣∣Rn+1
l

∣∣∣ = C
(

h2, k2
)

, (24)

for some constant C independent of h and k. The proof to this result follows in the
next section.

4. Theoretical Analysis of the Scheme

In this section, we present the stability and convergence properties of the proposed
difference scheme (22).

4.1. Stability Analysis

The stability properties of the proposed scheme (22) will be discussed using the
concept of Fourier analysis. Suppose v̂n

l is an approximate solution to the scheme (22) such
that vn

l − v̂n
l = εn

l for l = 0, 1, · · · , L, then the following theorem holds.
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Theorem 1. The difference scheme in (22) is unconditional stable.

To prove the above theorem, we substitute the roundoff error εn
l into (22), we obtain

n+1

∑
j=1

ϕj−1ε
n−j+1
l = aεn+1

l−1 + bεn+1
l + cεn+1

l+1 , (25)

such that εn
0 = εn

L = 0.
Let us define the grid function as follows,

εn(x) =


εn

l , when xl − h
2 < x ≤ xl +

h
2 , l = 1, 2, . . . , L− 1,

0, when bl ≤ x ≤ bl +
h
2 or bu − h

2 < x ≤ bu +
h
2 ,

(26)

which can be expanded in terms of the following Fourier series representation

εn(x) =
∞

∑
j=1

$n(j)ei2π jx/bu−bl , n = 1, 2, . . . , N, (27)

where

$n(j) =
1

bu − bl

∫ bu−bl

0
εn(x)e−i2π jx/bu−bl dx, n = 1, 2, . . . , N, (28)

and i =
√
−1.

Let εn = (εn
1 , εn

2 , · · · , εn
L−1)

T and, define its norm

‖εn‖2 =

(
L−1

∑
l=1

h| εn
l |

2

)1/2

=

(∫ bu−bl

0
| εn(x) |2dx

)1/2

, (29)

and apply the Parseval equality to obtain∫ bu−bl

0
| εn(x)2 | dx =

∞

∑
j=−∞

| $n(j) |2, (30)

to obtain

‖εn‖2
2 =

∫ bu−bl

0
| εn(x) |2dx =

∞

∑
j=−∞

| $n(j) |2 . (31)

Therefore, the solution to (25) takes the following form

εn
l = $neiβlh, (32)

for β := 2π j/bu − bl and i =
√
−1. Substituting the expression for εn into (25) we obtain

ϕ0$neiβlh + · · ·+ ϕn−1$1eiβlh + ϕn$0eiβlh = a$n+1eiβ(l−1)h + b$n+1eiβlh + c$n+1eiβ(l+1)h, (33)

Which, after simplifications, leads to

(ϕ0$n + · · ·+ ϕn−1$1 + ϕn$0)eiβlh = eiβlh$n+1

(
ae−iβh + ceiβh + b

)
, (34)

ϕ0$n + · · ·+ ϕn−1$1 + ϕn$0 = $n+1

(
a
(

e−iβh + eiβh
)
+ b− 1

)
, (35)

since β0 = 1 and a = c− β0.
From the Fourier series representation of cos βh, we obtain

ϕ0$n + · · ·+ ϕn−1$1 + ϕn$0 = $n+1(a cos βh + b− 1). (36)

Proposition 1. Suppose $n+1 satisfies (36), then |$n+1| ≤ |$0|, for all n = 0, 1, 2, · · · , N.
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Let n = 0, then from (36) we have

|$1(a cos βh + b− 1)| = |ϕ0$0|, (37)

which imply that

|$1| =

∣∣∣∣ ϕ0$0

a cos βh + b− 1

∣∣∣∣,
≤ ϕ0

|a cos βh + b− 1| |$0|,

≤ 1− β1

|a cos βh + b− 1| |$0|, (38)

<
1

|a cos βh + b− 1| |$0|, (∵ 1− β1 < 1),

< |$0|,
(
∵

1
|a cos βh + b− 1| < 1

)
.

This implies that,
|$1| ≤ |$0|.

For n = 1, we suppose |$n| ≤ |$0| for all n = 1, 2, · · · , N, and show that the same is
true for |$n+1| ≤ |$0| for all n.

Proof.

|$n+1| =

∣∣∣∣∣∑
n+1
j=1 ϕj−1$n−j+1

a cos βh + b− 1

∣∣∣∣∣,
≤ 1
|a cos βh + b− 1|

n+1

∑
j=1

∣∣ϕj−1$n−j+1
∣∣,

≤
n+1

∑
j=1

∣∣ϕj−1$n−j+1
∣∣,(∵ 1

|a cos βh + b− 1|

)
< 1,

= ϕ0|$n|+ ϕ1|$n−1|+ · · ·+ ϕn−1|$1|+ ϕn|$0|, (39)

≤ ϕ0|$0|+ ϕ1|$0|+ · · ·+ ϕn−1|$0|+ ϕn|$0|,
= (ϕ0 + ϕ1 + · · ·+ ϕn−1 + ϕn)|$0|,

=
n+1

∑
j=1

ϕj−1|$0|,

= |$0|,
(
∵

n+1

∑
j=1

ϕj−1 = 1

)
.

Therefore,
∥∥∥εn+1

l

∥∥∥
2
≤
∥∥ε0

l

∥∥
2, which concludes the proof for Theorem 1.

4.2. Convergence of the Numerical Scheme

In this subsection, we prove that the proposed scheme (22) converges with temporal
order of two and is spatially accurate with fourth order. The analysis will follow the concept
of Fourier analysis. Let Rn+1

l denote the truncation error involved in the approximation at
grid point (xl , τn+1), then, from (23), we obtain the following theorem:

Theorem 2. The difference scheme (22) is convergent and converges with order O(k2 + h4).

Let ξn
l = v(xl , tn)− vn

l denote the approximation error at grid point (tn, xl), such that
ξn

L = 0, for n = 1, 2, · · · , N and ξ0
l = 0, for l = 0, 1, · · · , L. By substituting ξn

l into the
scheme (22) we obtain
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n+1

∑
j=1

ϕj−1ξ
n−j+1
l + Rn+1

l = aξn+1
l−1 + bξn+1

l + cξn+1
l+1 , (40)

Similar to stability analysis, we define the following grid functions

ξn(S) =

{
ξn

l , when xl − h
2 < x ≤ Sl +

h
2 , l = 1, 2, . . . , L− 1,

0, when 0 ≤ x < h
2 or xmax − h

2 < S ≤ xmax +
h
2 ,

(41)

Rn(x) =

{
Cn

l , when xl − h
2 < x ≤ xl +

h
2 , l = 1, 2, . . . , L− 1,

0, when 0 ≤ x < h
2 or xmax − h

2 < x ≤ xmax +
h
2 ,

(42)

which implies ξn(x) and Cn
l have the following Fourier series representations

ξn(x) =
∞

∑
j=1

τn(j)ei2π jx/xmax ; n = 1, 2, . . . , N, (43)

Rn(x) =
∞

∑
j=1

νn(j)ei2π jx/xmax ; n = 1, 2, . . . , N, (44)

where

τn(j) =
1

xmax

∫ xmax

0
ξn(x)e−i2π jx/xmax dx; n = 1, 2, . . . , N. (45)

νn(j) =
1

xmax

∫ xmax

0
Rn(x)e−i2π jx/xmax dx; n = 1, 2, . . . , N. (46)

Let ξn = (ξn
1 , ξn

2 , · · · , ξn
L−1)

T and Rn = (Rn
1 , Rn

2 , · · · , Rn
L−1)

T , and let us define their
norms as follows:∥∥∥∥ξn

∥∥∥∥
2
=

(
L−1

∑
l=1

h| ξn
l |

2

)1/2

=

(∫ xmax

0
| ξn(x) |2dx

)1/2
, (47)

∥∥∥∥Rn
∥∥∥∥

2
=

(
L−1

∑
l=1

h| Rn
l |

2

)1/2

=

(∫ xmax

0
| Rn(x) |2dx

)1/2
, (48)

and, apply the following Parseval equalities

∫ Smax

0
| ξn(S)2 | dS =

∞

∑
j=−∞

| τn(j) |2; n = 1, 2, . . . , N (49)

∫ Smax

0
| Rn(S)2 | dS =

∞

∑
j=−∞

| νn(j) |2; n = 1, 2, . . . , N (50)

to obtain ∥∥∥∥ξn
∥∥∥∥2

2
=

∞

∑
j=−∞

| τn(j) |2; n = 1, 2, . . . , N. (51)

∥∥∥∥Rn
∥∥∥∥2

2
=

∞

∑
j=−∞

| νn(j) |2; n = 1, 2, . . . , N. (52)

Based on this analysis, we can therefore propose that

ξn = τneiβlh and Rn = νneiβlh, (53)
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where β = 2π j/Smax and i =
√
−1. Substituting the expressions in (53) into (40) we obtain

n+1

∑
j=1

ϕj−1τn−j+1eiβlh = aτn+1eiβ(l−1)h + bτn+1eiβlh + cτn+1eiβ(l+1)h − νn+1eiβlh, (54)

which implies(
n+1

∑
j=1

ϕj−1τn−j+1

)
eiβlh = eiβlhτn+1

((
ae−iβh + ceiβh + b

)
− νn+1

)
(55)

which simplify into

n+1

∑
j=1

ϕj−1τn+1−j = τn+1(a cos βh + b− 1)− νn+1. (56)

Therefore

τn+1 =
∑n+1

j=1 ϕj−1τn+1−j + νn+1

(a cos βh + b− 1)
. (57)

Proposition 2. Suppose τn for n = 0, 1, · · · , N is a solution to (57); then, there exists some
positive constant C such that |τn| ≤ C|ν1| for all n.

Proof. It is trivial to show that for n = 0, from (57), we have

|τ1| =

∣∣∣∣ ϕ0τ0 + ν1

(a cos βh + b− 1)

∣∣∣∣ ≤ ν1. (58)

Suppose |τn| ≤ C0|ν1|, for n = 1, 2, · · · , N, for some constant C independent of h and
k. Then,

|τn+1| ≤
∣∣∣∣∣∑

n+1
j=1 ϕj−1τn+1−j + νn+1

(a cos βh + b− 1)

∣∣∣∣∣,
≤

n+1

∑
j=1

1
|(a cos βh + b− 1)| (σj−1

∣∣τn−j+1
∣∣+ |νn+1|),

≤
n+1

∑
j=1

Cj−1(σj−1
∣∣τn−j+1

∣∣+ |νn+1|),

≤
n+1

∑
j=1

σj−1Cj−1
∣∣τn−j+1

∣∣+ Cn+1|ν1|, (59)

≤
n+1

∑
j=1

σj−1Cj−1|ν1|+ Cn+1|ν1|,

= σ0C0|ν1|+ σ1C1|ν1|+ σ2C2|ν1|+ · · ·+ σnCn|ν1|+ Cn+1|ν1|,

≤ Ĉ(
n+1

∑
j=1

σj−1|ν1|+ ν1), (Ĉ = max
0≤j≤n+1

{Cj})

= Ĉ(
n+1

∑
j=0

σj)|ν1|

= C|ν1|.

We can therefore conclude that the scheme (22) is convergent, and this completes the
proof to Theorem 2.
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5. Numerical Results and Discussions

In this section, we present two numerical examples of the pricing of double-barrier
knock-in put-option problems.

Example 1. Consider Equation (8), subject to conditions (12) for pricing a double knock-in put
option with the following parameters: K = 80, r = 0.05, σ = 0.01, T = 1, Smax = 120, L = 100,
N = 50, δ = 0.025, and 0.075, α = (0.5, 0.7, 0.9, 1.0), with lower barrier located at Bl = 6
and upper barrier located at Bu = 110.

To asses the effects of change in some key option parameters on the effectiveness of
the approach, as well as, the numerical method herein, we considered a second example
with two different sets of dividend yields δ, two different sets of barriers, the same interest
rate r, the same strike price K, the same maturity time T and the same set of α values.

Example 2. Consider Equation (8), subject to conditions (12) for pricing double knock-in put
options with the following parameters: K = 80, r = 0.05, σ = 0.015, T = 1, Smax = 120,
L = 100, N = 100, δ = 0.045 and 0.10, α = (0.5, 0.7, 0.9, 1.0), with lower barrier located at
Bl = 10 and upper barrier located at Bu = 130.

Option maturity payoff curves for the two considered examples (Examples 1 and 2,
above) are presented in Figures 1 and 2 below.
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an effect on the option price (premium). A higher dividend yield (δ) yields a lower option
premium. This is not strange because, the holder of an option with a higher dividend yield
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The results in Figures 1 and 2 are consistent with those obtained in [45] which are
formulated using a call option. Figures 1 and 2 indicates that, change in dividend yield has
an effect on the option price (premium). A higher dividend yield (δ) yields a lower option
premium. This is not strange because, the holder of an option with a higher dividend yield
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is compensated more through dividends as compared to the one with a lower dividend
yield.

Moreover, the considered tfBS in Equation (8) gives high option prices both for the
in-the-money option and for when the underlying asset price (S) is close to the strike price
(K) as compared to the classical BS model (α = 1) case. This indicates that, the tfBS model
in (8) is of a power-law nature as compared to the classical Black-Scholes model.

Tabular results for the two considered examples (Examples 1 and 2, above) are pre-
sented in Tables 1–4, below.

Table 1. Approximation errors for Example 1 with r = 0.05 and δ = 0.025.

α N = 50 N = 100 N = 200 N = 400 N = 800

0.1 7.1212 × 103 1.7901 × 103 4.4561 × 104 1.1525 × 104 2.9154 × 105

0.2 7.1336 × 103 1.8180 × 103 4.4711 × 104 1.1563 × 104 2.9250 × 105

0.3 7.3465 × 103 1.8383 × 103 4.5753 × 104 1.1827 × 104 2.9717 × 105

0.4 7.4609 × 103 1.9326 × 103 4.8371 × 104 1.2239 × 104 3.0759 × 105

0.5 8.1315 × 103 2.0213 × 103 5.1493 × 104 1.3000 × 104 3.2785 × 105

0.6 8.4515 × 103 2.1032 × 103 5.4620 × 104 1.3842 × 104 3.4915 × 105

0.7 9.5333 × 103 2.3909 × 103 6.1088 × 104 1.5478 × 104 3.7153 × 105

0.8 1.1062 × 102 2.5616 × 103 6.4925 × 104 1.6449 × 104 4.1409 × 105

0.9 1.2494 × 102 3.1452 × 103 7.8208 × 104 2.0062 × 104 5.0548 × 105

1.0 1.3815 × 102 3.4591 × 103 8.7754 × 104 2.2198 × 104 5.5953 × 105

Table 2. Rate of convergence for Example 1 with r = 0.05 and δ = 0.025.

α N = 100 N = 200 N = 400 N = 800
0.1 1.91 1.95 1.98 1.99
0.2 1.92 1.96 1.98 1.99
0.3 1.93 1.96 1.98 1.99
0.4 1.93 1.96 1.98 1.99
0.5 1.93 1.97 1.98 1.99
0.6 1.94 1.97 1.98 1.99
0.7 1.94 1.97 1.98 1.99
0.8 1.94 1.97 1.98 1.99
0.9 1.94 1.97 1.98 1.99
1.0 1.94 1.97 1.98 1.99

Table 3. Approximation errors for Example 2 with r = 0.05 and δ = 0.045.

α N = 100 N = 200 N = 400 N = 800 N = 1600

0.1 6.5512 × 102 1.6492 × 102 4.1892 × 103 1.0597 × 103 2.5953 × 104

0.2 5.7988 × 103 1.4694 × 102 3.7170 × 103 9.4025 × 104 2.3784 × 104

0.3 5.2147 × 102 1.3191 × 102 3.3368 × 103 8.4408 × 104 2.1352 × 104

0.4 4.7443 × 102 1.2001 × 102 3.0358 × 103 7.6794 × 104 1.9426 × 104

0.5 4.3746 × 102 1.1066 × 102 2.7993 × 103 7.0810 × 104 1.7912 × 104

0.6 4.0893 × 102 1.0344 × 102 2.6167 × 103 6.6192 × 104 1.6544 × 104

0.7 3.8773 × 102 9.8080 × 103 2.4898 × 103 6.2752 × 104 1.5688 × 104

0.8 3.7318 × 102 9.4300 × 103 2.3779 × 103 6.0305 × 104 1.4980 × 104

0.9 3.6499 × 102 9.3328 × 103 2.4355 × 103 5.9979 × 104 1.5745 × 104

1.0 3.7328 × 102 9.2895 × 103 2.4246 × 103 5.9803 × 104 1.5670 × 104

Table 4. Rate of convergence for Example 2 with r = 0.05 and δ = 0.045.

α N = 200 N = 400 N = 800 N = 1600
0.1 1.95 1.98 1.99 1.99
0.2 1.96 1.98 1.99 1.99
0.3 1.96 1.98 1.99 1.99
0.4 1.96 1.98 1.99 2.00
0.5 1.97 1.98 1.99 2.00
0.6 1.97 1.98 1.99 2.00
0.7 1.97 1.98 1.99 2.00
0.8 1.97 1.98 1.99 2.00
0.9 1.97 1.98 1.99 2.00
1.0 1.97 1.98 1.99 2.00

The numerical results herein confirm our theoretical deductions on the stability and
convergence properties of the scheme as presented in Sections 4.1 and 4.2, respectively. The
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results indicates that, the proposed scheme is unconditionally stable (see Section 4.1) and
converges with order O(h2, k2), i.e., the scheme converges with order two in both time and
asset directions under all possible orders of the fractional derivative (α).

6. Concluding Remarks and Scope for Future Direction

In this paper we considered a double-barrier-option pricing problem under the time-
fractional Black-Scholes setup. We propose a robust second-order numerical scheme for
solving a discretely monitored double-barrier time-fractional Black-Scholes PDE. Two
numerical examples are presented. Results indicates that, adding to the already established
scientific evidence, the fractional Black-Scholes approach is a very efficient valuation
technique for barrier option problems as compared to the usual/classical Black-Scholes
approach. The double barrier-option tfBS model in Equation (8) is sensitive to dividend
payouts, and allocates lower put premiums to higher dividend yield options. These results
are well in line with the theory of no-arbitrage, where investors who are compensated
well in dividends would receive prices lower than those of investors with lower dividend
yield options. Moreover, the numerical scheme herein proves to be efficient at solving
the involved time-fractional Black-Scholes model, though the approach using the general
signal produces some asymmetric performances when 0 < α < 0.5. The approach is only
effective when 0.5 ≤ α < 1, and it is for this reason that we only presented results for when
α = (0.5, 0.7, 0.9, 1.0). The calibration of the model to real-time market data remains the
subject of future research.
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