Library Portal | UWC Portal
    • Login
    Contact Us | Quick Submission Guide | About Us | FAQs | Login
    View Item 
    •   Repository Home
    • Faculty of Natural Sciences
    • Biodiversity & Conservation Biology
    • Research Articles (Bioversity and Conservation Biology)
    • View Item
    •   Repository Home
    • Faculty of Natural Sciences
    • Biodiversity & Conservation Biology
    • Research Articles (Bioversity and Conservation Biology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular and morphological analysis of subfamily Alooideae (Asphodelaceae) and the inclusion of Chortolirion in Aloe

    Thumbnail
    View/Open
    Daru_Molecular-and-morphological_2013.pdf (2.111Mb)
    Date
    2013
    Author
    Daru, Barnabas H.
    Manning, John C.
    Boatwright, James S.
    Maurin, Olivier
    Maclean, Norman
    Schaefer, Hanno
    Kuzmina, Maria
    van der Bank, Michelle
    Metadata
    Show full item record
    Abstract
    Asphodelaceae subfam. Alooideae (Asparagales) currently comprises five genera, four of which are endemic to southern Africa. Despite their importance in commercial horticulture the evolutionary relationships among the genera are still incompletely understood. This study examines phylogenetic relationships in the subfamily using an expanded molecular sequence dataset from three plastid regions (matK, rbcLa, trnH-psbA) and the first subunit of the nuclear ribosomal internal transcribed spacer (ITS1). Sequence data were analysed using maximum parsimony and Bayesian statistics, and selected morphological traits were mapped onto the molecular phylogeny. Haworthia is confirmed as being polyphyletic, comprising three main clades that largely correlate with current subgeneric circumscriptions. Astroloba and Gasteria are evidently each monophyletic and sister respectively to Astroloba and H. subg. Robustipedunculares. Chortolirion is shown to be deeply nested within Aloe and is formally included in that genus. Aloe itself is clearly polyphyletic, with the dwarf species A. aristata allied to Haworthia subg. Robustipedunculares. The taxonomic implications of these findings are examined but branch support at critical lower nodes is insufficient at this stage to justify implementing major taxonomic changes.
    URI
    http://hdl.handle.net/10566/3363
    Collections
    • Research Articles (Bioversity and Conservation Biology) [89]

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV