Show simple item record

dc.contributor.authorde Meijer, R.J.
dc.contributor.authorAnisichkin, V.F.
dc.contributor.authorvan Westrenen, W.
dc.date.accessioned2018-03-06T09:00:32Z
dc.date.available2018-03-06T09:00:32Z
dc.date.issued2013
dc.identifier.citationDe Meijer, R.J. et al. (2013). Forming the Moon from the terrestrial silicate-rich material. Chemical Geology, 345: 40 – 49.en_US
dc.identifier.issn0009-2541
dc.identifier.urihttp://dx.doi.org/10.1016/j.chemgeo.2012.12.015
dc.identifier.urihttp://hdl.handle.net/10566/3568
dc.description.abstractRecent high-precision measurements of the isotopic composition of lunar rocks demonstrate that the bulk silicate Earth and the Moon show an unexpectedly high degree of similarity. This is inconsistent with one of the primary results of classic dynamical simulations of the widely accepted giant impact model for the formation of the Moon, namely that most of the mass of the Moon originates from the impactor, not Earth. Resolution of this discrepancy without changing the main premises of the giant impact model requires total isotopic homogenisation of Earth and impactor material after the impact for a wide range of elements including oxygen, silicon, potassium, titanium, neodymium, and tungsten. Isotopic exchange between partially molten and vaporised Earth and Moon shortly after the impact has been invoked to explain the identical oxygen isotopic composition of Moon and Earth but the effectiveness and dynamics of this process are contested. Even if this process could explain the O isotope similarity, it is unlikely to work for the much heavier, refractory elements. Given the increasing uncertainty surrounding the giant impact model in light of these geochemical data, alternative hypotheses for lunar formation should be explored. In this paper, we revisit the hypothesis that the Moon was formed directly from terrestrial mantle material, as first proposed in the ‘fission’ hypothesis (Darwin, 1879. On the bodily tides of viscous and semi-elastic spheroids, and on the ocean tides upon a yielding nucleus. Phil. Trans. Roy. Soc. (London) 170, 1–35). We show that the dynamics of this scenario requires on the order of 1029–1030 J almost instantaneously generated additional energy if the angular momentum of the proto-Earth was similar to that of the Earth–Moon system today. The only known source for this additional energy is nuclear fission. We show that it is feasible to form the Moon through the ejection of terrestrial silicate material triggered by a nuclear explosion at Earth's core–mantle boundary (CMB), causing a shockwave propagating through the Earth. Hydrodynamicmodelling of this scenario shows that a shock wave created by rapidly expanding plasma resulting from the explosion disrupts and expels overlyingmantle and crust material.Our hypothesis straightforwardly explains the identical isotopic composition of Earth and Moon for both lighter (oxygen, silicon, potassium) and heavier (chromium, titanium, neodymium and tungsten) elements. It is also consistent with the proposed Earth-like water abundances in the early Moon, with the angular momentum and energy of the present-day Earth–Moon system, and with the early formation of a ‘hidden reservoir’ at Earth's CMB that is not present in the Moon.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsThis is the author-version of the article published online at: http://dx.doi.org/10.1016/j.chemgeo.2012.12.015
dc.subjectMoon formationen_US
dc.subjectNuclear explosionen_US
dc.subjectShock waveen_US
dc.subjectGiant impact modelen_US
dc.titleForming the Moon from terrestrial silicate-rich materialen_US
dc.typeArticleen_US
dc.privacy.showsubmitterFALSE
dc.status.ispeerreviewedTRUE
dc.description.accreditationWeb of Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record