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ABSTRACT
The distribution of the maxima of periodograms is considered in the case where the time
series is made up of regularly sampled, uncorrelated Gaussians. It is pointed out that if there
is no oversampling, then for large data sets, the known distribution of maxima tends to a one-
parameter Gumbel distribution. Simulations are used to demonstrate that for oversampling by
large factors, a two-parameter Gumbel distribution provides a highly accurate representation
of the simulation results. As the oversampling approaches the continuous limit, the two-
parameter Gumbel distribution takes on a simple form which depends only on the logarithm
of the number of data. Subsidiary results are the autocorrelation function of the oversampled
periodogram; expressions for the accuracy of simulated percentiles; and the relation between
percentiles of the periodogram and the amplitude spectrum.
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1 IN T RO D U C T I O N

The periodogram (power spectrum) and its scaled square-root form,
the amplitude spectrum, are standard tools used to identify period-
icities in time series. Given a set of observations yt (t = 1, 2, . . . ,
N) obtained at regularly spaced time points, the periodogram value
at angular frequency ω = 2πν is

Iy(ω) = 1

N

⎧⎨⎩
[∑

t

(yt − y) cos ωt

]2

+
[∑

t

(yt − y) sin ωt

]2
⎫⎬⎭

0 < ω < π , (1)

where y is the mean of the measurements. (Note that the time
interval between successive measurements thus defines the units of
time.)

Consider a time series consisting of pure white noise, i.e. yt = et,
where the et are identically and independently Gaussian with vari-
ance σ 2

e . It is then easily shown that for given ω, Ie(ω) is exponen-
tially distributed (e.g. Scargle 1982). Since the exponential distribu-
tion is heavy-tailed compared to the Gaussian, chance large values
of Ie(ω) are common, which complicates deciding whether a large
peak in a periodogram is due to a signal, or whether it is ‘spurious’
(i.e. noise-induced). Consequently, testing whether periodograms
are consistent with pure noise has given rise to a voluminous litera-
ture – see Frescura, Engelbrecht & Frank (2008) for a fairly recent
review of the relevant astronomy literature.

� E-mail: ckoen@uwc.ac.za

If the periodogram is calculated only in the Fourier frequencies

νj = j

N
, j = 1, 2, . . . , N/2, (2)

then the N/2 periodogram ordinates I(ωj) are all independent, and
the cumulative distribution function (CDF) of the periodogram max-
imum V is known to be (e.g. Frescura et al. 2008)

FV (v) = [1 − e−v]N/2 , (3)

provided the I(ω) have been standardized (i.e. divided by σ 2
e ). For

large data sets, the standardization is simple, even if σ 2
e is unknown,

since the mean of the periodogram over all frequencies provides an
excellent estimate of this parameter. This method of standardization
is attractive, since comparison of the highest spectrum peak to the
mean spectrum has become popular – see the many references
to Breger et al. 1993, who proposed a simple ‘significance test’
based on this criterion. Alternatively, σ 2

e can of course be estimated
directly from the data.

In astronomical applications periodograms are almost always
oversampled, i.e. calculated in a finer grid of frequencies than the
Fourier values. The reason is that the spectrum is not fully resolved
by the set of Fourier frequencies – features of interest, occurring at
frequencies between Fourier values could be missed if spectra are
not oversampled. This is particularly important in the field of aste-
rioseismology, where many pulsation frequencies may be present
in a spectrum (e.g. Gilliland et al. 2010). Of course, the denser the
sampling of the spectrum, the more accurate the determination of
the precise values of frequencies of interest will also be.
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For closely spaced frequencies ν and ν + � (� � 1), it is shown
in Appendix A that the autocorrelation function of the periodogram
is given by

ρ(�) ≈ sinc2(N�) ,

i.e. a very steeply decreasing function of the frequency difference �,
essentially non-zero only over the interval ( − �, �). It follows that,
for oversampled periodograms, ordinate values at close frequencies
will be strongly correlated. This invalidates the use of equation
(3), a fact which is well known in the literature on extreme value
distributions (EVDs; e.g. Castillo et al. 2005).

The problems engendered by the lack of independence of pe-
riodogram ordinates are generally acknowledged in the literature,
particularly in the case of irregularly spaced time series, where the
issue seems unavoidable (e.g. Frescura et al. 2008).

Deriving appropriate forms for FV in the case of oversampling is
a difficult, if not insurmountable problem, but it is possible to derive
very accurate approximation formulae for it in terms of EVDs, as
will be demonstrated below. The author is aware of two recent papers
in the astronomy literature which argue for the use of EVDs to de-
termine significance levels of periodogram peaks, namely Cuypers
(2012) and Süveges (2014). The former author presented a short
account of work based on the generalized extreme value (GEV)
probability density function (PDF) given by

f (x) = 1

σ
exp

{
−
[

1 + k
(x − μ)

σ

]−1/k
}[

1 + k
(x − μ)

σ

]−(k+1)/k

,

(4)

where σ , μ and k are, respectively, the scale, location and shape
parameters. Data sets consisting of 50 Gaussian white noise mea-
surements were simulated, with a variety of assumed time spacings.
The conclusion was that overall the GEV did not provide a better
description of the distribution of periodogram maxima than other
previously used methods.

The study of Süveges (2014), also based on use of the GEV,
was more extensive, and the conclusions drawn were more positive.
Contrasting with this work, no special time spacing of the observa-
tions was assumed, nor was it required that the error distribution be
homogeneous. A bootstrap procedure, followed by extrapolation to
smaller tail probabilities, was used to determine large percentiles
tailored to the specifics of the particular data set.

The aim here is narrower: to provide accurate formulae which can
be used to find percentiles of periodogram maxima (‘False Alarm
Probabilities’), given the data restrictions stated in the first two
paragraphs above. In practice, these would apply to e.g. continuous
monitoring from space, or ‘high speed’ ground-based photometry.

Sturrock & Scargle (2010) approached the oversampling problem
in a different way: the authors compared the highest peak in the
spectrum to all other peak values in the spectrum. It is assumed that
the peak heights are all independent. In practice ‘peaks’ are defined
as values such that ‘the power is greater than both the powers at
adjacent frequencies’. A potential problem is that peaks may thus
occur at close frequencies, which may invalidate the independent
assumption.

A caution: in this paper, ‘log’ indicates logarithms taken to the
base e.

2 D I S T R I BU T I O N O F T H E M A X I M U M O F Ie(ω) .

Denote the upper order statistic (i.e. the maximum) of M indepen-
dent but identically distributed random variables v1, v2, . . . , vM by
v(M) ≡ V. Then it is easy to show that the CDF of V is

FV (V ) = [Fv(V )]M

where Fv is the CDF of the vj . Periodogram ordinates as defined in
equation (1) are exponentially distributed with mean value

EIe(ω) = σ 2
e .

It follows that, to very good approximation v = Ie(ω)/Ie is expo-
nentially distributed with Ev = 1, i.e. PDF

fv(v) = e−v

and corresponding CDF

Fv(v) = 1 − e−v .

If measurements are regularly spaced in time then periodogram
values in the M = N/2 Fourier frequencies in equation (2) are
independent, and hence the standardized periodogram has the one-
parameter EVD

FV (V ) = [1 − e−V ]M . (5)

It is well known in theory of EVDs that the exponential distribu-
tion is in the ‘domain of attraction’ of the Gumbel distribution, and
hence the distribution of W = V − log M approaches the Gumbel
form as M → ∞ (e.g. Castillo et al. 2005):

FW (W ) = exp
[−e−W

]
.

The corresponding PDF is

fW (W ) = exp
[−e−W − W

]
.

It is more convenient to work in terms of the periodogram maximum
V than W, i.e. the PDF

fV (V ) = exp
[−e−(V −log M) − (V − log M)

]
(6)

is a useful limiting form of equation (5) as M → ∞.
The Gumbel distribution is a special case of the GEV (4). The

two-parameter Gumbel PDF obtained when k = 0 is

f (x) = 1

σ
exp

{
−
[

(x − μ)

σ

]
− exp

[
− (x − μ)

σ

]}
, (7)

i.e. as M increases, equation (5) approaches a two-parameter Gum-
bel distribution with σ = 1, μ = log M.

The distribution (7) will play an important role below in the
consideration of the maxima of oversampled periodograms. Param-
eters of equation (7) can be obtained by the maximum likelihood
technique, a methodology which is described in any textbook on
statistical inference. Briefly, the likelihood function of K indepen-
dent random variables {x1, x2, . . . , xK}, with common PDF f (x),
is

L =
K∏

k=1

f (xk) .

The method consists simply of the maximization of L (or more
commonly log L) with respect to any unknown parameters in the
PDF f(x) [e.g. μ and σ in the case of equation (7)].

MNRAS 449, 1098–1105 (2015)

 by guest on M
arch 23, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


1100 C. Koen

Maximum likelihood estimation of the parameters in equation
(7) is easily reduced to a single non-linear equation in σ . First,
differentiation of the log likelihood function

L = −m log σ − m
x − μ

σ
− eμ/σ

∑
k

e−xk/σ (8)

with respect to μ leads to

μ̂ = σ̂

[
log m − log

∑
k

exp(−xk/σ̂ )

]
. (9)

In equations (8) and (9), m denotes the number of periodogram
values xk under consideration. Equation (9) can be substituted into
the equation obtained by differentiating equation (8) with respect
to σ to find

σ̂ = x −
∑

k xk exp(−xk/σ̂ )∑
k exp(−xk/σ̂ )

. (10)

In the first instance consideration is now given to the propo-
sition that in the case of oversampling, the distribution of peri-
odogram maxima could be described by the GEV, rather than the
one-parameter Gumbel distribution. As the reader will see, the sim-
plified two-parameter Gumbel form of the GEV is sufficient for
the task. Since the problem is not necessarily solvable by analytic
means, we resort to simulations.

The results below are based on simulated data sets of sizes
N = 10 000, 20 000, 50 000, 80 000, 100 000, 130 000. For each
N, at least 20 000 Gaussian white noise realizations were gener-
ated. Periodograms were calculated, oversampled by rates of R = 0,
1, 2, 4, 6, 8, 10, 14, 20, i.e. periodograms were calculated in the
frequencies

ωj = 2πj

(R + 1)N
, j = 1, 2, . . . , (R + 1)

N

2
= m . (11)

For each periodogram, the value of

V = maxω

[
Ie(ω)/Ie

]
was noted.

GEV distributions of the form (4) were fitted to the ≥20 000
periodogram maxima corresponding to each of the combinations of
N and R. This was accomplished by numerical maximization of the
GEV likelihood function. Only 4 (out of 54) values of the shape
parameter k differed from zero by more than 1.5σ ; the largest (in
absolute value) being 0.013. Effectively, this means that the two-
parameter Gumbel distribution (7) provides, statistically, as good a
description of the extreme values as does the full three-parameter
GEV (4).

Equations (9) and (10) were therefore used to fit two Gumbel
distribution models to the simulated periodogram maxima: in the
first, σ = 1 was assumed, and equation (9) used to estimate μ̂. In the
second model, both parameters were free. Kolmogorov–Smirnov
(KS) and Anderson–Darling (AD) one-sample statistics were used
to assess the goodness-of-fit of the two models. Although the model
with fixed σ = 1 was found to be acceptable (by a wide margin) for
R = 0, 1, it did not fit data with larger oversampling factors well.
The second model, on the other hand, always fitted well – p-values
of the goodness-of-fit statistics were generally larger than 0.5, the
smallest being 0.13 and 0.18 for the KS and AD tests, respectively.

[It should be admitted that a shortcut was taken in these tests:
estimated parameters were treated as known. However, since the
sample sizes are large (at least 20 000), confidence intervals
for the estimated parameters are quite narrow. The implication is
that the parameters are very well determined.]
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Figure 1. Values of σ̂ in the two-parameter Gumbel PDF (7), for different
samples sizes N and oversampling factors R. Lines connect results for the
same N.
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Figure 2. Dots are the means, at each oversampling rate R, of the data
plotted in Fig. 1. The lines are a simple representation (equation 12) of the
dependence of the mean values on R.

Estimated values of σ are plotted in Fig. 1, with lines connecting
σ̂ for the same N (but different R). The general impression is that of
a steep, approximately linear, rise for R ≤ 6, followed by a slower
increase with increasing R, reaching a plateau near R ∼ 14. The
implication is that the width of the PDF increases slightly with
increasing R, but that a ‘saturation point’ is reached for very well-
sampled periodograms. Given the substantial scatter at any given
value of R, only the very simple broken line model

σ̂ =
{

1 + BR R ≤ R0

1.04 R ≥ R0

was fitted to the data by least squares. The optimal solution has
breakpoint R0 = 4.6 and slope B = 0.0087 – see Fig. 2 in which the
fit to the means (over N) at various oversampling factors is plotted.
The situation can be summarized by saying that σ = 1 for R = 0, 1
(see above); σ → 1.04 for large R (R > 5); and σ ≈ 1 + 0.0087R
for intermediate values of R.

In summary,

σ ≈
{

1 + 0.0087R R ≤ 4.6

1.04 R ≥ 4.6.
(12)

The equivalent of Fig. 1, but for the estimated Gumbel param-
eter μ, can be seen in Fig. 3. Plotted values have been scaled by

MNRAS 449, 1098–1105 (2015)
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Figure 3. Similar to Fig. 1, but for the parameter μ̂. Clearly asymptotic
values are approached as R is increased, with limiting values increasing
slightly as N is increased.
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Figure 4. Open circles show values of μ̂ − log N/2 when oversampling
with R = 20, for sample sizes ranging from N = 500 to N = 130 000. The
line is the linear least-squares fit to the points.

subtraction of log N/2 (see equation 9). As expected, the number
of independent frequencies M = N/2 if there is no oversampling,
hence the scaled value of the mean is zero for R = 0. As the rate
of oversampling increases, μ − log N/2 approaches an asymptotic
limit, which is larger, the larger the N.

The scaled values of the estimated mean parameter μ at R = 20
are plotted in Fig. 4, which has been supplemented by results for
N = 500, 700, 1000, 2000, 3000, 5000. The least-squares linear fit
is

μ̂ − log N/2 = 0.725(0.016) + 0.0498(0.0018) log N/2 , (13)

where quantities in brackets are standard errors. The implication
is that the asymptotic Gumbel distribution means can be closely
approximated by

μ = 0.032(0.016) + 1.05(0.002) log N ≈ 1.05 log N , (14)

at least for 500 ≤ N ≤ 130 000.
It is possible to derive a fairly accurate general formula for μ̂, as

a function of both the sample size N and the oversampling factor R.
Fig. 5 is a modified version of Fig. 3, in which equation (13) has
been used to normalize μ̂:

g(N,R) = [μ̂ − log N/2]/[0.725 + 0.05 log N/2] .
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Figure 5. A normalized version of the data in Fig. 3 (see text). The dots
represent the mean values at each oversampling rate.
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Figure 6. The three-parameter function (15) (solid line) fitted to the aver-
aged data (over N, at each R) in Fig. 5 (dots).

It is clear that the dependence on R is very similar for different N.
This dependence can be modelled quite well by

g(R) = 1 − exp [−16.92(0.11)(R/20)

+ 27.9(1.1)(R/20)2 − 20.3(2.0)(R/20)3
]
. (15)

The quality of the fit is demonstrated in Fig. 6: it is excellent. It
follows that generally

μ ≈ log
N

2
+ (0.725 + 0.05 log N/2)g(R). (16)

Equations (12), (16) and (15) summarize the results of the simula-
tion experiments. These formulae can provide accurate percentage
points for a wide range of sample sizes and periodogram oversam-
pling rates: from

p = Pr(V > x) = 1 − FV (x) = 1 − exp

{
− exp

[
− (x − μ)

σ

]}
(17)

the percentiles follow as

xp = μ − σ log[− log(1 − p)] . (18)

The consistency between percentiles xp calculated from (18), and
percentiles xs determined directly from simulation results, can be

MNRAS 449, 1098–1105 (2015)
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Figure 7. The scaled differences between simulated percentiles and those
calculated from equations (12), (15) and (16).
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Figure 8. Top panel: fractional differences between the simulated per-
centiles xs and the predicted percentiles xp, for no oversampling. Lines
connect values for different p (ranging from 0.1 to 0.001), at fixed N. Bot-
tom panel: theoretical uncertainties in the percentiles, as calculated from
order statistics in samples of size K = 20 000 (see Appendix B and Fig. B1).
Uncertainties have been scaled by xp for easy comparison with the graphs in
the top panel. The different curves are for the same collection of values of N
as in the top panel (N = 10 000, 20 000, 50 000, 80 000, 100 000, 130 000).
For each curve p ranges from 0.1 at the bottom left to 0.001 at the top right.

investigated by studying the fractional differences

(xp − xs)/xp .

Fig. 7 is a histogram of the fractional differences (where xs are
the percentiles extracted from the 20 000 (or more) simulated data
sets), for p-values 0.1, 0.05, 0.01, 0.005, 0.001. All fractional dif-
ferences greater than 1.5 per cent correspond to the 0.1th percentile
(i.e. p = 0.001); of course, even with 20 000 simulations these
values of xs are poorly determined.

The top panel of Fig. 8 shows fractional differences between the
theoretical percentiles xp for the zero oversampling case, and the
corresponding simulated values xs. Since in this case equation (17)
is exact, the information in Fig. 7 can be placed in context. As
expected, the percentage differences between xp and xs are small
for the largest percentiles, and increase with decreasing percentile

value. Since xp is exact, the diagram essentially reflects the uncer-
tainties in xs, the simulated percentiles. Comparison of Figs 7 and
8 suggests that the differences between xs and xp are no worse for
R > 0 than for R = 0.

The accuracy of simulation of the large percentiles, associated
with small values of p, is discussed in more detail in Appendix B.
The bottom panel of Fig. 8 displays the theoretical uncertainties,
scaled by xp. Comparison of the two parts of the plot shows good
agreement.

3 C O N C L U S I O N S

The simulation results of Section 2 suggest that the maxima of the
fully oversampled noise periodogram (divided by Ie) are distributed
as the two-parameter Gumbel distribution (7), with σ ≈ 1.04 and μ

≈ 1.05log N. Compared to the simple one-parameter form (6), the
scale parameter σ is increased from unity to 1.04 (i.e. a 4 per cent
increase in the distribution width), and the location parameter μ

is shifted to larger values. The latter result, in particular, is hardly
surprising, given that the larger R, the periodogram maxima are
more fully resolved. The PDF is

fV (V ) = (1/1.04) exp
{

− (V − 1.05 log N )

1.04

− exp

[
− (V − 1.05 log N )

1.04

] }
. (19)

Maxima of partially oversampled spectra are similarly distributed,
with σ obtainable from equation (12) and μ given by equation (16).
Once μ and σ have been calculated for given N and R, p-values
follow from equation (17), or percentiles from equation (18).

Table 1 gives selected percentiles for a few values of N, for
the fully oversampled case, and, for purposes of comparison, per-
centiles calculated from equation (3). The percentiles for the fully
oversampled case are, of course, larger. Note for example that for
large N, the 0.1 per cent points calculated from equation (3) are
similar to the 0.5 per cent points corresponding to equation (19).
As expected, use of equation (3) would lead to overestimates of
the significance of peaks in oversampled spectra by as much as a
factor ∼5.

It is tempting to think that the corresponding percentage points of
the scaled amplitude spectrum are simply square roots of the entries
in Table 1. However, it is shown in Appendix C that the correct
transformation is

VS = 2√
π

√
VI = 1.128

√
VI ,

where VS and VI are, respectively, the amplitude and power spectrum
statistics.

As the oversampling factor R → ∞, the periodogram is fully
resolved and approaches a continuous stochastic process, a point
addressed by Baluev (2008). Although some relevant theory has
been available for a considerable time (Sharpe 1978), a full solution
using this fact is still lacking.
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Table 1. Upper percentage points of VI = max[Ie(ω)]/Ie, for the fully oversampled case (left-hand
columns) and for the case of no oversampling (right-hand columns).

Percentiles, fully oversampled case Percentiles from equation (3)

0.1 0.05 0.01 0.005 0.001 0.1 0.05 0.01 0.005 0.001

500 8.87 9.61 11.31 12.03 13.71 7.77 8.49 10.12 10.82 12.43
750 9.29 10.04 11.74 12.46 14.13 8.18 8.90 10.53 11.22 12.83
1000 9.59 10.34 12.04 12.76 14.44 8.47 9.18 10.81 11.51 13.12
1500 10.02 10.77 12.46 13.19 14.86 8.87 9.59 11.22 11.92 13.53
2000 10.32 11.07 12.77 13.49 15.16 9.16 9.88 11.51 12.20 13.82

3000 10.75 11.50 13.19 13.91 15.59 9.56 10.28 11.91 12.61 14.22
5000 11.28 12.03 13.73 14.45 16.13 10.07 10.79 12.42 13.12 14.73
7500 11.71 12.46 14.15 14.88 16.55 10.48 11.20 12.83 13.53 15.14
10 000 12.01 12.76 14.46 15.18 16.85 10.77 11.49 13.12 13.81 15.42
15 000 12.44 13.19 14.88 15.60 17.28 11.17 11.89 13.52 14.22 15.83

25 000 12.97 13.72 15.42 16.14 17.82 11.68 12.40 14.03 14.73 16.34
50 000 13.70 14.45 16.14 16.87 18.54 12.38 13.10 14.73 15.42 17.03
75 000 14.13 14.88 16.57 17.29 18.97 12.78 13.50 15.13 15.83 17.44
100 000 14.43 15.18 16.87 17.60 19.27 13.07 13.79 15.42 16.12 17.73
130 000 14.70 15.45 17.15 17.87 19.55 13.33 14.05 15.68 16.38 17.99

175 000 15.02 15.77 17.46 18.18 19.86 13.63 14.35 15.98 16.68 18.29
250 000 15.39 16.14 17.83 18.56 20.23 13.99 14.71 16.34 17.03 18.64
400 000 15.88 16.63 18.33 19.05 20.73 14.46 15.18 16.81 17.50 19.11
700 000 16.47 17.22 18.92 19.64 21.32 15.02 15.74 17.37 18.06 19.67
1000 000 16.85 17.60 19.29 20.01 21.69 15.37 16.09 17.72 18.42 20.03
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A P P E N D I X A : AU TO C O R R E L AT I O N
F U N C T I O N O F T H E N O I S E SP E C T RU M Ie

Trigonometric identities can be used to easily show that equation
(1) is equivalent to

Iy(ω) = 1

N

∑
j

∑
k

(yj − y)(yk − y) cos(j − k)ω . (A1)

Proceeding from equation (A1), the covariance between peri-
odogram values in angular frequencies ω and ψ is

Ce(ω,ψ) = cov [Ie(ω), Ie(ψ)]

= EIe(ω)Ie(ψ) − EIe(ω)EIe(ψ)

= 1

N2

N∑
j,k=1

N∑
r,s=1

cos(j − k)ω cos(r − s)ψ Eej ekeres

− EIe(ω)EIe(ψ).

For Gaussian ej,

Eej ekeres ≡ σ (j, k)σ (r, s) + σ (j, r)σ (k, s) + σ (j, s)σ (k, r),

where σ 2(j, k) ≡ Eejek = σ 2
e δjk (e.g. Anderson 1971, p. 444). Fur-

thermore, again from equation (A1),

EIe(ω)EIe(ψ) = 1

N2

N∑
j,k=1

N∑
r,s=1

cos(j−k)ω cos(r−s)ψ Eej ekEeres

= 1

N2

N∑
j,k=1

N∑
r,s=1

cos(j−k)ω cos(r−s)ψ σ (j, k)σ (r, s).

It follows that

Ce(ω,ψ) = 1

N2

N∑
j,k=1

N∑
r,s=1

cos(j − k)ω cos(r − s)ψ

× [σ (j, r)σ (k, s) + σ (j, s)σ (k, r)]

= 2

N2

N∑
j,k=1

N∑
r,s=1

cos(j − k)ω cos(r − s)ψ σ (j, r)σ (k, s)

= 2σ 4
e

N2

N∑
j,k=1

cos(j − k)ω cos(j − k)ψ

= 2σ 4
e

N2

{
N + 2[(N − 1) cos ω cos ψ + (N − 2)
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× cos 2ω cos 2ψ+· · ·+cos(N − 1)ω cos(N−1)ψ]
}

= 2σ 4
e

N2

⎡⎣N + 2
N−1∑
j=1

(N − j ) cos jω cos jψ

⎤⎦ , (A2)

which is more convenient for explicit evaluation. For example, for
ω = ψ ,

N−1∑
j=1

cos2 jω = 1

2

N−1∑
j=1

(1 + cos 2jω)

= N − 2

2
+ 1

2
cos(N − 1)ω sin Nω cosec ω

N−1∑
j=1

j cos2 jω = 1

2

N−1∑
j=1

j (1 + cos 2jω)

= N (N − 1)

4
+ N − 1

2 sin ω
sin(2N − 1)ω

− sin2(N − 1)ω

2 sin2 ω

so that

Ce(ω,ω) = (N − 1)σ 4
e

N
+ σ 4

e

N2 sin ω
[2N cos(N − 1)ω sin Nω

− (N − 1) sin(2N − 1)ω + sin2(N − 1)ω cosec ω
]

.

For N � 1, this reduces to

var[Ie(ω)] ≈ σ 4
e . (A3)

Although an exact expression for the case ψ 
= ω can be derived,
the algebra is tedious and the precision not required in the present
context of large N. Instead, note from equation (A2) that

Ce(ω,ψ) = 2σ 4
e

N∑
j=1

N∑
k=1

cos N

(
j

N
− k

N

)
ω

× cos N

(
j

N
− k

N

)
ψ

1

N

1

N

→ 2σ 4
e

∫ 1

0

∫ 1

0
cos N (x − y)ω cos N (x − y)ψ dx dy

= σ 4
e

∫ 1

0

∫ 1

0
[cos N (x − y)(ω + ψ)

+ cos N (x − y)(ω − ψ)] dx dy

= 2σ 4
e

N2

[
1 − cos N (ω + ψ)

(ω + ψ)2
+ 1 − cos N (ω − ψ)

(ω − ψ)2

]
.

(A4)

Clearly, for large N, the covariances between periodogram or-
dinates are generally ∼1/N2, i.e. negligible. In order to study the
short-range autocovariance, let ψ = ω + 2π�, with |�| � 1 the
frequency difference,

Ce(ω,ω + 2π�) ≈ 2σ 4
e

N2

1 − cos 2πN�

(2π�)2

= 2σ 4
e

N2

2 sin2 πN�

(2π�)2
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Figure A1. Approximation of the exact autocorrelation function of the
noise spectrum, as derived from (A2) (dots), compared to approximations
by the integration formula (A4) (open circles) and the sinc2 function (A5)
(solid line), for N = 100.

= σ 4
e

(
sin πN�

πN�

)2

= σ 4
e sinc2 (N�). (A5)

The autocorrelation function follows from equations (A3) and (A5)
as

ρ(�) ≈ sinc2 (N�) . (A6)

The levels of approximation of equations (A4) and (A5) to equa-
tion (A2) are shown in Fig. A1, for N = 100; both approximations
are excellent, even for such relatively small N. Clearly, the auto-
correlation is effectively zero outside the range ( − 1/N, +1/N).
Interestingly, the autocorrelation function (A6) is exactly zero for
frequencies spaced integer multiples of 1/N apart – compare this
with equation (2).

A P P E N D I X B: TH E AC C U R AC Y O F
SI MULATED PERCENTI LES

It is assumed that the two-parameter Gumbel CDF

F (x) = exp

{
− exp

[
−
(

x − μ

σ

)]}
, (B1)

with associated PDF (7), is indeed the correct distribution. (This is
not critical – it is only required that it provides a reasonably accurate
representation of the true distribution of periodogram maxima.)
A large sample {xj} of size K is drawn (by computer) from this
distribution, and percentiles are estimated from the order statistics.
Clearly, the accuracy of the estimated percentiles will be determined
by the sampling variability of the order statistic.

Let the percentage of interest be p, with associated percentile xp.
The order statistic found from the sample is

x̂p = x(pK) ,

e.g. if K = 20 000, then the upper 1 per cent point is estimated by
x(19800). Mosteller (1946) showed that asymptotically, order statistics
are normally distributed with variances given by

var(x̂p) = p(1 − p)

Kf 2(xp)
. (B2)

This clearly demonstrates the substantial increase in variability
in the low-probability [ f (x) � 1] tails of the distribution. From
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equation (7),

f (xp) = 1

σ
exp

{
− exp

[
− (xp − μ)

σ

]
−
[

(xp − μ)

σ

]}

= 1

σ
F (xp) exp

[
− (xp − μ)

σ

]
.

Since p = F(xp), it follows that

log p = − exp

[
− (xp − μ)

σ

]
and hence

f (xp) = −p log p/σ .

Substitution into equation (B2) then gives

var(x̂p) = (1 − p)σ 2

Np(log p)2
. (B3)

An alternative approach, which does not rely on asymptotics,
proceeds from the exact distribution (e.g. Ahsanullah, Nevzprov &
Shakil 2013)

G(xp) = I
[
Kp, K − Kp + 1; F (xp)

]
, (B4)

where

I (a, b; x) = 1

B(a, b)

∫ x

0
ua−1(1 − u)b−1 du

is the incomplete beta function, and B(a, b) the standard beta func-
tion. The CDF (B4) could be used to obtain confidence intervals
for xp. Instead, we use it to determine, for given p and K, 16, 50
and 84 per cent points in the distribution of x̂p: these can be used
to obtain two estimates of the usual ‘σ ’ (i.e. the central extent of
the distribution which contains 68 per cent of the probability). This
simply requires numerical solution of the three equations

G(u0) = 0.5 G(u1) = 0.16 G(u2) = 0.84

followed by

σ1 = u0 − u1 σ2 = u2 − u0 . (B5)

Of course, if the distribution of the order statistic is symmetrical
(which is asymptotically the case, according to the Mosteller 1946
result), then σ 1 = σ 2.

Two sets of results are given in Fig. B1, for K = 20 000 and
K = 40 000, respectively. Circles and squares respectively denote
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Figure B1. The uncertainty in the percentage points derived from simula-
tion. The solid and broken lines show the asymptotic results equation (B3)
for K = 20 000 and 40 000, respectively. Circles and squares, respectively,
denote σ 1 and σ 2 in equation (B5).

σ1 and σ2. The latter are virtually indistinguishable from the asymp-
totic results (lines). The analytical result (B3) is clearly more than
adequate for present purposes, particularly for the larger K.

Perhaps the most important point demonstrated by these results is
the substantial uncertainty in the 99.9 per cent points obtained from
the simulations.

APPENDI X C : R ELATION BETWEEN
P E R C E N TAG E PO I N T S O F SC A L E D
AMPLITUDE SPECTRA AND SCALED
P E R I O D O G R A M S

The PDF of I(ω) is exponential:

fI (x) = 1

σ 2
exp(−x/σ 2),

where σ 2 is the variance of the time series. The expected value
(mean) of the periodogram is

EI (ω) = σ 2 . (C1)

A common definition of the amplitude spectrum is

S(ω) = 2

√
I (ω)

N
. (C2)

It is not difficult to show that the PDF of S is then of the Rayleigh
form

fS(S) = N

2σ 2
S exp

(
−NS2

4σ 2

)
.

The corresponding expected value is

ES(ω) = σ

√
π

N
=
√

πEI (ω)

N
. (C3)

The statistic of interest is the scaled maximum of the amplitude
spectrum, i.e.

VS = maxωS(ω)/S(ω) .

From equations (C1)– (C3), it follows that

VS = 2
√

maxωI (ω)/[
√

N S(ω)]

≈ 2
√

maxωI (ω)/[
√

N ES]

= 2
√

maxωI (ω)/[πEI ]

≈ 2√
π

√
VI , (C4)

where VI is the scaled maximum of the periodogram:

VI = maxω I (ω)

I (ω)
.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 449, 1098–1105 (2015)

 by guest on M
arch 23, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/

