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Abstract: 

Gethyllis multifolia and Gethyllis villosa are winter-growing, summer-blooming, 

deciduous and bulbous geophytes that grow naturally in the semi-arid ‘Succulent 

Karoo Biome’ of South Africa. G. multifolia is threatened in its natural habitat and 

resides in the ‘Vulnerable’ category of the ‘Red Data List of Southern African Plants’. 

Previous investigations suggested that G. multifolia is more sensitive to drought 

stress than G. villosa and that both species adopted certain morphological changes in 

their leaves during shade stress. Current models indicate that this biome is being 

exposed to increasingly drier conditions and shading from encroaching indigenous 

plant species. In this study, the photosynthetic gas exchange responses of both 

species to drought and shade stresses were investigated and the ‘Vulnerable’ 

conservation status of G. multifolia. This investigation found that during drought 

stress G. villosa  had a more enhanced photosynthetic performance than G. 

multifolia which appears not to be related to foliar adaptations such as specific leaf 

mass (SLM), but to the G. villosa's leaves maintaining their stomatal conductance 

(Gs),  photosynthetic  light  compensation (LCP) and photon yields. Furthermore, 

during shade stress G. villosa also had an improved photosynthetic performance by 

not altering its photosynthetic LCP during reduced light conditions. It can be 

concluded that G. multifolia has a lower capacity than G. villosa to adapt its 

photosynthetic apparatus to changing environments such as increasing drought and 

shaded conditions. This may be a contributing factor to the threatened conservation 

status of G. multifolia. 

 

1. Introduction 

The genus Gethyllis (family: Amaryllidaceae), indigenous to South Africa, consists of 37 

currently accepted species and subspecies (Müller-Doblies, 1986). Gethyllis species have 

medicinal properties (Liltved, 1992; Elgorashi and Van Staden, 2003) and are 

characterized by four distinct growth phases. The plants that thrive under full sun 

conditions, are winter-growing, summer-blooming, deciduous and bulbous geophytes 

(Du Plessis and Delpierre, 1973; Manning et al., 2002). Gethyllis multifolia L. Bolus 

and Gethyllis villosa Thunb. grow naturally in the ‘Succulent Karoo Biome’ of South 

Africa, which is primarily characterized by low to high winter rainfall and extreme 

summer aridity. The rainfall varies between 20  and  290 mm  per year and during 

summer the temperatures can be in excess of 40 °C. 
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G. multifolia is threatened in its natural habitat and is listed in the ‘Vulnerable’ 

category of the ‘Red Data List of Southern African Plants’ and ‘World Conservation 

Union List of Plants’ (Hilton-Taylor, 1996; IUCN, 1998), while G. villosa is not 

threatened in the same habitats. 

 

In their natural habitat, both these species encounter environmental limitations such 

as increasing drought stress (Rutherford et al., 1999; Midgeley et al., 2002; Von 

Maltitz et al., 2006) and light restrictions from shading caused by encroaching 

indigenous shrubs (Daniels, 2007). It has been observed that both G. multifolia and G. 

villosa are limited by drought stress and this phenomenon appears to have a more 

significant effect on G. multifolia (Daniels, 2007). According to preliminary work by 

Daniels (2007), G. multifolia has impaired leaf and flower development during the 

growth and reproductive phases when exposed to dry conditions. These features are 

part of a survival strategy during harsh environmental changes (Du Plessis and Duncan, 

1989). This concurs with other studies that drought stress increases the rate of pod 

abortion during the early stages of pod development in soybeans (Liu et al., 2003). The 

success of plants under stress conditions may be determined by their ability to control 

carbohydrate utilization for metabolic energy and their ability to allocate enough 

materials to their reproductive phase (Nielsen et al., 2001). According to Pelleschi et 

al. (1997) and Kim et al. (2000), drought stress generally decreases the photosynthetic 

rate and disrupts carbohydrate metabolism in leaves and therefore could increase the rate 

of reproductive abortion. 

 

In addition to drought stress, Gethyllis plants may also encounter light stress in the form 

of shading from encroaching indigenous shrubs (Daniels, 2007). This encroachment 

from the invasive shrub, Galenia africana is also posing a growing threat in the natural 

habitat of G. multifolia, where many individual plants are found growing in the shade 

of this 1–1.5 m tall, shrubby species (Daniels, 2007; Klaasen et al., 2009). A previous 

investigation (Daniels, 2007) revealed that under controlled shade conditions both 

species produced thinner leaves with no natural spiraling, which is a departure from the 

natural characteristic of Gethyllis species (Esler and Rundel, 1998). The survival and 

growth of Gethyllis species in a changing light environment may be dependent on their 

shade-tolerance levels, as found for other plants (Daniels et al., 1979; Lorimer, 1983). 

This concurs with previous work that shade stressed plants can respond to low irradiance 

via altered leaf morphology for more efficient irradiance capture (Givnish, 1998; Smith 

and Huston, 1989; Oliver and Larson, 1996) and enhanced photosynthetic investment 

(Brouwer, 1962; Poorter and Nagel, 2000). 

 

Since both bulbous species occur in a semi-arid area, which is being threatened by 

progressive aridity due to climate change and increased shading from invasive species, 

the aim of this work is to therefore investigate the capacity for photosynthetic 

adaptation of both species to these environmental changes. 

 

2. Materials and methods 

2.1 Plant materials 

G. multifolia and G. villosa bulbs were identified by both the curator and resident 

horticulturist, and compared to living collected samples in the Karoo National Biodiversity 
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Garden (KNBG) (Worcester, Western Cape, South Africa). The KNBG has a keen interest in 

the declining numbers of G. multifolia, therefore permission was granted to collect 

samples for the research project from an area where new roads and sewerage lines were 

planned through the natural habitat of both species. Mature bulbs of both species were 

collected after their winter growth phase (March to mid-August), from their natural 

habitat. For conservation purposes and due to the threatened status of G. multifolia, the 

exact location of these species is omitted from this investigation. The bulbs of both 

species (n = 10 per species per treatment) were potted up in 15 cm nursery pots in 

sandy, clay soil (pH 4.3–4.4) from the natural habitat. The bulbs were grown under 

outdoor conditions for 12 months which included one dormant phase (6 months—spring 

and  summer)  and  one  growth  phase (6 months—autumn and winter) at the nursery 

of the Department of Horticultural Sciences, Cape Peninsula University of Technology 

(CPUT), Cape Town. Table 1 indicates the average rainfall and daily temperatures for the 

Cape Town area where plants were grown and also indicates the higher rainfall and 

lower temperatures for the growth phase and lower rainfall and higher temperatures 

for the dormant phase. Weather data for the Cape Town area (Table 1) was supplied by 

the South African Weather Bureau (Cape Town WO 0021178A3). 

 

2.2. Environmental stresses 

Plant samples which represented the control (n = 10 per species) were grown under full 

sun and irrigated by the ambient rainfall of the Western Cape (Table 1). The mean 

photosynthetic photon flux density (PPFD) (converted from lux to PPFD) on cloudless 

days at 12h00 was 1825 ± 63 μmol m− 2 s− 1. Temperatures around the plant samples 

varied from 8 to 24 °C and the relative humidity from 36 to 100%. The PPFD for all 

treatments was measured with a Toptronic T630 digital light meter (Spraytech, Bellville, 

Western Cape, South Africa) and the temperatures and relative humidity were measured 

with a Majortech MT669 digital relative humidity/temperature meter (Spraytech, 

Bellville, Western Cape, South Africa). 

 

 
 

Plant samples which represented the drought stressed samples (n = 10 per species) 

were grown under full sunlight and covered with a 6 mm clear glass sheet, placed 300 

mm above the plants. The PPFD, temperature and relative humidity environmental 

conditions were similar to those of the control. The drought stressed plants were 
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irrigated at a rate of 30% field capacity once a month with de-ionized water (Mortimer 

et al., 2003). 

 

Plant samples which represented the shade stressed samples (n = 10 per species) were 

grown under a shade structure covered with 80% neutral black shade cloth (Alnet, 

Epping, Western Cape, South Africa), which has a neutral effect on light quality (Yates, 

1989; Duan et al., 2005). 

 

 
 

During the experimental period, the mean PPFD on cloudless days at 12h00 was 365 ± 

26 μmol m 2 s 1 and was approximately 20% of full sunlight. The temperature around the 

shade stressed plant samples was ~ 1–2 °C lower than that of the control, and the relative 

humidity 2–4% higher than that of the control. The plant samples under shade stress 

treatment were also irrigated by the ambient rainfall of the Western Cape (Table 1). The 

readings of all the environmental conditions under all treatments were taken daily at the 

following time intervals: 09h00, 12h00 and 15h00. 

 

2.3. Physiological responses 

An infra-red gas analyzer (Licor, Li-6400 Portable photosynthesis system, Lincoln, 

Nebraska, USA) coupled to a leaf chamber, was used to measure the photosynthetic rates 

(Pmax), leaf dark respiration rates (Dr), stomatal conductance (Gs) and transpiration 

rates (E) of the plant samples during the growth phase. The readings were taken on 

fully expanded leaves at the peak of the growth season during the month of June. G. 

villosa plants have flat leaves (± 5 mm in diameter) and a section of one leaf blade per 
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plant was used for the readings. G. multifolia plants consist of thin needle-like leaves 

(± 1–2 mm in diameter) and 6–8 leaf sections per plant were used for the readings. The 

infra-red gas analyzer was set to take the net photosynthetic rate readings at the 

following light photosynthetic photon flux densities (PPFD): 0, 50, 150, 350, 500, 750, 

950, 1200 and 1500 μmol m− 2 s− 1. Six readings were taken per PPFD and readings 

were recorded from four plants per specie per treatment. The corresponding 

temperature for the photosynthetic rate readings in the leaf chamber was set at 25 °C and 

the relative humidity 55– 75%. Linear regression analysis was performed on data within 

the light-limited part of the light response curve to calculate the apparent photon yield. 

Photosynthetic water-use efficiency (PWUE) was calculated as Pmax/E. 
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2.4. Statistical analysis 

Significant differences of the means for each species, were separately tested under 

drought and shade stress. The means were separated using a post hoc Fisher's Protected 

LSD, multiple comparison test (SuperANOVA, version. 6.11 for Macintosh Abacus 

Concepts, USA). Different letters indicate significant differences between treatments (P ≤ 

0.05, n = 4), and superscript numbers indicate the comparisons for each species only (1 

= G. multifolia; 2 = G. villosa). 
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3. Results 

During shade (Fig. 1a) and drought (Fig. 1b) stress, G. multifolia had a reduction in its 

light saturated photosynthetic rates (Pmax), while the Pmax for G. villosa remained 

unchanged. These photosynthetic patterns of both species, concur with their 

respective stomatal conductance (Gs) (Fig. 2a, b) and transpiration rates (E) (Fig. 3a, 

b). 

 

In spite of the differences in photosynthetic shade responses in G. multifolia and G. 

villosa, the photosynthetic water-use efficiencies (PWUE) remained unchanged in 

both species during shade stress (Fig. 4a). However, G. multifolia had an increase in 

PWUE under drought stress, while G. villosa remained unchanged (Fig. 4b). 

 

The decline in the Pmax of G. multifolia in response to drought and shade stress, is 

not related to leaf morphological adaptations such as specific leaf mass (SLM) (Fig. 5a, 

b), but rather to leaf photochemistry and the associated pigments. In this regard, the 

G. multifolia plants had an increase in the leaf compensation point (LCP) under 

drought and shade stress, whereas the LCP of G. villosa remained unchanged (Fig. 

6a, b). Furthermore, the apparent photon yield of G. multifolia declined sharply 

during shade and drought stress, while  G.  villosa remained unaffected (Fig. 7a, b). 
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These responses were not associated with an alteration in the dark respiratory costs of 

G. multifolia  and G. villosa leaves (Fig. 8a, b). However, the ratio of photosynthesis 

to dark respiration indicates that although there was no change in G. villosa, that 

there is a significant decline in G. multifolia during shade and drought stress (Fig. 

8c, d). 

 

4. Discussion 

During drought stress, the ability of leaf photosynthesis to adapt to dry conditions 

depends on a suite of alterations relating to leaf morphology, stomatal control and 
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photochemistry. Under drought stress,  G.   villosa   had   a   better   photosynthetic   

performance   than G. multifolia, which appears not to be related to foliar 

adaptations such as specific leaf mass (SLM), but to G. villosa's leaves maintaining 

their stomatal conductance (Gs), photosynthetic light compensation (LCP) and 

photon yields during the dry periods. Stomatal control of photosynthesis is a well-

known adaptation in previous work from various ecosystems (Winter and Schramm, 

1986; Duan et al., 2005; Valliyodan and Nguyen, 2006; Musila et al., 2009). 

 

In contrast, the inability of G. multifolia plants to maintain their photosynthetic 

performance under drought conditions is underpinned by both stomatal and 

photochemical factors. In G. multifolia plants, the increase in photosynthetic LCP and the 

decline in apparent photon yield under drought conditions indicate that these leaves are 

not able to efficiently utilize light energy for photosynthesis. Similar photosynthetic 

responses were reported  for other spring  geophytes, Scilla bifolia and Podophyllum 

peltatum (Popovic et al., 2006; Constable  et  al., 2007). Drought-induced responses in 

plant cells are characterized by a higher  net  carbon  gain  during  shade.   

 

 
These  findings  indicate  that G. multifolia's inability to acclimate to shade is drastically 

compounded by the lower net gain in carbon during shade. Similarly, in Tradescantia 

albiflora, a reduction in the photosynthetic rate during low light environments, resulted 

in a lower net carbon gain (Chow et al., 1991). 

 

5. Conclusion 

These findings indicate that G. villosa plants are better able to adapt their Pmax to 

drought and shade conditions, compared to G. multifolia. The reduced ability of G. 
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multifolia to adapt to a wider range of environmental extremes such as drought and shade 

conditions may contribute to its threatened conservation status in this environment. 

These findings indicate that G. villosa plants are better able to adapt their Pmax to 

drought and shade conditions, compared to G. multifolia. The reduced ability of G. 

multifolia to adapt to a wider range of environmental extremes such as drought and shade 

conditions may contribute to its threatened conservation status in this environment. 
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