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Abstract 

Populations of Euphausia lucens over the shelf of the southern Benguela upwelling region 

could be self-maintaining. Alternatively, they could be continually refreshed by expatriates 

from the SW Atlantic that enter the system via South Atlantic Central Water in the south, 

before developing and then being lost through advection off Namibia. These two hypotheses 

are investigated here by examining geographic heterogeneity and molecular variation (cox1 

and ND1) of the species across its distributional range in the Southern Hemisphere. 

Comparisons are made with E. vallentini, which is assumed to show panmixia associated 

with its circumglobal distribution between 50 and 60°S. Phylogenetic analysis with 

mitochondrial 16S ribosomal RNA and cytochrome oxidase 1 (cox1) confirmed that E. 

lucens and E. vallentinirepresent sister taxa. Strong geographic structuring of cox1 and ND1 

mtDNA genetic variation by ocean basin was recorded in E. lucens, indicating 

that neritic populations off South Africa are likely self-maintaining. This contrasts with the 

results for E. vallentini, which appears to occur as a single panmictic population across its 

distributional range. These differences are likely related to the habitats (neritic, E. lucens; 

oceanic, E. vallentini) occupied by each species. The results of the neutrality tests are 

consistent with demographic processes and suggest growth in E. lucens and equilibrium or 

shrinkage in E. vallentini. Although purifying selection cannot be ruled out in the former, the 

very few haplotypes recovered from E. vallentini could indicate that any population 

expansion following a crash is not yet reflected in the relatively slowly evolving mtDNA 

markers used here. Further work using other methods is recommended. 

 

Euphausia lucens Hansen 1905 is the dominant species of krill in nearshore waters of the 

southern Benguela upwelling region off the west coast of South Africa. Its regional 

distribution extends eastwards to Port Elizabeth on the South coast, and northwards into 

southern Namibia, where it is replaced by Nyctiphanes capensis Hansen 1911 inshore and 

by E. hanseni Zimmer 1915 further offshore (see map in Pillar et al., 1992; Gibbons, 1995). It 

is thought to be an upwelling specialist (Gibbons and Hutchings, 1996) that has a suite of 

dietary and behavioural characteristics allowing it to persist in the Benguela upwelling region 

throughout the year. E. lucens is an omnivore that can match its diet to the ambient food 

environment (Pillar et al., 1992), being largely herbivorous when phytoplankton is abundant 
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(near the surface and during upwelling conditions) and switching to zooplankton if 

phytoplankton is scarce (in deeper water and during quiescent/downwelling conditions). 

 

Like other upwelling specialists in the area (Verheye et al., 1991), E. lucensdisplays 

pronounced ontogentic diel vertical migration (DVM; Pillar et al., 1992). Adult populations 

reach greatest numbers in the phytoplankton-rich waters close to shore off St Helena Bay, 

and eggs are released that float into the near-surface waters. These are then moved offshore 

in the Ekman layer, where they hatch into calyptopes. As these early life history stages are 

transported further offshore and northwards along the west coast, so they and their 

migratory abilities develop. This eventually enables individuals to take advantage of 

onshoreward (upwelling) compensation currents, which return them to the more productive 

nearshore environments and they can then move back southwards in the subsurface, 

poleward flowing counter currents (Shannon, 1985). Ontogenetic DVM, therefore, would 

allow populations of E. lucens to maintain themselves within the region, and prevent them 

from being advected into the South Atlantic off Namibia. 

 

However, E. lucens is not confined to the Benguela upwelling ecosystem, and is found over 

continental shelves across the Southern Hemisphere between 40 and 50°S (see maps 

in Mauchline and Fisher, 1969; Mauchline, 1980), being common off Australia and New 

Zealand (Bartle, 1976) as well as South America (Tarling et al., 1995). Given that the source 

water that is upwelled along the west coast of South Africa is of South Atlantic Central Water 

(SACW) origin, a potential mechanism exists whereby South African populations of E. 

lucens could be seeded by expatriates from the West Atlantic. If re-seeding of populations in 

the East Atlantic occurs whenever upwelling-favourable winds blow along the South African 

west coast, there is a constant supply of new individuals into local populations that then 

“boom” in the productive waters of the southern Benguela, only to go “bust” when they get 

entrained into offshore flows off southern Namibia. Although this latter scenario implies a 

high level of gene flow between western and eastern populations, different subpopulations 

of M. norvegica (M. Sars 1857) in the North Atlantic have been identified and matched to 

basin scale circulation patterns there (Papetti et al., 2005). That said, no such clear current 

closure systems are apparent in the South Atlantic, so it does not follow that significant 

genetic structure would be apparent within populations of E. lucens in the region. 

 

Here, we set out to test the genetic integrity of South African populations of E. lucens using a 

variety of mitochondrial [16S rRNA, cytochrome oxidase 1 (cox1) and NADH dehydrogenase 

1 (ND1)] and nuclear internal transcribed spacer 1 (ITS-1) molecular markers, with a view to 

explicitly testing the extent of genetic mixing between populations across the Southern 

Hemisphere. These DNA fragments have been successfully applied to the study of 

phylogenetic relationships, geographical structure and demographic processes of krill species 

(Patarnello et al., 1996; Papetti et al., 2005; Bucklin et al., 2007; Goodall-Copestake et al., 

2010; Bortolotto et al., 2011). 

 

We additionally contrast the patterns observed for E. lucens with those for its putative sister 

taxon (Zane and Patarnello, 2000), E. vallentini Stebbing 1900. Euphausia vallentini is 
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abundant between 50 and 60°S and because it is associated with the Antarctic Polar Frontal, 

it is distributed more or less continuously across the Southern Hemisphere (see maps 

in Mauchline and Fisher, 1969; Mauchline, 1980). Only in the SE Pacific and the SW Atlantic 

do both species occur together over the shelf (Ramirez and Dato, 1983; Curtolo et 

al., 1990; Tarling et al., 1995; Palma and Silva, 2004), otherwise E. vallentinifails to 

penetrate the continental coastal waters in either the SE Atlantic or the SW Pacific. Given its 

distribution, we predict that E. vallentini should show little evidence of separate breeding 

pools across its distributional range, as has been observed for E. superba (e.g. Bortolotto et 

al., 2011). 

 

Finally, Jarman et al. (Jarman et al., 2000) hypothesize that E. lucens and E. vallentini have 

been incorrectly classified as separate species. We investigate this hypothesis here and 

predict that if E. vallentini and E. lucens indeed represent separate species, fixed differences 

will be observed with both mitochondrial and nuclear genetic markers. 

 

Method 

The project was designed with the main objective of obtaining population genetics and 

historical demographic information for E. lucens and E. vallentini, with a preliminary step of 

validating their phylogenetic affinities. These objectives were achieved by utilizing a range of 

DNA fragments with known different mutation rates. Both cox1 and 16S have been 

extensively used in phylogenetic studies of plankton. For this purpose, a few individuals per 

species are normally sufficient and frequently only one specimen per species is used 

(e.g. Bucklin et al., 2007); cox1 has been recently adopted as the barcoding gene for species 

identification (Hebert et al., 2003). The ND1 gene is thought to have a higher evolutionary 

rate than 16S and cox1 (Saccone et al., 1999), which justifies a major effort on our part to 

obtain population information for this fragment, especially as it has been successfully 

applied to other krill micro-evolutionary studies (Zane et al., 1998; Papetti et al., 

2005; Bortolotto et al., 2011). ITS-1 is a nuclear marker and was incorporated as an 

additional source of information here. 

 

Sampling and DNA isolation 

Five hundred and ninety-three specimens of E. lucens and two hundred and fifty-two E. 

vallentini were collected from various global localities (Table I). Species were identified 

following the identification key of Baker et al. (Baker et al., 1990). DNA extraction was 

achieved using the CTAB method of Corach (Corach, 1991), modified using 5 μg/mL of 

proteinase K (Harkins, 2007). 
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Polymerase chain reaction and sequencing conditions 

Inter-species variation was studied using ITS-1, 16S rRNA and cox1, using a subset of 

specimens from each species collected from a range of geographically distant sampling 

locations. A region of ∼500 base pair (bp) spanning the nuclear ITS-1 region was amplified 

with the primers SP-1-5′ and Sp-1-3′ (Chu et al., 2001). An ∼570 bp region of the 16S rRNA 

mitochondrial gene was amplified using the primers 16Sa and 16Sb (Palumbi et al., 1991). A 

region of subunit 1 of the cox1 gene 640 bp in length was amplified using the primers LCO 

and HCO of Folmer et al. (Folmer et al., 1994). 

 

Population structure and demographic history were investigated utilizing the polymorphisms 

in cox1 and a 156 bp region coding for subunit 1 of the mitochondrial ND1 gene, using the 

primers ND1f and ND1r (Zane et al., 1998). Failure of these primers to amplify was further 

investigated by amplifying a 600 bp fragment with the primers ND1-F-lu (5′-

TCCTTATTATTTGTCTCCTG-3′) (Harkins, 2007) and CbMnl3 (Zane et al., 1998). DNA 

sequencing confirmed substitutions in the priming sites for SWA E. lucens, thus the 

primers GH1f (5′-TTTTTTCTATGTTGTACAAGATT-3′) and GH2r (5′-

ACAATCTCGCTGATATAATGA -3′) (Harkins, 2007) were designed for these samples using 

the software program Oligo (Rychlick, 1992). 
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All PCRs were performed in a total volume of 15 μL containing 20–40 ng of purified DNA 

from one individual krill as template, 0.1 U of Taq polymerase (Promega) and final 

concentrations of 1× Mg2+- free buffer, 2.5 mM MgCl2, 0.24 mM deoxynucleotides (dNTPs) 

and 0.3 μM of each primer. PCRs were run in a Perkin Elmer 9600 Gene Amp. Cycling 

conditions were: 94°C (2 min): 94°C (30 s), annealing temperature (30 s): 72°C (1 min) for 

37 cycles, final extension 5 min at 72°C. Annealing temperatures were 50°C for 16S rRNA, 

cox1, and ND1 and 55°C for ITS-1. 

 

Big Dye Terminator v. 3.1 (Applied Biosystems) was used to cycle sequence PCR products 

under the conditions recommended by the manufacturer. All amplicons were sequenced in 

both directions. Sequencing products were run in an ABI3100. 

 

SSCP screening of mtDNA variation 

ND1 haplotype variants were screened using SSCP (single strand conformational 

polymorphism) analysis (Orita et al., 1989; Hayashi, 1991). For each individual, 2 μL of the 

ND1f—ND1r PCR product, was added to an equal volume of formamide loading dye (98% 

formamide, 2 mM EDTA, Bromphenol Blue), heat denatured and loaded on a 10% 

acrylamide gel (37.5:1 acrylamide/bisacrylamide) with 5% glycerol. Runs were performed at 

4°C at 135 V for 16 h in a 20-cm high vertical apparatus. Gels were silver stained 

(Sambrook et al., 1989). Accuracy of scoring was confirmed by sequencing randomly chosen 

individuals displaying each of the observed SSCP patterns. All distinct ND1 SSCP profiles 

were sequenced in both directions more than once. 

 

Phylogenetic analysis 

For the euphausiid phylogeny reconstructions, we have augmented the information 

generated in this study with that from a further 13 species (15 sequences) for 16S rRNA and 

16 species (21 sequences) for cox1. GenBank accession numbers are provided 

in Supplementary data, Table SI. The cox1 and 16S gene fragments were analysed separately. 

Sequences for subsequent analysis with PAUP (see below) were aligned using Bioedit (Hall, 

1999), while those for MrBayes were aligned using Sequencher 5.1 (GeneCodes). Nucleotide 

substitution models for use in PAUP were assessed using MODELTEST v3.06 (Posada and 

Crandall, 1998), while in the case of MrBayes, jModelTest 0.1.1 (Guindon and Gascuel, 

2003; Darriba et al., 2012) was used. The numbers of variable and parsimony informative 

sites were calculated with DnaSP v5 (Librado and Rozas, 2009). For the 16S and cox1 data, 

the best fitting model was the general time reversible model with gamma distributed rate 

variation and a proportion of invariable sites (GTR + G + I), and for the ND1 data this was 

the Hasegawa, Kishino and Yano model with gamma distributed rate variation and a 

proportion of invariable sites (HKY + G + I). 

 

The evolutionary relationships among species (rooted on Meganyctiphanes norvegica) were 

investigated using neighbour-joining (NJ), maximum likelihood and maximum parsimony, 

as well as Bayesian phylogenetic methods with PAUP and MrBayes 3.2.1 (Huelsenbeck and 

Ronquist, 2001; Ronquist and Huelsenbeck, 2003), respectively. In the case of PAUP, 

statistical confidence in the stability of tree nodes was calculated by non-parametric 
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bootstrap (Felsenstein, 1985) with 1000 replications. In the case of MrBayes, the model was 

run for 1 million generations, with three attempted swaps each iteration and with the 

temperature set at 0.1: two independent runs were analysed, each with one hot and three 

cold chains. 

 

Genetic variation within species: geographical and temporal heterogeneity 

The extent of the genetic diversity was evaluated using summary statistics estimates of 

haplotype diversity (h), nucleotide diversity (π) of Nei (Nei, 1987), and the number of 

segregating sites (S) calculated using DnaSP v5 (Librado and Rozas, 2009). 

 

AMOVA (Excoffier et al., 1992) using Arlequin (Excoffier et al., 2005) was used to evaluate 

spatial and temporal structure in ND1 haplotype heterogeneity of E. lucens samples (Table I), 

as well as geographic structure of E. vallentinisamples. AMOVA computations for E. 

vallentini haplotypes were performed using a p-distance matrix, but in the case of E. 

lucens standard haplotype frequencies AMOVA were applied. Significance was tested with 10 

000 permutations. The degree of population structure was further examined from a 

parsimony network analysis of ND1 mtDNA haplotypes within species using the Median-

Joining algorithm, with parameter ε set to 0, using Network v.4.5 (Bandelt et al., 1999). To 

account for multiple testing, P-values (0.05) were adjusted using the Bonferroni correction 

(Quinn and Keough, 2002). 

 

Gene flow among the four regions was further evaluated for E. vallentini using Migrate 3.4.2, 

using a Bayesian coalescent framework (Beerli and Felsenstein, 2001; Beerli, 2006). Final 

run conditions were determined after inspecting the effective sample size (all above 1000) 

and the lowest Ln[Prob(D|G)] for all parameters M (M = 2Nef m), where 2Nef is the effective 

population size of females and M is the number of migrant females per generation. Final run 

conditions were summarized over five replicate runs of 1 short chain with 50 000 recorded 

steps with 100 steps increments after 50 000 burn-in steps, and four chains with bounded 

adaptive heating scheme of 1, 3, 10 and 100 000. 

 

Historical demographic processes were investigated for both species using neutrality tests. 

Departures from neutral expectations were investigated with two different tests implemented 

in DnaSP v 5.0 (Librado and Rozas, 2009): Tajima's D (Tajima, 1989) and Fu's Fs (Fu, 1997). 

The former uses information from the mutation (segregating site) frequency and is based on 

the difference between two alternative estimates of θ, while the latter uses information from 

the haplotype distribution and is based on Ewen's (Ewens, 1972) sampling distribution. 

Fu's Fs test is more sensitive to demographic changes. An excess of rare alleles indicates 

demographic expansion, whereas an excess of common alleles is indicative of population 

shrinkage. The significance of Fswas evaluated using 1000 random permutations with DnaSP 

(Librado and Rozas, 2009). 

 

The relative magnitude of demographic changes through time was evaluated from different 

estimates of the population-scaled mutation rate theta (θ = 2Neμ). These methods have 

varying degrees of sophistication and utilize different properties of the data. We used the 
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non-genealogical summary statistic methods of Watterson (Watterson, 1975) and Tajima 

(Tajima, 1983), and a genealogical estimator based on generalized linear models, UPBLUE 

(Fu, 1994). A long-term history of effective population size was obtained using Watterson's 

(Watterson, 1975) estimate θ1 (Fu and Li, 1993), which excludes the influence of singletons. 

 

Genealogical and non-genealogical estimators of θ put different weights on mutations 

occurring in different time periods (Crandall et al., 1999; Su et al., 2001). 

Fu'sUPBLUE estimator (Fu, 1994) places heavy emphasis on young mutations revealing 

relatively recent population processes, whereas Tajima's (Tajima, 1983) estimate places 

heavy emphasis on older mutations reflecting ancient population events (Fu, 1997). The 

comparison between these two estimators has been used to gain insights with respect to 

population size changes over time. 

 

Results 

Genetic variation between species in 16SrDNA, cox1, ND1 and ITS-1 

We generated 16S sequence information for two E. lucens and two E. vallentinispecimens. 

The 446 bp 16S rRNA data set for these species had a total of eight variable sites seven of 

which were fixed between species (Supplementary data, Table SIIa). We obtained DNA 

sequence information for 640 bp of cox1 for eight E. lucens and 14 E. vallentini specimens, 

with a total of 64 variable sites of which 55 were parsimony informative and 39 were fixed 

between species (Supplementary data, Table SIIb). 

 

The 16S rRNA MrBayes tree is shown in Supplementary data, Fig. S1a. Although its topology 

in the context of E. lucens and E. vallentini is congruent with that of the NJ tree (data not 

shown) and in general agreement with the maximum likelihood and maximum parsimony 

trees, the latter were unable to resolve clearly the relationships between E. lucens, E. 

vallentini and E. frigidaHansen 1911 (data not shown). Notably, the sequence previously 

identified as E. lucens (AF177177.1) (Jarman et al., 2000) groups within a monophyletic 

clade comprising all of the other E. vallentini samples with high bootstrap support indicating 

that this specimen has been misidentified (Supplementary data, Fig. S1a). Congruent 

topologies for E. lucens and E. vallentini were observed using cox1 in all four analyses, where 

the sequence AF177185.1 that was previously identified as E. lucens by Jarman et al. 

(Jarman et al., 2000) groups within the E. vallentini clade with high bootstrap support 

(Supplementary data, Fig. S1b). The estimated mean pairwise distance for E. lucens and  E. 

vallentiniwas 7.6% using cox1 and 1.4% for 16S rRNA. For E. lucens a clear geographical 

pattern can be superimposed onto the cox1 phylogenetic trees with two distinct reciprocally 

monophyletic E. lucens clades corresponding to the separate SEA and SWA ocean basins 

(Supplementary data, Fig. S1b). 

 

The nuclear marker, ITS subunit 1, was sequenced in three individual E. lucens(GQ890562.1-

GQ890564.1), E. vallentini (GQ890567.1- GQ890569.1) and two E. recurva specimens 

(GQ890565.1, GQ890566.1). These included specimens sampled from each of the regional 

locations (SEA and SWA) that were previously identified as belonging to distinct clades in 

the mtDNA phylogenetic analyses. No intra-species variation in ITS-1 was detected in either 

http://repository.uwc.ac.za

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/plankt/35/5/10.1093_plankt_fbt046/2/fbt046_Supplementary_Data.zip?Expires=1508495333&Signature=b6UMCLY39QTmXHdoibgwu7QzmmXXJvSUAh~CrKMgIrJMVsyS1Q9zfmtYSzGOat5M8zbWVVDYmn5w0vdO-Sm2NyGR1kzcDTtSwXsGyIalRvzPUe1Mdi76cZRs-~FRBjdV8TFxvYohesI10M2IrV-9HdUqVcUDQRu3FizgFN9wgZQ-2dtQmBjjlr0XWxSCjPw82KZA2VNtdE9bGFVDTuBhXOYClvnUy03~v1UYooL1cGFJ18UTPaVP7VNB~j169lAIm0QrlNBbKp8GWLpanug66Wf2qtcHNRsVn7GhQjcavGob8sDxNpChczJ2EJl0pCVbxMZEuTzvMIo3iuP4OOETtg__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/plankt/35/5/10.1093_plankt_fbt046/2/fbt046_Supplementary_Data.zip?Expires=1508495333&Signature=b6UMCLY39QTmXHdoibgwu7QzmmXXJvSUAh~CrKMgIrJMVsyS1Q9zfmtYSzGOat5M8zbWVVDYmn5w0vdO-Sm2NyGR1kzcDTtSwXsGyIalRvzPUe1Mdi76cZRs-~FRBjdV8TFxvYohesI10M2IrV-9HdUqVcUDQRu3FizgFN9wgZQ-2dtQmBjjlr0XWxSCjPw82KZA2VNtdE9bGFVDTuBhXOYClvnUy03~v1UYooL1cGFJ18UTPaVP7VNB~j169lAIm0QrlNBbKp8GWLpanug66Wf2qtcHNRsVn7GhQjcavGob8sDxNpChczJ2EJl0pCVbxMZEuTzvMIo3iuP4OOETtg__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/plankt/35/5/10.1093_plankt_fbt046/2/fbt046_Supplementary_Data.zip?Expires=1508495333&Signature=b6UMCLY39QTmXHdoibgwu7QzmmXXJvSUAh~CrKMgIrJMVsyS1Q9zfmtYSzGOat5M8zbWVVDYmn5w0vdO-Sm2NyGR1kzcDTtSwXsGyIalRvzPUe1Mdi76cZRs-~FRBjdV8TFxvYohesI10M2IrV-9HdUqVcUDQRu3FizgFN9wgZQ-2dtQmBjjlr0XWxSCjPw82KZA2VNtdE9bGFVDTuBhXOYClvnUy03~v1UYooL1cGFJ18UTPaVP7VNB~j169lAIm0QrlNBbKp8GWLpanug66Wf2qtcHNRsVn7GhQjcavGob8sDxNpChczJ2EJl0pCVbxMZEuTzvMIo3iuP4OOETtg__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/plankt/35/5/10.1093_plankt_fbt046/2/fbt046_Supplementary_Data.zip?Expires=1508495333&Signature=b6UMCLY39QTmXHdoibgwu7QzmmXXJvSUAh~CrKMgIrJMVsyS1Q9zfmtYSzGOat5M8zbWVVDYmn5w0vdO-Sm2NyGR1kzcDTtSwXsGyIalRvzPUe1Mdi76cZRs-~FRBjdV8TFxvYohesI10M2IrV-9HdUqVcUDQRu3FizgFN9wgZQ-2dtQmBjjlr0XWxSCjPw82KZA2VNtdE9bGFVDTuBhXOYClvnUy03~v1UYooL1cGFJ18UTPaVP7VNB~j169lAIm0QrlNBbKp8GWLpanug66Wf2qtcHNRsVn7GhQjcavGob8sDxNpChczJ2EJl0pCVbxMZEuTzvMIo3iuP4OOETtg__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/plankt/35/5/10.1093_plankt_fbt046/2/fbt046_Supplementary_Data.zip?Expires=1508495333&Signature=b6UMCLY39QTmXHdoibgwu7QzmmXXJvSUAh~CrKMgIrJMVsyS1Q9zfmtYSzGOat5M8zbWVVDYmn5w0vdO-Sm2NyGR1kzcDTtSwXsGyIalRvzPUe1Mdi76cZRs-~FRBjdV8TFxvYohesI10M2IrV-9HdUqVcUDQRu3FizgFN9wgZQ-2dtQmBjjlr0XWxSCjPw82KZA2VNtdE9bGFVDTuBhXOYClvnUy03~v1UYooL1cGFJ18UTPaVP7VNB~j169lAIm0QrlNBbKp8GWLpanug66Wf2qtcHNRsVn7GhQjcavGob8sDxNpChczJ2EJl0pCVbxMZEuTzvMIo3iuP4OOETtg__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/plankt/35/5/10.1093_plankt_fbt046/2/fbt046_Supplementary_Data.zip?Expires=1508495333&Signature=b6UMCLY39QTmXHdoibgwu7QzmmXXJvSUAh~CrKMgIrJMVsyS1Q9zfmtYSzGOat5M8zbWVVDYmn5w0vdO-Sm2NyGR1kzcDTtSwXsGyIalRvzPUe1Mdi76cZRs-~FRBjdV8TFxvYohesI10M2IrV-9HdUqVcUDQRu3FizgFN9wgZQ-2dtQmBjjlr0XWxSCjPw82KZA2VNtdE9bGFVDTuBhXOYClvnUy03~v1UYooL1cGFJ18UTPaVP7VNB~j169lAIm0QrlNBbKp8GWLpanug66Wf2qtcHNRsVn7GhQjcavGob8sDxNpChczJ2EJl0pCVbxMZEuTzvMIo3iuP4OOETtg__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q


8 
 

species and two fixed substitutions and four indels separated the two species (Supplementary 

data, Table SIII). 

 

Thirty-eight distinct ND1 haplotypes were identified among the 593 individuals collected 

from 19 E. lucens samples, with the highest number found in the SWA followed by SEA and 

the SWP (Supplementary data, Table SIV). In E. vallentini in contrast, only four ND1 

haplotypes were detected among the 252 individuals sampled in the SEA, SWA, SWP and 

subAntarctic waters (Supplementary data, Table SIV). 

 

Despite the initial expectation that the putative sister species would be very similar, they 

differed substantially in their respective levels of intra-specific ND1 genetic diversity. 

Nucleotide diversities (π) ranged between 2.6 × 10−4 and 7 × 10−3 substitutions/site among 

sampling localities (Table I) and the average percentage ND1 bp difference between these 

species was 19.27% with a net divergence of 17.79%. The highest haplotype diversity (h), 

nucleotide diversity (π) and number of segregating sites (S) (Table I) was exhibited in the 

SWA E. lucens population, where this pattern was consistently observed in all of the separate 

samples from this area. The high and dominant frequency of haplotype A1 (Supplementary 

data, Table SIV) in the SEA samples was responsible for the relatively low haplotype and 

nucleotide diversities. 

 

Geographic patterns of population genetic diversity 

The patterns of population structure inferred from the analyses of cox1 differed substantially 

between the sister species. Whereas E. lucens was characterized by strong genetic structure 

at the ocean-basin scale with genetically differentiated populations in the SWA and SEA (Φst 

= 0.71, P < 0.05), E. vallentini showed no evidence of geographical heterogeneity across its 

global range (Supplementary data, Fig. S1b). The AMOVA analysis of E. vallentini ND1 data 

showed that most variation is contained within samples (96.63%), indicating homogeneity 

across samples (Φst = 0.033, P > 0.05). 

 

Modal values of the Migrate parameters (θ and M) and their 95% CI are shown for E. 

vallentini in Supplementary data, Table SV and Figure 1. High levels of long-term gene flow 

among regions and asymmetrical migration among most regions were detected. 

Although M from SWP to SEA is apparently restricted (CI encompasses 0), this site 

experiences high migration rates to and from all other regions. The SWP sample is the 

smallest in size and these values should therefore be taken with caution. 
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A ND1 median-joining network (Fig. 2) confirmed the results obtained using cox1, with E. 

vallentini and E. lucens forming reciprocally monophyletic clades in the network 

(Supplementary data, Fig. S1b). For the E. lucens subclade, an identical geographical pattern 

to that inferred from the cox1 phylogeny was observed with two distinct reciprocally 

monophyletic clades corresponding to the SEA and SWA basin populations (Supplementary 

data, Fig. S1b). 
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The high-frequency ND1 haplotypes were internal to the network, with rare or singleton 

haplotypes generally being derived from these. No evidence of any further geographic 

subdivision was apparent among the three SWA E. lucenssamples, which also displayed a 

high number of singleton haplotypes (Harkins, 2007). Two haplotypes (B1 and BC20) were 

shared between the SWP and the SWA where, in the latter region, haplotype B1 occurred at 

the highest frequency in all of the local samples (Fig. 2). 

 

A strikingly different pattern was observed in E. vallentini with only four distinct ND1 

haplotypes detected. Haplotype (III) was found only in the SWA Continental Shelf sample 

while another haplotype (II) was recovered from a single subAntarctica sample 

(Supplementary data, Table SIV). The remaining two haplotypes (I and IV) were found in all 

the samples, whereas the latter was always the most frequent (Supplementary data, Table 

SIV). 

 

Temporal heterogeneity within species: long-term and short-term genetic 

variation 

For E. lucens, a significant departure from neutrality was detected for all samples (Table II). 

This is due to the more elevated proportion of rare alleles present in the samples (see 

also Supplementary data, Table SII and Fig. 2). The deviations from neutrality were more 

pronounced for Fu's Fs test, arguing that demographic processes associated with expansion 

are more plausible explanations for the patterns observed than those linked to selection. 
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In contrast to the results for E. lucens, positive but non-significant values were obtained 

for E. vallentini data, indicative of a relative excess of common alleles in all the samples 

(Table II). 

 

Genetic variation at short temporal scale 

No significant inter-annual variation in diversity was observed in the temporal comparisons 

between E. lucens samples collected from the SEA in 2000 and 2001, with 8 and 11 ND1 

haplotypes recovered, respectively, in these years. The most frequently observed haplotype 

was the same in both years and sample-specific haplotypes were common due to 72.22% of 

haplotypes occurring as singletons. Of the 17 ND1 haplotypes recorded for the SEA, only 

three were shared between years (A1, A2 and A14). Of the remainder, 14 occurred at very low 

frequencies with 11 being singletons (Supplementary data, Table SIV). The absence of 

significant temporal or spatial genetic structuring within the SEA population permitted 

combining of samples to achieve increased statistical power. Conventional AMOVA using 

haplotype frequencies (Excoffier et al., 1992), failed to detect differentiation between the 

temporal samples. All variation was contained within samples and consequently, Fst was 

non-significant (Фst = −0.0006, P > 0.05). 

 

Magnitude of the temporal genetic variation 

E. lucens neutrality tests indicated significant departures from mutation-drift equilibrium for 

this species (Table II). Deviations from equilibrium can stem from the effects of selection or 

demographic processes of population size change. The highest deviations from mutation-

drift equilibrium were recorded with Fu's Fs test, which is the most sensitive of the different 

tests employed here to detect demographic changes. We, therefore, assumed a demographic 

process was the most likely explanation for these results and proceeded to estimate the 

magnitude of historical population size change. 

 

For E. vallentini, all of the neutrality tests for the combined ND1 data set failed to detect any 

significant deviation from equilibrium (Table II). Assuming that the site-specific nucleotide 

substitution rate for ND1 is similar for both these sister species, and given the observed ratio 

of 0.31 for the θπ (E. lucens)/θπ (E. vallentini) comparison, then this would imply that the 

effective population size of E. lucens was at least three times the size of E. vallentini. Even 

greater differences in Ne between these sister species were observed with 

the θUPBLUE estimator (Table III).  

 

In E. lucens, the highest θ values were exhibited in the SWA samples (Table III). Estimates of 

Waterson's θ are influenced by segregating site numbers which are in turn influenced more 

by sample size than by haplotype frequencies. Tajima's estimate is based on nucleotide 

diversity which is relatively low in both of the south Atlantic basins reflecting the fact that 

most E. lucens haplotypes differ from the most-frequently occurring haplotype by a single 

nucleotide substitution (Table I). As expected, Tajima's θ results were slightly higher for the 

SWA (Table III). 
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The estimates of Watterson's θ* (Table III) for separate subsamples are lower for both of the 

south Atlantic populations reflecting the relative contribution of singleton mutations to these 

statistics. Note that all of θ estimators vary consistently for the two subsamples. For example, 

the θUPBLUE estimate is four times as large as θπ, for the separate SWA (θUPBLUE = 12.113/θπ = 

2.632), and SEA (θUPBLUE = 9.09/θπ = 2.081) Atlantic populations (Table III). 

 

Discussion 

Here, we have shown that fixed differences between E. lucens and E. vallentiniexist in both 

the nuclear and mitochondrial genomes, demonstrating that they represent valid taxonomic 

species. This settles some debate in the literature implied by the observations of Jarman et 

al. (Jarman et al., 2000), and has implications for the systematics of Southern Hemisphere 

euphausiids (Zane and Patarnello, 2000). 

 

There is strong geographical structuring of genetic variation in E. lucenspopulations in the 

South Atlantic. There is also a general absence of inter-annual differences in genetic 

structure of SEA populations, indicating that the differences between east and west are real 

and not the result of chance sampling. This suggests that the populations of E. lucens in the 

SEA are not seeded by individuals transported from the SWA in upwelled SACW, as 

provocatively proposed by Gibbons and Hutchings (Gibbons and Hutchings, 1996). Rather, 

the diel and ontogenetic vertical migration behaviours shown by E. lucens in the SEA 

(Pillar et al., 1992) are likely effective in maintaining populations over the shelf. 

 

Although there are no other studies from the South Atlantic that can be used to compare our 

results with (Patarnello et al., 2010) building largely on the work of Papetti et al. (Papetti et 

al., 2005), noted that population structure of Meganyctiphanes norvegica in the North 

Atlantic was closely tied to basin-wide circulation patterns. Thus, aside from the 

Mediterranean population, three geographically distinct oceanic populations were identified 

linked to the three regional gyres. Broadly, similar observations have also been noted for the 

chaetognath Sagitta setosa (Peijnenburg et al., 2005). That distinct populations in the South 

Atlantic are similarly observed then should come as no surprise, especially as E. lucens is 

regarded as a shelf species and few specimens have been recorded from the open ocean 

(Mauchline and Fisher, 1969; Mauchline, 1980), while M. norvegica is a shelf-slope species 

occurring at depths >100 m. Interestingly, Papetti et al. (Papetti et al., 2005) also noted a 

lack of a significant temporal signal within krill populations M. norvegica (Papetti et al., 

2005), implying high genetic stability over short periods of time. 

 

This situation contrasts with that of E. vallentini, which, using the same markers employed 

here for E. lucens, appears to be panmictic across the distribution range investigated. These 

results are similar to those observed for another widely distributed austral species of oceanic 

krill, E. superba,populations of which show no evidence of continental-level and regional 

geographical structure (Goodall-Copestake et al., 2010; Bortolotto et al., 2011), although 

subregional differences attributed to recruitment process have recently been observed 

(Batta-Lona et al., 2011). Panmixia has also been observed for Clausocalanus 

arcuicornis (Blanco-Bercial et al., 2011). 
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An excess of rare and common ND1 alleles was observed in E. lucens and E. vallentini, 

respectively, and, consequently, all of the neutrality tests for ND1 returned significantly 

negative results for the former species and positive (albeit not significantly so) results for the 

latter. These results are consistent with population growth, sweepstake recruitment or 

purifying selection in E. lucens and population decline or selective sweeps in E. vallentini. 

In E. lucenswhich displays a shallow multifurcating genealogy, an excess of low frequency 

alleles and large differences between estimates of effective and census population sizes 

mirrors the expected patterns generated by sweepstakes recruitment (Árnason, 2004). These 

organisms reproduce under spatially and temporally varying oceanographic conditions that 

may affect their sexual maturation, choice of mate, fertilization success, survival of larvae 

and recruitment (Hedgecock, 1994), all of which are processes about which we are almost 

completely ignorant. 

 

In the case of E. vallentini, the presence of the two high-frequency ND1 haplotypes could 

have resulted from successive selective sweeps and incomplete fixation, perhaps linked to 

historic changes in the oceanography of the Southern Hemisphere (e.g. Zane and Patarnello, 

2000; Rabassa et al., 2005). 

 

Alternatively, the observed patterns of variation could be driven by demographic processes. 

The neutrality tests indicated substantial deviations from neutrality in almost all the 

separate E. lucens samples consistent with a recent population size increase. Consistent with 

this hypothesis the θestimators that incorporate genealogy information return larger values 

than the summary statistic estimators (Crandall et al., 1999; Su et al., 2001). In contrast, 

for E. vallentini similar θ values were obtained both among and between samples with both 

types of estimators and, generally, deviation from a constant-population size model was in 

the direction of population shrinkage (Tajima, 1989; Fu and Li, 1993; Fu, 1995). That said, 

the very few haplotypes recovered from E. vallentini, which should have a large census 

population size, may indicate that it has undergone a major population crash during its 

evolutionary history, and the subsequent population expansion is not yet reflected in the 

relatively slowly evolving mtDNA markers used here. It should be realized that the small size 

of the fragments used and the low levels of variation observed are insufficient to make 

unequivocal statements about the respective roles of demography and selection in shaping 

the genetic variation in these species. 

 

The differences observed in the patterns of population genetic structure of E. lucens and E. 

vallentini most likely reflect differences in both their habitats, geographical ranges and the 

hydrographic current regimes that characterize the areas they inhabit (Zane and Patarnello, 

2000). By strongly influencing these regimes, historical climatic and concomitant 

hydrological events must have played an important role in shaping the spatial distribution of 

their genetic variation. We consider that the estimators that incorporate genealogical 

information provide strong evidence for underlying demographic processes to explain the 

patterns of variation in these two krill species, but full confirmation should be obtained from 

the analysis of multiple loci. 
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Supplementary data  

Supplementary data can be found online at http://plankt.oxfordjournals.org. 
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