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A 35-gene signature discriminates
between rapidly- and slowly-progressing
glioblastoma multiforme and predicts survival
in known subtypes of the cancer
Azeez A. Fatai and Junaid Gamieldien*

Abstract

Background: Gene expression can be employed for the discovery of prognostic gene or multigene signatures
cancer. In this study, we assessed the prognostic value of a 35-gene expression signature selected by pathway and
machine learning based methods in adjuvant therapy-linked glioblastoma multiforme (GBM) patients from the
Cancer Genome Atlas.

Methods: Genes with high expression variance was subjected to pathway enrichment analysis and those having
roles in chemoradioresistance pathways were used in expression-based feature selection. A modified Support Vector
Machine Recursive Feature Elimination algorithm was employed to select a subset of these genes that discriminated
between rapidly-progressing and slowly-progressing patients.

Results: Survival analysis on TCGA samples not used in feature selection and samples from four GBM subclasses, as
well as from an entirely independent study, showed that the 35-gene signature discriminated between the survival
groups in all cases (p < 0.05) and could accurately predict survival irrespective of the subtype. In a multivariate
analysis, the signature predicted progression-free and overall survival independently of other factors considered.

Conclusion: We propose that the performance of the signature makes it an attractive candidate for further studies to
assess its utility as a clinical prognostic and predictive biomarker in GBM patients. Additionally, the signature genes
may also be useful therapeutic targets to improve both progression-free and overall survival in GBM patients.
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Background
Glioblastoma multiforme (GBM) is the most common
and highly aggressive brain tumour. Patients with GBM
have very poor prognosis, with the median OS time of
14.5 months [1]. Chemotherapy and radiotherapies are
intended to improve patient survival, but are, however,
hampered by development of resistance. Methylation of
the promoter of the MGMT gene, which encodes
O-6-methylguanine-DNA methyl-transferase, a DNA-
repair enzyme that removes alkylating groups at the O6
of guanine residues, is a predictor of treatment response
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in GBM. Most studies that considered progression-free
survival assessed only the prognostic value ofMGMTpro-
moter methylation [2–4]. Tumours with hypermethylated
MGMT promoters are expected to benefit from temo-
zolomide, an alkylating agent used for treating GBM, but
reports regarding the prognostic value of this biomarker
have been conflicting [5, 6].
Several gene expression prognostic and predictive sig-

natures have been translated into clinical applications for
cancer treatment. Oncotype DX is a 21-gene qRT-PCR
assay used to predict likelihood of recurrence in women
with estrogen receptor positive breast cancer [7, 8].
Mammostrat is prognostic immunohistochemical test
that uses antibodies specific for SLC7A5, p53, HTF9C,
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NDRG1, and CEACAM5 to classify ER-positive, lymph
node negative breast cancer cases into low-, moderate-
or high-risk groups [9, 10]. Mammaprint is a 70-gene
microarray-based test for predicting risk of metastasis in
breast cancer [11].
In light of the lack of standardised prognostic biomark-

ers for GBM, we aimed to identify a mRNA expression
derived prognostic signature using data from the Cancer
Genome Atlas (TCGA - http://cancergenome.nih.gov/).
As current prognostic feature selection approaches lack
reproducibility and do not take chemoradioresistant
pathways into consideration, we used a combination
of pathway enrichment analysis and Support Vector
Machine based Recursive Feature Elimination (SVM-RFE)
to ensure that the genes selected as having predictive
potential would also be biologically relevant to the
phenoptype. We here describe a multigene signature that
successfully predicts both progression-free and overall
survival in glioblastoma multiforme.

Methods
Gene-centric expression data
Five hundred fifty eight GBM gene expression pro-
files generated by the Cancer Genome Atlas (TCGA)
were downloaded from the NCI Genomic Data Com-
mons Data Portal (https://portal.gdc.cancer.gov/projects/
TCGA-GBM). Five hundred forty eight of the these pro-
files were obtained fromGBMpatients, and ten were from
non-neoplastic patients. One profile was selected for each
of the samples profiled two or more times. Five hundred
twenty nine profiles left after removing those of non-
neoplastic samples were used in this study (Additional
file 1). The expression were profiled on Affymetrix HT
HG-U133A platform. As gene expression of the TCGA
samples was profiled in batches which could introduce
bias in classification analysis [12], the statistical signifi-
cance of batch effect was assessed as a function of the
selected genes using guided Principal Component Analy-
sis (gPCA) from the R package gPCA [13]. The approach
used by TCGA (2008) [14] and Verhaak et al. (2011) [15]
was employed to generate gene-centric expression data.
The probe sequences of HTHG-U133A downloaded from
Affymetrix were mapped against a database composed
of RefSeq version 41 and GenBank 178 complete coding
sequences using SpliceMiner [16]. Only perfect matches
were considered and probes mapping to more than one
gene were excluded. The output file from SpliceMiner
and the HT HG-U133A chip definition file (cdf ) were
passed to the alternate cdf-generating functionmakealtcdf
of AffyProbeMiner [17]. Probe sets with less than five
probes were excluded from the resulting alternative cdf,
which was then converted to an R package usingmakecd-
fenv. The cdf was used to perform Robust Multi-array
Average normalization and summarization of the gene

expression data, resulting in gene-centric data for 12161
genes.
An independent validation data set (GSE7696) profiled

on HG-U133 Plus 2 Affymetrix platform and downloaded
from the NCBI Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7696) was
equivalently treated. This data set contained gene expres-
sion data for 80 GBM and four non-neoplastic samples,
and was chosen because of the availability of patients’
treatment information.

Sample selection
To ensure that treatment did not introduce confound-
ing effects, samples from patients that received adjuvant
chemotherapy and radiation and had uncensored days to
death or progression were selected. Figure 1 shows sample
selection for the identification of genes with prognostic
value. Four hundred fifteen patients received the standard
GBM treatment. Semantically, tumour progression is a
radiologically documented increase in tumour size after a
subtotal surgical excision [18]. The time for this to occur is
known as time to progression, which is the same as uncen-
sored progression-free survival (PFS) [19]. Two hundred
one patients had associated uncensored progression-free
survival (PFS) times, and 380 had overall survival OS
times (censored or uncensored).
Clinical data for all the patients used in this study were

obtained from TCGA. PFS times for patients who expe-
rienced tumour progression within the follow-up period
were obtained from the TCGA file for new tumour events.
The GBM subtypes of samples used in our study were
obtained from the supplementary clinical file provided by
Brennan et al., (2013) [20].
There is no standard for classifying patients as rapid and

slow GBM progressors after standard treatment. While
the median PFS after treatment could be used as a sep-
aration point, it does not provide a ’buffer zone’ to filter
out borderline samples close to the median that may fall
in the incorrect group due to unknown confounding fac-
tors. Rather than defining an arbitrary exclusion range,
we used the first (Q1) and third (Q3) quartiles, 120 and
341 days respectively, as boundaries to divide patients into
three classes, since they are still dependent on the median
and not influenced by extreme outliers. Class 1 contained
48 patients having PFS times between 6 and 120 days
(rapidly-progressing) and class 2 contained 35 patients
having PFS times between 358 and 720 days (slow pro-
gressing). Classes 1 and 2 were used in feature selection
and the 118 remaining samples (Class 3) that fell within
the inter-quartile range were used in PFS and OS analysis.

Selection of genes discriminating between rapidly and
slowly progressing GBM patients
In this present study, genes in the cancer-related path-
ways were considered in our feature selection because of
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Fig. 1 Sample selection for the identification of prognostic genes in glioblastoma multiforme. PFS: progression-free survival (days); OS: overall
survival (days); adjuvant treatment: chemotherapy and radiation

their known roles in chemoradiation resistance, and to
reduce the likelihood of selecting genes related to survival
by chance. Studies have identified pathways and pro-
cesses that drive resistance to chemotherapy and radio-
therapy in cancer. Several of these genes are found in
known cancer pathways [21–28]. Several genes in the
NF-κB and PI3K/Akt signaling pathways are associated
with chemoresistance development in cancer [29, 30].
Also, genes involved in drug inactivation and efflux, DNA
repair, and epithelial-mesenchymal transition have been
shown to enhance drug resistance mechanisms [26, 31].
Pathway enrichment analysis was performed on the genes
with high expression variance (median absolute devia-
tion ≥ 0.5) across the 529 samples using the Set Analyser
web service provided by the Comparative Toxicogenomics
Database [32] . Genes were selected from the pathway
categories related to cancer signaling pathways, reactive
oxygen species metabolism, DNA repair, and drug trans-
port and metabolism. A set of genes that discriminated
between the rapidly-progressing and slowly-progressing
groups were selected using a modified Support Vec-
tor Machine-Recursive Feature Elimination (SVM-RFE).
SVM-RFE, proposed by [33], was modified by introduc-
ing 5-fold cross-validation into the SVM classifier step
and capturing the error rate generated at this step (the
figure showing the workflow for SVM-RFE is attached as
Additional file 2).

Survival analysis
The 118 Class 3 patients not used in the feature selection
step were used to calculate regression coefficients (β) for
the selected genes using univariate Cox proportional haz-
ards analysis. The β ’s were computed for the genes using
coxph from the R survival package. Prognostic index, PI,
was then calculated for each of the patients who received
adjuvant chemotherapy and radiation and had PFS and/or
OS data using the equation

PI = β1 ∗ gene1 + β2 ∗ gene2 + . . . + β ∗ geneg

where βg and geneg are the regression coefficient and the
gene expression value for gene g, respectively. Patients in
Class 3 were classified into low-risk and high-risk groups
by choosing a value between the highest and lowest PI
that ensured proper patients distribution based on PI.
Patients with PI scores greater or equal than the cho-
sen value were assigned to the high-risk group, whereas
those with PI scores less than the value were assigned to
the low-risk group. 380 patients with OS times were also
classified into low-risk and high-risk groups in the same
way.

Assessment of signature prognostic value in GBM subtypes
Verhaak et al. (2010) [15] identified four subtypes of
GBM, namely proneural, neural, classical and mesenchy-
mal, using gene expression data from 200 GBM samples.
Brennan et al. (2013) [20] assigned additional 342 TGCA
samples into the four subtypes using single-sample gene
set enrichment analysis. A summarised clinical file pro-
vided by the authors was used in our study to assign
patients to GBM subtypes. 95, 60, 105 and 120 of the 380
patients with available OS times were assigned to proneu-
ral, neural, classical and mesenchymal subtypes, respec-
tively. 51, 33, 51 and 66 of the 201 patient group having
associated PFS times were assigned to proneural, neural,
classical and mesenchymal subtypes, respectively. We fur-
ther categorised patients in each subtype into low-risk and
high-risk groups.

Assessment of signature prognostic value in an
independent dataset
The prognostic value of the selected gene signature
was validated with the data from patients in the Murat
et al. [34] validation dataset who had primary tumours
and received adjuvant chemo- and radiotherapy. PI was
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calculated for the patients using the β ’s obtained from
the TCGA training set and the expression values of the
selected genes in the samples from the patients. They were
classified into low-risk and high-risk groups in such a
manner as to ensure proper patient distribution between
the two groups. Survival of the low-risk and high-risk
groups were determined for both the TCGA and valida-
tion cohorts using the Kaplan-Meier method. Differences
in survival between the risk groups were estimated sta-
tistically by log rank test. Survival differences between
groups was said to be statistically significant if p < 0.05.
Hazard ratios (HR) between risk groups were determined
by Cox proportional hazards regression model.

Mutivariate survival analysis to assess independent
prognostic value
A multivariate Cox survival model was built using three
variables: our prognostic index, MGMT promoter methy-
lation, and age. Ages of patients at diagnosis were obtained
from the clinical file provided by TCGA. MGMT pro-
moter methylation status data were obtained from the
clinical file provided by Brennan et al. [20] The univariate
Cox analysis was first carried out on each variable fol-
lowed by multivariate Cox analysis on all the variables.
The coxph function in the R survival package was used for
the analysis. Using the median PI value, the patients were
assigned into low-risk or high-risk groups. Those with
PI values lower than the median were assigned to low-
risk groups, and those with PI to high-risk groups. The
low-risk and the MGMT methylated promoter groups
were used as references for prognostic index and MGMT
promoter methylation status, respectively. Correlation of
variables with PFS and OS was considered statistically
significant at p(Wald) < 0.05.

Identifying functional interactions between signature
genes
We used the STRING database of known and predicted
protein-protein interactions (https://string-db.org/) [35]
to construct an interaction network for the signature
genes and to perform KEGG pathway enrichment analysis
on the derived subnetwork.

Results and discussion
In this present study, pathway-based and modified SVM-
RFE-based methods were used to select a set of genes that
discriminated between rapidly- and slowly-progressing
GBM patients and combined into a signature. The prog-
nostic value of the signature in predicting PFS and OS
was accessed in the risk groups of GBM patients and
validated on data set from an independent study. The
independence of the signature in predicting PFS and OS
was assessed by a multivariate Cox’s proportional hazards
analysis. Studies on the identification of protein-coding

multigene prognostic signatures in GBM focused on OS
[7–9]. Overall survival (OS) is dependent on other factors
besides gene expression. Progression-free survival, on the
other hand, is expected to be a function of the expres-
sion of certain key genes. Genes whose expression across
a cohort of patients correlated with OS were selected for
survival analysis in these previous studies. This method
has be shown to produce inconsistent signature genes in
different data sets [36, 37].

35 genes discriminate between rapidly- and
slowly-progressing GBM patients
GBM is a highly aggressive brain tumour, and the median
survival of patients with GBM is 14.6 months [38]. We
hypothesized that the tumour’s pre-treatment expression
of genes in pathways associated with chemoradioresis-
tance in cancer would be predictive of how rapidly a
GBM patient would experience progression after standard
treatment. Signaling pathways (MAPK, JAK/STAT, WNT,
NOTCH, Hedgehog, PIK3/AKT), cell cycle, drug trans-
porters, reactive oxygen species metabolism and DNA
repair system are known to be involved in chemoradiore-
sistance in cancer [29, 39–41]. We also reasoned that PFS
times were more appropriate than OS times in group-
ing patients. PFS times were expected to be more closely
related to expression of key genes, while other factors
including age and treatment after disease progression are
also associated with OS.
Pathway enrichment analysis was performed on 3899

genes (Additional file 2) that had varied expression
(MAD ≥ 0.5) across 529 GBM samples. 18 of the 159
gene sets from the enrichment analysis were annotated
for the known chemoradioresistance-associated pathways
(Table 1). Assessment of batch effect in TGCA expres-
sion data set from 529 GBM samples as a function of
the 356 genes extracted from the pathways (Additional
file 3) showed that the data set did not have significant
batch effect (p = 0.118). Inspection of the unguided prin-
cipal component analysis plot of the first two principal
components also showed that no batch effect was present
(Additional file 4). The extracted genes were used in
gene selection by the modified SVM-RFE. Our modi-
fied SVM-RFE was used to identify genes that discrimi-
nated between 48 rapidly-progressing patients (between
6 and 120 days PFS) and 35 slowly-progressing patients
(between 358 and 720 days PFS). Figure 2 shows the
plot of 5-fold cross-validation error rate against num-
ber of genes at each recursive step, starting with the
356 genes extracted from the pathways. The CV error
rate decreased with decreasing number of genes until it
reached 35 genes, which discriminated between rapidly-
and slowly-progressing GBM patients at 100% accuracy.
Further decreases in the number of genes resulted in
increasing error rate.

https://string-db.org/
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Table 1 Selected pathway categories associated with
chemoradiation resistance by pathway enrichment analysis on
genes with high expression variance

Pathway Number of genes

Cell cycle 62

MAPK signaling 87

p53 signaling 39

WNT signaling 48

Glutathione metabolism 23

TGF-β signaling 30

Insulin signaling 40

ErbB signaling 29

Phosphatidylinositol signaling 25

Mismatch repair 12

Inositol phosphate metabolism 20

JAK-STAT signaling 22

Apoptosis 25

VEGF signaling 22

Nucleotide excision repair 15

The PFS times and expression levels of selected genes
in the 118 Class 3 patients were used in multivariate Cox
regression analysis to compute β ’s for the genes. Table 2
shows the β ’s calculated for the 35 selected genes. PI
scores were calculated for all patients who received adju-
vant chemotherapy and radiation (380) by substituting β ’s
and expression levels of selected genes into the prognostic

index formula. The scores were then used to classify sam-
ples into low- and high-risk groups in survival analysis.
All the seed pathways in Table 1 except mismatch repair

had at least one representative in the signature. Cell cycle
had the highest number of genes (eight), followed by
WNT pathway, which had five. The expression of four of
the selected genes were significantly correlated with PFS
(p < 0.05): DKK1, FZD7, and PPARGC1A showed posi-
tive correlation (β > 0), and CCNE1 displayed negative
correlation (β < 0) (Table 2).

Several signature genes are linked to survival in other
cancers
Several genes in the signature have been reported to
be associated with progression-free and/or overall sur-
vival in other cancers. DKK1, FZD3, FZD7, SFRP1, and
SFRP4 are regulators of the Wnt/β pathway. Overexpres-
sion of DKK1 is predictive of unfavourable overall survival
and time to recurrence in intrahepatic cholangiocarci-
noma patients [42]. Overexpression of FZD3 in colorectal
patients was correlated with poor survival [43]. Under-
expression of SFRP1 is associated with poor survival and
may be an independent predictive and prognostic factor
for prostate cancer [44]. SFRP4 increased the sensitiv-
ity of ovarian cancer cell lines to cisplatin, suggesting it
is a predictive marker of chemoresistance in the cancer
[45]. CCNA1, CCND1, CCNE1, CDC6, CDK2, CDKN1C
and CDKN2A regulate the cell cycle. CCND1 amplication
was associated with poor prognosis in estrogen recep-
tor positive breast cancer [46] and [47] found it to be

Fig. 2 Cross-validated error rates of R-SVM in each recursive steps. *The number of features used for SVM classification in each step. Parameters for
SVM: kernel = linear, cost = 10, and 5% cross-validation. The red star represents the level at which the minimal cross-validation error was achieved
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Table 2 Correlation of the expression of the 35 signature genes
with progression-free survival using univariate Cox model

Gene Contained pathway Coefficient (β) HR p

ABL1 Cell cycle -0.1215 0.886 0.650

ErbB pathway

CCNA1 Cell cycle -0.0899 0.914 0.520

CCND1 Cell cycle 0.0746 1.077 0.620

CCNE1 Cell cycle -0.4975 0.608 0.032

CDC6 Cell cycle 0.2324 1.262 0.410

CDK2 Cell cycle -0.5268 0.591 0.150

CDKN1C Cell cycle -0.0285 0.972 0.900

CDKN2A Cell cycle 0.1415 1.152 0.170

p53 pathway

DKK1 WNT pathway 0.1759 1.192 0.040

FZD3 WNT pathway 0.2434 1.276 0.230

FZD7 WNT pathway 0.4934 1.638 0.022

GADD45G MAPK pathway 0.2850 1.330 0.200

GHR JAK-STAT pathway -0.2292 0.795 0.180

GSTT1 Glutathione metabolism 0.0485 1.050 0.590

HSPA1B JAK-STAT pathway -0.1244 0.883 0.340

ID4 TGF-β pathway -0.1680 0.845 0.350

IGFBP3 p53 pathway 0.1103 1.117 0.340

INHBB TGF-β pathway -0.1187 0.888 0.390

IRS2 Insulin signaling -0.0665 0.936 0.790

LIFR ErbB pathway -0.1009 0.904 0.670

PDGFRA MAPK pathway 0.0262 1.027 0.760

PIK3CA Phosphatidylinositol signaling 0.1479 1.159 0.420

PLA2G5 Phosphatidylinositol signaling -0.0176 0.983 0.900

POLE3 Nucleotide excision repair 0.0615 1.063 0.840

PPARGC1A MAPK pathway 0.4121 1.510 0.045

PRKAR2B Insulin signaling 0.0641 1.066 0.660

PYGB Insulin signaling -0.4071 0.666 0.160

SFRP1 WNT pathway -0.1216 0.886 0.270

SFRP4 WNT pathway 0.1461 1.157 0.270

SH2B2 Insulin signaling -0.0199 0.980 0.950

STAG3L4 JAK-STAT pathway -0.0001 1.000 1.000

STMN1 MAPK pathway 0.0837 1.087 0.750

THBS2 Focal adhesion -0.1319 0.876 0.330

THBS3 Focal adhesion -0.3916 0.767 0.160

VEGFA VEGFA signaling -0.0268 0.974 0.810

an independent prognostic factor in primary tumours
and metastases as well as an independent prognostic fac-
tor in metastasis. CDC6 expression was correlated with
overall and recurrence survival in non-small cell lung
cancer patients [48]. CDKN2A promoter methylation
was correlated with poor prognosis of colorectal cancer

patients [49, 50]. CDK2, regulated by CDKN2A, is a
known oncogene and regulator of the cell cycle. Its regres-
sion coefficient (β < 0) in our study, however, showed
that it was positively associated with progression-free
survival. Its overexpression was associated with shorter
survival in oral cancer [51]. GADD45G is implicated in
stress signaling responses to physiological or environmen-
tal stressors, resulting in cell cycle arrest, DNA repair, cell
survival and senescence, or apoptosis [52, 53]. GADD45G
methylation and protein expression were independently
associated with survival of gastric cardia adenocarcinoma
patients [54] and esophageal squamous cell carcinoma
patients [55].

The 35-gene signature predicts progression-free and
overall survival in both TCGA and independent dataset
The 35 genes that discriminated between rapidly- and
slowly-progressing patients were combined into a signa-
ture and its prognostic value first assessed in the patients
that were not used in the feature selection step (Class 3).
The prognostic index (PI) scores of these patients were
standardized and used to split the patients into low- and
high-risk groups. Figures 3a and 3b show the PFS and
OS Kaplan Meier plots, respectively, for the two prog-
nostic groups. The median PFS and OS times for the
low-risk group (256 days, 95% CI = 232 - 299 days
and 635 days, 95% CI = 502 - 1024 days) were signifi-
cantly higher than those of the high-risk group (175 days,
95% CI = 158 - 204 days and 393 days, 95% CI= 345 - 454
days) (p < 0.05).
Two hundred seventy nine of the 380 patients who

received adjuvant chemotherapy and radiotherapy died
before the end of the follow-up period. The remaining
101 patients were alive at the end of follow-up or were
lost to follow-up. The 380 patients were split into low-
and high-risk groups. Figure 3c shows the OS plots for
these prognostic groups. There was a statistically signifi-
cant difference in OS between the groups (p < 0.05). The
medianOS time (548 days, 95%CI= 486 - 646) of the low-
risk group was significantly higher than that (442 days,
95% CI = 394 - 476) of the high-risk group (p < 0.05).
Thirty nine patients in the validation cohort received

adjuvant chemotherapy and radiation. The β ’s computed
with the TCGA cohort and the expression levels of the
signature genes in the validation cohort were used to
calculate PI scores for the patients in the validation
cohort. The patients were then split into low- and high-
risk groups. The median OS of the low-risk group was
higher than that of the high-risk group, and the differ-
ence in OS between the groups was statistically significant
(p < 0.05) (Fig. 3d).
The results show that the 35-gene signature identified

from the TCGA dataset may be a generically applicable
predictor of progression-free and overall survival in GBM,
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a b

c d

Fig. 3 Kaplan-Meier plots for low-risk and high-risk groups of GBM patients that received adjuvant chemotherapy and radiotherapy. The patients
were classified based on PI score. a PFS plots and b OS plots of risks groups from 118 TCGA patients not used in the feature selection. c OS plots of
risk groups from 380 TCGA patients with OS times. d OS plots of risks groups from the Murat et al. data set used for validation. The two numbers in
the topright corner of each plot represents the total number of patients in each risk group and the number of patients who experienced
progression or death within the follow-up periods, respectively

since prognostic value in the prediction of overall survival
was validated in an independent cohort.

The 35-gene signature predicts progression-free and
overall survival in four GBM subtypes
The prognostic value of the signature in predicting PFS
and OS in subtypes of GBM was assessed. 51, 51, 3 and 66
patients belonged to the classical, proneural, neural, and
mesenchymal subtypes, respectively. Figure 4 shows the
results of the PFS survival analysis in the subtypes. There
was statistically significant difference in survival between
low- and high-risk groups in all the subtypes (p < 0.05).
In the classical subtype, the median PFS times of low-
and high-risk groups were 256 and 186 days respectively.
In the mesenchymal subtype, the median PFS times were

269 and 146 days respectively. In the neural subtype, the
median PFS times were 358 and 172 days, respectively. In
the proneural subtype, themedian PFS times were 304 and
172 days, respectively.
One hundred five classical, 95 proneural, 60 neural and

120mesenchymal subtype patients were used for subtype-
specific OS analysis. Figure 5 shows the Kaplan-Meier OS
plots for high-risk and low-risk groups in each subtype.
The low- and high-risk groups differed significantly in OS
in all the subtypes (p < 0.05). In the classical subtype, the
median OS times of low- and high-risk groups were 544
and 452 days respectively. In the mesenchymal subtype,
the median OS times were 485 and 394 days respectively.
In the neural subtype, the median OS times were 476
and 435 days, respectively. In the proneural subtype, the
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Fig. 4 Kaplan-Meier progression-free survival plots for risk groups of patients in each subtype of GBM. The patients were classified based on PI score.
The two numbers in the topright corner of each plot represents the total number of patients in each risk group and the number of patients who
experienced progression or death within the follow-up periods, respectively

median OS times were 748 and 395 days, respectively.
Reports from previous studies show that the prognostic
value of MGMT promoter methylation in GBM patients
is controversial. Zhang et al. [56] showed that MGMT
promoter methylation was associated with better PFS
and OS in patients with GBM regardless of therapeu-
tic intervention, and associated with longer OS in GBM
patients treated with alkylating agents. Costa et al. [5]
did not find significant association between MGMT pro-
moter methylation and the outcome of Portuguese GBM
patients treated with temozolomide. Brennan et al. [20]
however reported that MGMT promoter methylation was
only correlated with OS in the GBM classical subtypes.
The possible explanation for these conflicting reports on
the prognostic value of MGMT promoter methylation
could thus be due to differences in the GBM subtype

distribution which was not considered in most previous
studies. Our 35-gene signature, however, predicted PFS
andOS regardless of the subtype, suggesting that it may be
a more effective predictor of overall and progression-free
survival in GBM.

The 35-gene signature is an independent predictor of PFS
and OS in GBM patients
A multivariate Cox regression model analysis involving
the prognostic index, age and MGMT promoter methy-
lation was carried to assess the independence of the
gene signature to predict PFS and OS. 79 TCGA GBM
patients had associated days to progression, and age
and MGMT promoter methylation status (38 methy-
lated and 41 unmethylated) data. Two hundred sixty nine
patients had days to death and age and MGMT promoter
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Fig. 5 Kaplan-Meier overall survival plots for risk groups of patients in each subtype of GBM. The patients were classified based on PI score. The two
numbers in the topright corner of each plot represents the total number of patients in each risk group and the number of patients who experienced
progression or death within the follow-up periods, respectively

methylation (135 methylated and 134 unmethylated) data.
The results from the univariate and multivariate analy-
ses on the three variable are shown in Table 3. MGMT
promoter methylation was not correlated with PFS in
both univariate and multivariate Cox analyses (p > 0.05).
Prognostic index, age and MGMT promoter methylation
were significantly correlated with OS in the univariate
and multivariate analyses (p < 0.05). The univariate
Cox’s proportional hazard analysis showed that age and
the prognostic index based on the 35-gene signature were
both significantly correlated with PFS (p < 0.05), but only
the prognostic index was significantly correlated with PFS
in the multivariate analysis (p < 0.05). This showed that
the expression signature is an independent predictor of
PFS and OS in GBM patients.
Post-treatment tumour progression depends largely on

alterations in classical cancer and chemotherapy/radiation

resistance-related pathways. This is supported by findings
from the multivariate Cox’s proportional hazard analysis
findings as only the 35-gene prognostic index was sig-
nificantly associated with PFS and was an independent
predictor of PFS. Overall survival, on the other hand, is deter-
mined bymany factors. Age at diagnosis is one of the most
important factors associated with overall survival in can-
cer and has been demonstrated in GBM [57–59]. While
the prognostic value of MGMT promoter methylation
in GBM remains controversial, our findings showed that
prognostic index, age and MGMT promoter methylation
are all independent prognostic factors for overall survival.

Signature genes belong to a functional interaction
subnetwork enriched for known cancer pathways
A subnetwork generated from the interactions between
the signature genes had significantly more interactions
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Table 3 Univariate and multivariate Cox’s proportional hazards model analyses of prognostic factors for progression-free and overall
survival

Variable

Progression-free survival Overall survival

Univariate Multivariate Univariate Multivariate

n n∗ HR p(Wald) HR p(Wald) n n∗ HR p(Wald) HR p(Wald)

Prognostic groups1 79 79 3.41 3.00E-6 3.13 2.97E-5 269 181 1.63 1.45E-3 1.60 2.46E-3

High-risk2

Age 79 79 1.02 4.30E-2 1.01 3.70E-1 269 181 1.04 3.50E-8 1.03 6.12E-7

MGMT methylation status 79 79 1.33 2.14E-1 1,26 3.20E-1 269 181 1.68 6.59E-4 1.52 7.35E-3

Unmethylated3

∗Number of events; 1high-risk and low-risk groups; 2low-risk was used as reference; 3methylated was used as reference

than would be expected for a random set of proteins of
similar size (PPI enrichment p = 1.11 × 10−16) (Fig. 6).
The network was also significantly enriched (p < 0.01)
for KEGG cancer pathways and pathways known to drive
tumour initiation and progression, such as the cell cycle
and PI3K-Akt, Wnt, p53 and Ras signaling [60, 61].

A subset of the signature genes may be relevant to GBM
biology andmay have utility in drug discovery
Combinatorial medicine have been proposed for the
treatment of tumour recurrence. It involves therapeuti-
cally targeting as many genomic alterations responsible
for a disease in a patient as possible and has strong
implications for overcoming the challenge of tumour
progression and drug resistance [62, 63]. One of the ways
to overcome this challenge is to prioritise combinations of
genes to be targeted based on their unique roles in tumour
progression. Of the signature genes, only ABL1, CCND1,

CCNE1, PDGFRA, PIK3CA were found to be linked
to predisposition to at least one cancer by the Online
Mendelian Inheritance in Man (OMIM) database [64].
However, CCNA1, CDK2, CDKN1C, CDKN2A, FZD3,
HSPA1B, IGFBP3, PDGFRA, PIK3CA, PLA2G5, THBS2
and VEGFA all have gene ontology annotations related to
apoptosis, while ABL1, FZD7, PDGFRA, PIK3CA, SFRP1,
THBS2, and VEGFA are annotated as being involved
in angiogenesis (data not shown). Collectively this may
indicate differential gene expression explicitly directed
towards towards resisting induced cell death by both
intrinsic and extrinsic factors and optimising the tumour
microenvironment for maximum fitness. This, combined
with the knowledge that the signature genes are involved
in classical pathways implicated in cancer drug resistance,
suggests that the highlighted genes should be further
validated and assessed as drug targets in designing novel
combinatorial therapies for GBM in future studies.

Fig. 6 Analysis of the subnetwork formed from the interaction between signature genes. a The subnetwork from the STRING database. b Enriched
pathways in the subnetwork
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Conclusion
We propose that the performance of the signature makes
it an attractive candidate for further studies to assess its
utility as a clinical prognostic and predictive biomarker
in GBM patients, and that its component genes may also
have utility as therapeutic targets for improving both
progression-free and overall survival.
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