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Background: Obesity is a worldwide epidemic affecting millions of people. The current 

pharmacological treatment of obesity remains limited and ineffective due to drugs’ undesirable 

side effects. Hence, there is a need for novel or improved strategies for long-term therapies that 

will help prevent the disease progression into other chronic diseases. Nanotechnology holds 

the future for the treatment of obesity because of its versatility, as shown by improved drug 

efficiency and safety in cancer clinical trials. Nano-based drug delivery systems could poten-

tially do the same for obesity through targeted drug delivery. This study investigated the use 

of peptide-functionalized quantum dots (QDs) for the imaging of prohibitin (PHB)-expressing 

cells in vitro and in diet-induced obese rats, which could potentially be used as nanocarriers 

of antiobesity drugs.

Methods: Cadmium (Cd)-based QDs were functionalized with an adipose homing peptide 

(AHP) and injected intravenously into lean and obese Wistar rats. Biodistribution of the QDs 

was analyzed by an IVIS® Lumina XR imaging system and inductively coupled plasma optical 

emission spectroscopy (ICP-OES). For in vitro studies, PHB-expressing (Caco-2 and MCF-7) 

and non-PHB-expressing (KMST-6 and CHO) cells were exposed to either unfunctionalized 

QDs (QD625) or AHP-functionalized QDs (AHP-QD625) and analyzed by fluorescence 

microscopy.

Results: AHP-QD625 accumulated significantly in PHB-expressing cells in vitro when com-

pared with non-PHB-expressing cells. In vivo data indicated that QD625 accumulated mainly 

in the reticuloendothelial system (RES) organs, while the AHP-QD625 accumulated mostly in 

the white adipose tissues (WATs).

Conclusion: AHP-functionalized QDs were successfully and selectively delivered to the PHB-

expressing cells in vitro (Caco-2 and MCF-7 cells) and in the WAT vasculature in vivo. This 

nanotechnology-based approach could potentially be used for dual targeted drug delivery and 

molecular imaging of adipose tissues in obese patients in real time.

Keywords: adipose homing peptide, drug delivery, nanotechnology, prohibitin, white adipose 

tissue

Introduction
Obesity is a complex metabolic disease resulting from an excessive fat accumulation 

in the white adipose tissue (WAT).1–3 It is a major public health concern in both 

industrialized and developing countries and affects an estimated 1.4 billion of adult 

population.1 Obesity is a risk factor for the development of chronic diseases, such 

as diabetes, cardiovascular diseases, stroke, hypertension, and cancer.3,4 Obesity is 

characterized by an increase in the number (hyperplasia) and size (hypertrophy) of 

adipocytes in the WAT, which occurs when energy intake chronically exceeds energy 

expenditure.4,5 The WAT is an endocrine organ and known to secrete biologically 
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active adipokines. The adipokines play a central role in 

WAT homeostasis, through the regulation of energy balance, 

insulin action, glucose metabolism, vascular remodeling, and 

angiogenesis.5–8 Due to constant remodeling and expansion of 

the WAT, the tissue is highly vascularized and angiogenesis 

can serve as a target for therapeutic intervention.9,10

Angiogenesis refers to the formation of new blood 

vessels from the existing microvessels. It is a physiological 

process that occurs mainly during tissue growth, expansion, 

and repair.7–9 In obesity, the increase in the WAT mass is 

associated with increased angiogenesis10,11 and inhibition of 

this process has been shown to reverse obesity and its effects 

in animal models.5–12 Conventional treatment of obesity 

involves physical activity, healthy diet, pharmacotherapy, 

and surgery.1,7 However, pharmacological management of 

obesity is hampered by systemic drug toxicity and undesir-

able side effects.7 Therefore, there is an urgent need for the 

development of safer medication for the treatment of obesity. 

Nanotechnology emerges as a highly promising field that 

offers a novel means for solving the toxicity issues associated 

with the conventional antiobesity drugs. Nanotechnology 

involves the use of small particles at an atomic, molecular, 

and macromolecular scale.13 Various nanoparticles, function-

alized with different biomolecules, have been successfully 

used in clinical and research applications for therapy due to 

their versatility, ease of chemical synthesis, low toxicity, 

and unique biophysical properties.14 Nanoparticles such as 

quantum dots (QDs) and gold nanoparticles (AuNPs) have 

been used in biomedical research, especially for molecular 

imaging and drug delivery, respectively.13,15–17 QDs are 

inorganic fluorescent semiconductor nanoparticles used 

as labeling and imaging tools in biomedical research.18–20 

Unlike organic fluorophores and fluorescent proteins, QDs 

have a broad excitation spectra, narrow emission spectra, 

and long fluorescence half-life and can be conjugated to 

biomolecules, making them excellent probes for bio-imaging 

applications.17–20 The optical properties of QDs are attrib-

uted to quantum confinement due to their nanoscale size.17 

Moreover, their high fluorescence quantum yield and resis-

tance to photo bleaching make them good fluorescent labeling 

agents for targeted delivery and cellular imaging.16,17

The current study reports on molecular imaging and 

targeted delivery of QDs to prohibitin (PHB) expressed by 

the endothelial cells (ECs) in the WAT of obese subjects. 

The adipose homing peptide (AHP) was conjugated to cad-

mium (Cd)-based QDs for selective targeting and imaging of 

PHB both in vitro and in vivo. AHP (amino acid sequence: 

CKGGRAKDC) was discovered by Kolonin et al21 through 

phage display and shown to bind with high specificity to 

PHB expressed in the WAT vasculature of obese mice,21,22 

rats,23 and monkeys.24 PHB is a multifunctional membrane 

protein that has been used as a vascular marker of adipose 

tissue growth in obesity.21,22,24,25 Targeting of a proapoptotic 

peptide to PHB expressed in the WAT vasculature caused 

ablation of white fat of leptin-deficient (Lepob/ob) mice and 

reduced their body weight.21 We also demonstrated uptake, 

binding, and specificity of AHP-targeted AuNPs in the WATs 

of obese rats as a plausible strategy for antiobesity-targeted 

drug delivery system.23 In parallel, the current study inves-

tigated bio-imaging of PHB-targeted QDs and this strategy 

could be used for the diagnosis and prognosis of obesity and 

monitoring the response to the treatment.

Methods
conjugation of QDs to ahP
The Qdot® 625 streptavidin-conjugate (QD625) was pur-

chased from Thermo Fisher Scientific (Waltham, MA, 

USA), and the biotinylated AHP peptide was purchased from 

Anaspec (Fremont, CA, USA). The QD625 was conjugated 

to AHP through biotin–streptavidin chemistry to produce 

AHP-QD625, and the two peptides were mixed together 

to a final concentration of 25 nM in 1× phosphate-buffered 

saline (PBS; pH 7.4). Both the functionalized (AHP-QD625) 

and nonfunctionalized (QD625) QDs were characterized by 

using agarose gel electrophoresis and a NanoLog FL3-22-

TRIAX spectrofluorometer (Horiba, Edison, NJ, USA).

In vitro studies evaluating the binding 
of QDs to cells
Human (Caco-2, MCF-7, and KMST-6) and Chinese Hamster 

Ovary (CHO) cell lines were purchased from American Type 

Culture Collection (ATCC) (Manassas, VA, USA). Caco-2 

(colorectal adenocarcinoma), MCF-7 (breast carcinoma), and 

KMST-6 (skin fibroblast) cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (Lonza, Verviers, Belgium), 

while CHO cells were cultured in Ham-F-12 media (Lonza) 

supplemented with 10% fetal bovine serum (Biochrom, 

Cambourne, UK) and 0.5% penicillin/streptomycin (Lonza). 

The cells were seeded on cover slips (5 mm diameter) at a cell 

density of 2×105 cells/mL in a six-well plate and cultured for 

24 h at 37°C in a humidified incubator. The cells were fixed 

with 4% paraformaldehyde for 10 min and then rinsed with 

PBS. The cells were subsequently incubated with either AHP-

QD625 (50 nM) or QD625 (50 nM), prepared in their respec-

tive media for 1 h at 37°C. The coverslips were then mounted 

on microscope slides using Fluoroshield™ (Sigma-Aldrich 
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Co., St Louis, MO, USA) with diamidino-2-phenylindole 

(DAPI). The slides were viewed under a Zeiss Axioplan 2 

fluorescence microscope at 100× magnification.

Induction of obesity
Three-week-old male Wistar rats (n=16) were obtained from 

the South African Medical Research Council (SAMRC) 

Primate Unit and housed under a controlled temperature, 

humidity, ventilation, and a 12 h light/dark cycle. All proce-

dures involving animals were approved by the SAMRC Ethics 

Committee for Research on Animals (ECRA) (Ref 03/10), 

and the protocol was conducted according to the guidelines of 

the ECRA. The rats were divided into two groups, the low fat 

(LF) and the high fat (HF) groups. The LF group (n=4) was 

fed standard rodent chow and the HF group (n=16) was fed 

HF diet to induce obesity, as described previously.23 Water 

was provided ad libitum. The body weights of the rats were 

monitored weekly for 16 weeks.

Isolation of primary microvascular ecs
ECs were isolated from subcutaneous (SQ) and epididymal 

(Epi) WAT obtained from LF- and HF-fed male Wistar rats 

following a protocol by Seo et al26 with slight modifications. 

Briefly, 5 g of the WATs was washed in PBS and minced into 

1–2 mm pieces. The tissues were enzymatically digested with 

1 mg/mL of collagenase at 37°C for 1 h then filtered through 

200 μm nylon filters to separate the microvascular fraction 

from the adipocytes. The microvascular fraction was incubated 

with Dynabeads® CD31 (Thermo Fisher Scientific) for 20 min 

at 4°C to isolate ECs, following manufacturer’s instructions. 

The EC-bound beads were captured using the DynaMag™-2 

Magnet (Thermo Fisher Scientific) and washed three times 

with PBS. The viable EC cell density was determined using 

Trypan Blue exclusion assay on the Countess® Automated 

Cell Counter (Thermo Fisher Scientific). The cells were used 

immediately for the QDs’ cellular uptake experiment.

ahP-QDs’ binding and cellular uptake by primary ecs
The binding and uptake of AHP-QD625 to ECs was quanti-

fied by inductively coupled plasma optical emission spectros-

copy (ICP-OES) following a previous protocol.23,27 Briefly, 

ECs at a concentration of 1×106 cells/mL were incubated for 

1 h at 37°C in a humidified incubator with 50 nM of either 

QD625 or AHP-QD625. The cells were washed twice with 

PBS, lysed with aqua regia (3HCl:1HNO
3
) and digested at 

90°C for 2 h. The samples were diluted in 2% HNO
3
 and 

analyzed using the 710-ES ICP-OES instrument (Varian, 

Palo Alto, CA, USA), and Cd was used as a standard.

Quantification of QDs’ distribution in tissues
After 16 weeks of obesity induction, the HF rats were body 

weight matched into three HF groups (n=4). The rats were 

singly caged for the duration of the study. On the day of 

QD administration, the rats were deeply anesthetized by 

nasal inhalation of halothane (initiation at 5% and main-

tenance at 1% in 100% oxygen at 1 L/min flow rate). The 

rats were injected intravenously with functionalized AHP-

QD625 (50 nM), unfunctionalized QD625 (50 nM), or PBS 

(untreated). Twenty-four hours postinjection, the rats were 

sacrificed by exsanguination under anesthesia. Blood sample 

was collected through the hepatic portal vein. Various tissues 

(WATs) and organs (liver, lungs, kidneys, spleen, stomach, 

brain, testes, pancreas, heart, and selected WAT) were dis-

sected, weighed, and imaged using the IVIS® Lumina XR 

(Caliper Life Sciences, Waltham, MA, USA). After imaging, 

the tissues were washed with PBS and then stored at -80°C 

until further analysis. The blood samples were stored at 4°C.

The tissues and organs were processed according to 

previously published procedures28 with some modifications. 

One gram of WAT and of each organ was cut into small 

pieces, homogenized, and completely lysed in aqua regia in 

glass bottles. The residue was digested at 70°C in an oven 

for 48 h. The residue was then re-dissolved in 2 mL of 2% 

HCl and sonicated for 2–5 min or until re-suspended. The 

resultant samples were diluted in 2% HNO
3
 and analyzed by 

ICP-OES as described previously.

statistics
Different parameters were analyzed using a one-way analysis 

of variance (ANOVA), followed by a Student’s t-test. All 

the analyses were performed using the GraphPad Prism 5 

statistical package. The samples were considered statistically 

significant when P,0.05.

Results and discussion
The study investigated the targeted delivery, specificity, and 

binding of AHP-QDs to the cells and tissues that express 

PHB. The study also explored the potential use of these 

nanoparticles for the imaging of PHB expressing tissues. The 

distribution of the PHB-targeted QDs was assessed in vitro, 

ex vivo and in vivo. In vitro studies investigated the uptake of 

Cd-based QDs in four cell lines, of which Caco-2 cells were 

previously shown to express PHB as a cell surface receptor, 

while MCF-7 cells expressed PHB in the cytosol.23,27 The 

binding of AHP-QDs to microvascular primary ECs isolated 

from the WAT samples obtained from diet-induced obese 

Wistar rats was also examined.
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ahP-QDs’ binding to PhB-expressing cells
PHB-expressing (MCF-7 and Caco-2) and non-PHB express-

ing (CHO and KMST-6) cells were exposed to either QD625 

or AHP-QD625, and binding of these nanoparticles was 

studied by fluorescent microscopy. A significant cellular 

binding and uptake of AHP-QD625 by MCF-7 and Caco-2 

cells was observed as shown in Figure 1A. The red fluo-

rescence signal represents uptake of the QDs by the cells, 

which is seen only on MCF-7 and Caco-2 cells exposed to 

AHP-QD625. No fluorescence was detected when the two 

cell lines were incubated with QD625 (untargeted QDs).

There was no indicative red fluorescence observed on 

CHO and KMST-6 cells exposed to both QD625 and AHP-

QD625, an indication that no cellular binding or uptake by 

these cells occurred. These data suggest that the mechanism 

for intracellular uptake of the targeted QDS by MCF-7 and 

Caco-2 cells was mediated by the PHB receptor. Based 

on the water-soluble tetrazolium-1 assay results, the QDs 

at #50 nM were not toxic to all the cells used in the study 

for the duration of the experiment (data not shown).

Binding and uptake of ahP-QDs by primary 
microvascular ecs from adipose tissues
Microvascular ECs were isolated from Epi and SQ adipose 

tissues obtained from lean (LF) and obese (HF) rats. The 

cells were exposed to QD625 and AHP-QD625, and accu-

mulation or uptake of Cd metal was analyzed by ICP-OES. 

Figure 2 shows the binding and uptake of QDs by the ECs 

isolated from Epi and SQ. ECs from lean rats (LF), exposed 

to QD625 and AHP-QD625, showed reduced levels of Cd in 

both Epi and SQ. In contrast, ECs from the HF group treated 

with AHP-QD625 showed significantly higher Cd levels in 

the two tissues. This suggested that QD625 and AHP-QD625 

were differentially bound and/or taken up by ECs obtained 

from diet-induced obese rats than their lean counterparts. 

Moreover, the binding of AHP-QD625 was significantly 

higher in HF rats and indicates a receptor-mediated binding 

and uptake. This could be due to an increased PHB expres-

sion on the cell surface of ECs from obese rats,23 PHB was 

shown to be upregulated in the plasma membrane of vascular 

ECs in the WATs of obese subjects.21–25

In vivo studies
To determine whether the observed in vitro effects of QDs 

can be replicated in vivo, male Wistar rats were fed either 

an LF diet or a HF diet for 16 weeks to induce obesity. 

The rats (LF and HF group) received a nontoxic amount of 

50 nM of either QD625 or AHP-QD625 for 24 h. The obese 

rats on the HF diet had a significantly higher body weight 

(701.2±14.8 g) compared to the lean rats, which were on an 

LF diet (539.7±15.9 g). Figure 3 shows the selected animal 

body tissue and organ weights of lean and obese rats at the 

termination of the study. The adipose tissue (SQ, Epi, mes-

enteric [Mes], retroperitoneal [Retro], and perirenal [Peri]) 

weights in the HF group were also higher than those in the LF 

group. The weight differences observed for the other organs 

were not statistically significant for the two groups.

Imaging and biodistribution of QDs in vivo
The obese (HF) rats were intravenously injected with PBS 

(untreated control), QD625, or AHP-QD625 and sacrificed 

after 24 h (n=4). Various organs and tissues were dissected 

to assess the biodistribution of QDs ex vivo. The organs 

and tissues from the three HF groups were visualized using 

an IVIS® Lumina XR and then quantified by ICP-OES. 

Figures 4A and 5A show the representative image analysis 

of QDs’ fluorescent signal in selected organs and WATs of 

obese rats injected with PBS (control), QD625, or AHP-

QD625. High fluorescent intensities of unfunctionalized 

QD625 were observed mainly in the liver, kidneys, testes, 

and brain, as shown by the intense yellow fluorescence signal, 

but were rarely distributed in the WATs. Epi exhibited rela-

tively low levels of fluorescent signal of QD625 and barely 

noticeable in the other WATs (Figure 5A). In contrast, the 

fluorescent signal of AHP-QD625 was significantly higher 

in the WATs but not in the liver, testes, kidneys, and brain. 

No fluorescence was observed in organs from rats injected 

with PBS (untreated).

Figures 4B and 5B show the quantitative analysis of Cd 

content in the tissues of rats injected with both the unfunction-

alized QD625 and functionalized AHP-QD625. High concen-

trations of Cd accumulated mostly in the reticuloendothelial 

system (RES) organs (liver, lungs, spleen, and kidneys) of 

rats injected with QD625 (Figure 4B), while low amounts of 

Cd were found in the WATs (Figure 5B). In contrast, the rats 

injected with QDs that contained the PHB targeting peptide 

(AHP-QD625) showed increased concentrations of Cd in 

the WATs and the Cd levels were significantly reduced in 

the liver, lungs, spleen, kidneys, and testes. These findings 

are in accordance with previously reported studies,15,29,30 

where most of the unfunctionalized nanoparticles accumu-

lated in the RES organs (liver, lungs, kidneys, and spleen). 

These results also indicate that AHP-QD625 accumulates 

preferentially in the WATs, further corroborating studies 

showing that AHP targets PHB on the WAT vasculature of 

obese animals.21–25
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Figure 1 Fluorescence imaging of cells treated with QD625 or ahP-QD625.
Notes: PhB-expressing (A) and non-PhB expressing (B) cells were treated with QD625 or AHP-QD625 for 1 h; the images were captured using a fluorescence microscope. 
scale bars, 10 μm. Blue, nuclei stain (DAPI) and red, QDs’ fluorescence.
Abbreviations: ahP, adipose homing peptide; DaPI, diamidino-2-phenylindole; PhB, prohibitin; QDs, quantum dots.
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In the current study, the QDs served as fluorescence 

probes for cellular and in vivo imaging of PHB-expressing 

cells. The QDs proved to be biocompatible and stable 

and targeted the PHB receptor when conjugated to AHP 

(Figures 4 and 5). Biodistribution and targeted delivery of 

PHB-targeted QDs were reproducible in vitro (Figure 1), 

ex vivo (Figure 2), and in vivo (Figures 4 and 5). Similar data 

were reported on the use of PHB-targeted AuNPs in vitro 

and in vivo.23 Although the toxicity of Cd is irrefutable,31 

the uptake and toxicity of the Cd-based QDs is dependent 

on their size, shape, charge, shell, and concentration.32–34 

These parameters can be modified and customized for clini-

cal applications, by attaching biomolecules such as PEG to 

passivate the nanomaterials. Conjugation of biomolecules 

to the QD surface can potentially reduce leaching of the 

toxic Cd metal from the core34,35 and assist in the clearance 

of the QDs through renal filtration.32,33 An independent 

study demonstrated that skin-derived mesenchymal stem 

cells (MSCs) can be used as a vehicle for the transportation 

and selective delivery of CdSe/ZnS QDs to cancer cells 

in vivo.36 These MSCs are known to selectively migrate 

and target wounds, inflammatory sites, and tumor cells.36,37 

QD-loaded skin MSCs were selectively delivered to cancer 

cells in human tumor xenograft models.36 While the fate 

of Cd-QDs still needs to be addressed, the QDs’ excellent 

properties can come in handy in assays where toxicity is 

not an issue such as ELISAs, immunocytochemistry for 

cellular imaging.34 Meanwhile, other less toxic QDs such 

as indium-based QDs can be considered for live imaging 

in vivo.38
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Figure 2 cellular binding and uptake of QD625 and ahP-QD625 by microvascular ecs isolated from the WaTs.
Notes: ecs isolated from epi (A) and sQ (B) WaTs of lean and obese rats were treated with QD625 and ahP-QD625 for 1 h at 37°c. Bar graphs show cd as a percentage 
of the treatment dose present in each sample as determined by IcP-Oes analysis. n=3; *statistically significant at P,0.05.
Abbreviations: ahP, adipose homing peptide; cd, cadmium; ecs, endothelial cells; epi, epididymal; hF, high fat; IcP-Oes, inductively coupled plasma optical emission 
spectroscopy; lF, low fat; sQ, subcutaneous; QD, quantum dot; WaTs, white adipose tissues.
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Conclusion
The study demonstrated the selective delivery and imaging 

of AHP-QD625 on PHB-expressing (Caco-2 and MCF-7) 

cells and the WAT vasculature of obese Wistar rats. This 

might represent a potential nanotechnology-based approach 

for targeted drug delivery and live imaging systems of patho-

logical adipose tissue and could also be used to determine the 

efficacy of antiobesity agents during the treatment of obesity. 

The study showed the use of biocompatible QDs for targeting 

and imaging of cells and tissue vasculature that express PHB 

in vitro, ex vivo, and in vivo. However, the potential toxicity 

of Cd-based QDs due to Cd remains a concern.20 Moreover, 

due to the short duration of the experiments in this study, a 

determination on whether the persistence of Cd might produce 

long-term toxicity was not made. Therefore, it is important 

to study whether long-term exposure to Cd-based QDs has 

toxic effects on the animals. The use of less toxic QDs for live 

imaging purposes should be considered in the future.

Figure 4 Fluorescent imaging and quantitative biodistribution of QDs in organs isolated from obese Wistar rats.
Notes: The rats were intravenously injected with PBs (untreated), QD625, and ahP-QD625. Fluorescence images of selected organs were acquired using IVIs® lumina 
Xr (A). Yellow color, QDs’ fluorescence. Bar graphs show Cd as a percentage of the injected dose present in each sample as determined by ICP-OES analysis (B). 
**Statistically significant at P,0.001; ***P,0.0001.
Abbreviations: ahP, adipose homing peptide; cd, cadmium; epi, epididymal; IcP-Oes, inductively coupled plasma optical emission spectroscopy; Max, maximum; 
Min, minimum; PBs, phosphate-buffered saline; QD, quantum dot.
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