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Abstract In the polar ionosphere, variations in Joule heating are significantly controlled by changes in
plasma convection, such as that brought about by changes in the interplanetary magnetic field. However,
another important consideration when calculating Joule heating is the velocity difference between this
plasma and the neutral thermosphere colocated with the ionosphere. Neutral wind data are often difficult
to obtain on a global scale; thus, Joule heating has often previously been calculated assuming that neutral
velocities are small and can therefore be neglected. Previous work has shown the effect of neutral winds
on Joule heating estimations to be more significant than originally thought; however, the diurnal variations
of the neutrals due to changes in solar pressure gradients and Coriolis forces have yet to have their impact
on Joule heating assessed. We show this universal time effect to be significant in calculating Joule heating
and thus can differ significantly from that calculated by neglecting the neutrals. In this study, we use
empirical models for the neutral wind, conductivities, and magnetic field to create Northern Hemispheric
patterns of Joule heating for approximately 800,000 individual plasma convection patterns generated
using data from the Super Dual Auroral Radar Network. From this, a statistical analysis of how Joule heating
varies in morphology and magnitude with universal time is shown for differing seasons and levels of
geomagnetic activity. We find that neutral winds do play a significant role in the morphology and total
energy output of Joule heating.

1. Introduction

Joule Heating in the ionospheric E and F regions is a significant energy sink of magnetosphere-ionosphere
coupling, arising due to the exchange of momentum between constituent charge carriers and neutrals. Joule
heating has been estimated to account for up to 70% of the total ionospheric power input during geo-
magnetic storms (Knipp et al., 2004). Heating effects can cause perturbations of the upper thermosphere
(Huang et al., 2012) as well as changes to general atmospheric composition that can impact low Earth orbiting
satellites (Tsurutani et al., 2004). It is therefore important to be able to accurately calculate Joule heating rates.

The morphologies of the ionospheric plasma convection and neutral atmospheric winds are both heavily
studied areas. At polar (>60∘ magnetic latitude) F region altitudes of about 250 km, ion motion is controlled
primarily as a result of the solar wind interaction with the Earth’s magnetosphere, opening and closing flux at
the dayside and nightside magnetopause (Cowley & Lockwood, 1992; Dungey, 1961). Neutral winds, however,
are driven by a combination of ion-neutral drag, Coriolis forces, and solar pressure gradients (Rishbeth, 1977).
As a result of the influence of ion-neutral drag, a common neutral wind pattern exists which is close in mor-
phology to the prevailing ionospheric convection pattern (Sakanoi et al., 2002; Tsuda et al., 2007). Ion-neutral
drag produces regions where the ion and neutral trajectories align, leading to lower relative velocities and
thus low Joule heating. Coriolis forces, solar pressure gradients, and other forces deviate the neutrals from
that alignment, resulting in larger relative velocities and increased Joule heating.

Plasma convection is most typically centered about the geomagnetic pole, with the dayside cusp located
somewhere around magnetic local noon (Crooker, 1979). For the case of steady solar wind driving conditions,
whereby a convection pattern does not change much over the course of a day, varying pressure gradients
due to the magnetic pole rotating in and out of sunlight acts to force neutrals away from regions of increased
temperatures (Liu et al., 2006; Titheridge, 1995). This means that the neutral wind pattern with respect to
the magnetic latitude, magnetic local time coordinate system (MLAT-MLT) is changing while the convec-
tion remains relatively unchanged. Joule heating therefore also changes in this scenario. In the forthcoming
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sections, we consider these particular conditions and examine the universal time (UT) dependence of Joule
heating due to the regular, diurnal variations of the neutral wind.

The rate of Joule heating in a medium is calculated as the dissipation rate of perpendicular currents, J⟂ ⋅ E
(Lu et al., 1995). This is given by

J⟂ ⋅ Etotal = 𝜎P

(
E + Vn × B

)2
(1)

where E is the convection electric field, 𝜎p is the conductivity in the direction of the electric field (Pedersen),
and Vn × B accounts for the electric field generated by the neutral wind dynamo due to the drag imposed
on the charged ionosphere. Although it is assumed that Joule heating is deposited over a range of alti-
tudes (mostly under 150 km, Huang et al., 2012), it was shown by Lu et al. (1995) that the entire ionospheric
height-integrated effective pattern of neutrals is approximately equal to those seen at 160 km. If we therefore
assume that all parameters remain constant over an altitude range where Joule heating is being deposited,
then the height-integrated Joule heating rate, given by J. Baker et al. (2004), is

ΣQj = ΣpE2

⏟⏟⏟
Qc

+

Qw1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2ΣpE ⋅
(

Vn × B
)
+

Qw2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Σp

(
Vn × B

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Qw

(2)

where ΣP is the height-integrated Pedersen conductivity. Qc is known as the convection heating, which is the
energy contributed from plasma convection against a zero neutral velocity background. In the case of the
static MLAT-MLT convection pattern described above where E remains steady, the value of the convection
heating term would only be controlled by any changes in Pedersen conductivity. Qw is known as the wind
correction term and includes two components: one which accounts for the direction of the neutrals relative to
the plasma (Qw1) and one that describes heating due to neutrals moving against motionless plasma (Qw2). Qw1

can be negative if the neutrals and plasma flow in the same direction, meaning Qw itself can also be negative
and thus reduce the heating given by Qc alone. Often, contributions from neutral winds have been neglected
because Qc is usually much greater than Qw (Crowley & Hackert, 2001; Matsuo et al., 2003), while other studies
have shown that the neutrals, and thus Qw , can effect Joule heating more substantially (Deng & Ridley, 2007;
Lu et al., 1995; Thayer, 1998).

Simultaneous measurements of all parameters required to calculate Joule heating with a large enough spa-
tial coverage is difficult; therefore, previous studies have included estimations based on geomagnetic indices
(Baumjohann & Kamide, 1984; Lu et al., 1998), incoherent and coherent scatter radar measurements (Aikio &
Selkälä, 2009; Cai et al., 2016; Kosch & Nielsen, 1995), and empirical models (Dickinson et al., 1981; Weimer,
2005). The Super Dual Auroral Radar Network (SuperDARN) can offer high spatial-temporal resolution global
maps of convection electric fields (Chisham et al., 2007), although neutral winds and conductivities are much
more difficult to measure on a similarly large scale. Global estimations of these parameters have therefore
utilized the averaging of large data sets consisting of satellites and ground-based radars. Thayer and Killeen
(1993), Lühr et al. (2007), and Förster et al. (2008) derived statistical patterns for the neutral winds, which
revealed a near-similar structure to a typical two-cell plasma convection pattern (antisunward flow across the
magnetic polar cap and return flow at dusk MLT). All, however, found several divergences from plasma con-
vection in the patterns due to Coriolis forces and pressure gradients such as the persistent absence of a neutral
wind dawn cell. A limitation of these models is also that they are averaged over all universal times and thus
provide no temporal information. We instead utilize the Horizontal Wind Model 14 (HWM14) (Drob et al., 2015)
for the neutral winds, which does include temporal variability. Additionally, we use statistical models (Hardy
et al., 1987; Rich et al., 1987) for the Pedersen conductivity and the International Geomagnetic Reference Field
(IGRF), 12th generation (Thébault et al., 2015), for the magnetic field.

2. Data
2.1. Neutral Winds
HWM14 is an empirical model of neutral wind velocities from the ground to approximately 600 km in altitude.
It uses statistical averages from numerous ground-based and satellite data sets to create wind patterns with
input parameters of UT, day of the year, geomagnetic Ap index, altitude, and geographic latitude/longitude.
As stated previously, studies have used 160 km as an altitude to assess neutral winds due to this being
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representative of the total ionosphere height-integrated winds. We therefore use the same reasoning by
assessing HWM14 at 160 km for this study.

There is an ion-neutral drag time lag between the plasma convection and the neutral winds such that large
changes in convection will not be immediately visible in the neutrals until after some time. The neutral wind
reaction time has been measured previously within the order of minutes to hours (Deng et al., 2009; Kosch
et al., 2001). However, HWM14 is not a global circulation model and therefore has no memory of previous
conditions. This means that during periods where the plasma velocities change, HWM14 will incorrectly repre-
sent the contribution of the neutral winds to Joule heating calculations after a time frame where the neutrals
should have responded to ion-neutral drag effects. HWM14 neutral wind patterns are calculated based on Ap
index-binned averages for a certain time rather than direct ion-neutral drag derivations from an ionospheric
convection pattern. If, however, it is assumed that a convection pattern with a corresponding Ap has been
steady for a sufficiently long enough time, the neutrals will have spun up into some equilibrium morphology
with regard to ion-neutral drag. HWM14 therefore creates a reasonably representative climatological wind
pattern for a specific Ap index at some UT on average.

The neutral wind flywheel effect (W. Deng et al., 1993) is another phenomena of the thermosphere which
effects the morphology of the plasma convection. At high latitudes, the neutral wind dynamo in general is
not as significant as it is at middle and lower latitudes due to the dominance of the convection electric field
(Richmond & Roble, 1987). However, under situations whereby a sustained convection electric field changes
suddenly, such as due to changes in the interplanetary magnetic field (IMF), then the neutrals will continue
to move at a lagged morphology until they have fully responded to ion-neutral drag. During this time, the
neutral winds can drive significant current systems and even impose drag forces on the plasma. In this case,
HWM14 would accurately represent a lagged neutral wind when accompanied with accurate plasma data for
the duration of which the Ap index does not change.

2.2. Electric Field
The SuperDARN (Chisham et al., 2007) is a network of over 30 radars measuring the line-of-sight component of
F region E×B ion velocities of convective plasma, among other parameters. The motions of these convective
ions can equivalently be represented by contours of constant electrostatic potential via consideration of the
electric field, given by

E = ∇Φ (3)

and

v = E × B
B2

(4)

where Φ is the electrostatic potential and v is the plasma velocity, by using the map potential technique
described by Ruohoniemi and Baker (1998). In this case, the convection electric field is derived from the fitting
of a spherical harmonic expansion of the ionospheric electrostatic potential to the measured line-of-sight
velocities available from the SuperDARN network. A background empirical model, which varies depending
on IMF components in the geocentric solar magnetospheric (Hapgood, 1992) Y-Z plane (otherwise known as
clock angle), is used to constrain the fitting in regions of limited radar data coverage.

2.3. Pedersen Conductivity
Pedersen conductivities were calculated from two models, which account for the largest contributions (Rich
et al., 1987). These contributions are from solar extreme. The solar EUV component (ΣSun

P ) has been shown to
be well represented as a function of the solar zenith angle,𝜒 , and the 10.7 cm radio flux intensity, f10.7 (Kamide
& Matsushita, 1979; Rich et al., 1987; Wallis & Budzinski, 1981):

ΣSun
P = 12.5

(
f10.7

180

) 1
2 0.06 + exp

[
1.803 tanh (3.833 cos𝜒) + 0.5 cos𝜒 − 2.332

]
[
1 − 0.99524 sin2

(
𝜆ss

)]
×
[
1 + 0.3 cos2

(
𝜆ss

)] (5)

where 𝜆ss is the colatitude of the subsolar point. The numerator of the second term simply describes the
decrease in conductivity with increasing solar zenith angle across the day-night terminator. The denomina-
tor of the same term is the adjustment in latitude for the position of the subsolar point. In the magnetic
pole-centered coordinate system, there is a UT variation due to the offset with respect to the geographic spin
axis, creating a 24-hr cycle of enhanced and suppressed solar EUV conductance. This is because of the variation
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Figure 1. A comparison of height-integrated Pedersen conductivities for Northern Hemisphere summer and winter
times with Ap indices of 0 and 39, at 00 universal time. The plots are in updated altitude adjusted corrected
geomagnetic latitude, magnetic local time coordinates (Baker & Wing, 1989; Shepherd, 2014) extending to 50∘ magnetic
latitude. f10.7 is a constant 226 solar flux units for all plots.

in the angle between the Earth’s magnetic pole and the subsolar point, otherwise known as the dipole tilt
angle (Laundal & Richmond, 2017). Additionally, there is a large seasonal difference in dipole tilt ranges at
polar latitudes, which can bring about significant variation in Joule heating between the hemispheric summer
and winter months.

Some optical instruments (such as Global Ultraviolet Imager aboard Thermosphere Ionosphere Mesosphere
Energy and Dynamics) are able to infer the height-integrated Pedersen conductivity due to particle precipi-
tation (ΣAurora

P ) from measurements of auroral energy (E0) and energy flux (I) (Baker et al., 2004; Hardy et al.,
1987; Robinson et al., 1987) through the empirical relation:

ΣAurora
P =

[
40E0(

15 + E2
0

)
]

I0.5 (6)

however, these parameters are usually not available with large enough spatial and temporal coverage to per-
form effective global-scale studies. Kosch et al. (1998) showed that all-sky images can be used to calculate the
Pedersen conductivity from 557.7 nm auroral emissions, but this would only provide coverage that was lim-
ited to the field of view of the instrument. Hardy et al. (1985, 1987) developed statistical averages of auroral
precipitation patterns from the Defense Meteorological Satellite Program and Solwind satellites based on Kp
index, of which an estimated height-integrated Pedersen conductivity could be calculated using the relation-
ship in equation (6). Small-scale conductivity enhancements of the order of about half a degree in longitude,
which can vary greatly from the statistical average, are lost in this process.

Because the two height-integrated conductivity models discussed are considered to overlap completely in
altitude, we may not simply add them. This is due to the particle precipitation model intrinsically containing
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information about the solar EUV component at auroral oval locations. A root-sum-square approximation
is therefore used, which has been shown to produce the lowest deviation from measurements (Wallis &
Budzinski, 1981). The total height-integrated Pedersen (ΣP) conductivity for a specified position is thus a
function of f10.7, 𝜒 , and Kp index (which has a direct translation to Ap, Clúa de Gonzalez et al., 1993):

ΣP =
√(

ΣSun
P

)2 +
(
ΣAurora

P

)2
(7)

Figure 1 shows how global conductivity patterns change due to season and Ap index using these two mod-
els. ΣP weights total convection heating rates, resulting in a greater Qc during the summer months and UT’s
where the magnetic polar cap is more sunlit (ΣSun

P controlled). More geomagnetically active times also cause
an enhanced Qc where the precipitation conductivity oval extends to lower latitudes (ΣAurora

P controlled). Solar
EUV radiation is the dominant source of conductivity during hemispheric summer months, but not in winter.
Electron precipitation conductivities are invariant with season using these models.

2.4. Magnetic Field
The IGRF 12th generation (Thébault et al., 2015) is used to model the Earth’s tilted dipole field as a func-
tion of geographic position, time, and altitude. The magnitude of B over the limited altitude range assumed
in equation (2) does not vary substantially; therefore, an altitude of 160 km was used to match that
used in HWM14. At the high magnetic latitudes used in this study, the terrestrial field is mostly vertical
and does not vary much, therefore not contributing substantially to any Joule heating variability unless
geomagnetically disturbed.

3. Method

Joule heating was initially calculated using a database of every Northern Hemispheric convection electric field
pattern, integrated over a period of 2 min each, generated using SuperDARN data and the map potential tech-
nique from 2000 to 2006, as well as the other sources of data described in section 2. To ensure that patterns
used contained enough data to warrant a realistic map potential model output and lower the dependence
on the map potential model, a quality threshold of 200 SuperDARN velocity vectors was used for each indi-
vidually generated SuperDARN convection pattern. This was found to reduce the number of Joule heating
patterns that were used by approximately 55% to around 800,000. The electric field, Pedersen conductivity,
neutral wind, and magnetic field were each interpolated on to an equal area polar grid, centered on the mag-
netic pole and fixed in MLT. Grid cells extend 1∘ wide in magnetic latitude ranging from 50∘ to 90∘, with a
variable longitude/MLT width with increasing latitudes. This maintains an equal area resolution over the entire
grid. The result is one Joule heating pattern for every SuperDARN convection pattern used. It should be noted
that a blanket threshold of 200 SuperDARN velocity vectors does not imply an even spatial coverage across
all local times. Multiple radars are, however, required to achieve this many vectors in one map, improving this
to some degree.

Joule heating has a dependence on season due to the solar EUV conductivity component, so it is an impor-
tant influence to consider when looking at diurnal variations. The same can be said about the morphology
and magnitude of the electric field with varying geomagnetic activity (Ahn et al., 1992). To capture both of
these, as well as any trends due to UT, all Joule heating patterns are binned first into two seasons represent-
ing the Northern Hemispheric light (1 April to 30 September) and dark (1 October to 31 March) months. From
here, patterns are additionally binned into three ranges of Ap index representing geomagnetically low (0–6),
moderate (7–22), and high (27–400) activity levels. Finally, the patterns are binned into 24 evenly spaced UT
hourly ranges (0–23). Histograms of the counts in each of these bins are shown in Figure 2.

Ap index-based bins were chosen for our analysis for consistency with the HWM14. It should be noted that
this does not allow for a full analysis of plasma convection, which is controlled by factors such as the IMF
clock angle. Although we expect Ap to respond to changes in the IMF over long (>3 hr) timescales, there is
not necessarily a one-to-one relationship between any given IMF magnitude or direction and the associated
Ap index.

In order to keep the quantity of Joule heating patterns in each bin high, seasonal analysis was restricted
to light and dark months, as defined above. Similarly, ranges of Ap indices were chosen such that there
would be enough data in each UT bin, representing low, moderate, and high geomagnetic activity periods,
respectively. It is noted that the higher activity bin (Ap indices 27–400) contains consistently lower numbers
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Figure 2. The number of Joule heating maps in each universal time bin described in section 3 for the Northern
Hemispheric (a) light and (b) dark seasons. The 27–400 Ap range has consistently the lowest number of counts per bin,
and all counts increase for the dark season.

of Joule heating patterns in each UT bin than the other ranges. This is due to the occurrence of Ap indices
decreasing substantially at higher activity levels. It was decided to not decrease the lower bound of this Ap
bin to include more data, as the result would have weighted this bin too heavily toward lower geomagnetic
activity levels.

4. Results and Discussion

As an initial visualization, Figure 3 shows MLAT-MLT plots of Qc, Qw , and total Joule heating (QJ) for 00 UT,
06 UT, 12 UT, and 18 UT for the moderate Ap index range (7–22) during the light season. We can immediately
see that changes in the diurnal conductivity at the magnetic pole mean Qc is largest when the polar cap is
most sunlit.

Considering the heating due to Qc in Figure 3, enhancements are mainly confined to the regions where the
gradient of electric potential (i.e., the electric field, E) is usually steepest. This is typically at the 60–75∘ MLAT
dusk and dawn sunward convection regions. Qc will also be greater on the dayside due to higher solar EUV
Pedersen conductivity. UT variations only arise due to changes in this conductivity which is dependent on the
dipole tilt angle, which causes a larger magnitude of Qc globally at 18 UT. This is consistent with the offset of
the geomagnetic pole from geographic, which is approximately 5 hr in longitude and thus introduces a con-
ductivity peak at approximately 17 UT instead of 12 UT. Note that in the region of the auroral oval, conductivity
is also enhanced, so this will increase Qc in the presence of strong electric fields.

Changes in the magnitude of Qw with UT are also produced by conductivity changes. The largest single posi-
tive and negative values of Qw therefore occur at 18 UT. Regions of wind heating (+Qw) occur when neutrals
directionally oppose the ions, which on average happens consistently in the dawn sector. Reductions in heat-
ing relative to Qc (−Qw) occur when the ions and neutrals align in the same direction, which primarily happens
in the dusk sector and high magnetic latitude (>80∘) regions. This implies that the duskside neutral wind
pattern tends to align more closely with the plasma convection than the dawnside pattern. Dusk and dawn
asymmetry in neutral winds has been observed before in satellite measurements (Dhadly et al., 2017; Förster
et al., 2008; Lühr et al., 2007), global circulation model observations (Deng & Ridley, 2006), and single radars
(Baron & Wand, 1983), appearing more prominently at higher levels of geomagnetic activity. A dusk cell is also
consistently visible in HWM14, while a dawn cell is rarely, if ever, seen to form. This is attributed to Coriolis and
centrifugal forces (Fuller-Rowell & Rees, 1984) and means that under most geomagnetic conditions, there is
a tendency for greater Joule heating in the dawn sector, which is consistent with previous studies (Deng &
Ridley, 2007; Matsuo et al., 2003; McHarg et al., 2005; Thayer et al., 1995). The morphology of Qw also changes
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Figure 3. Light season convection heating (Qc , left column), wind correction (Qw , middle column), and Joule heating
(Qj , right column) patterns for Ap range 7–22 for (a) 00 universal time (UT), (b) 06 UT, (c) 12 UT, and (d) 18 UT. Plots are
the same format as Figure 1.

BILLETT ET AL. 2404
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with UT in a way that is distinct from the conductivity cycle. This is shown most clearly by the duskside
Qw change from negative to positive between 06 UT and 12 UT, indicating that the neutral wind pattern is
changing with respect to plasma convection as UT progresses.

The sum of Qc and Qw gives the total Joule heating (Qj), also shown in Figure 3. Qj is mostly reduced from
Qc on the duskside and enhanced from Qc on the dawnside, at all UTs, in accordance with the wind correc-
tion. Dawnside Qj is lowest at 06 UT, while the maximum is at 18 UT, both corresponding to times of low and
high conductivity, respectively (as can be seen in the equivalent Qc patterns). The minimum and maximum
duskside Qj , however, does not correspond to the minimum and maximum in conductivity levels, occurring
at 00 UT and 12 UT respectively, due to the neutral wind directional changes with UT mentioned previously.
Overall, Joule heating is much more spatially variable in MLT than the convection heating because of the UT
dependence in the wind correction.

To capture the full UT dependence of Joule heating morphology for both light and dark seasons, as well as the
three Ap index ranges, heating averages for each hour MLT sector of each pattern were derived and plotted
with respect to the 24 UT bins that are shown in Figure 2. This gives one 24 × 24 pixel plot per geomagnetic
activity range, per season for Qc, Qw , and Qj . Magnetic latitudes greater than 80∘ and less than 60∘ were not
considered in averaging because those regions either have a statistically uniform distribution of Joule heating,
or no heating. The results are shown in Figure 4. For Qc and Qj , a black cross was placed in the MLT sector
where the highest average heating occurred to better track morphology changes.

For all Qc plots, heating is mostly confined to the predusk sector, extending closer to noon at higher activity
level ranges. The maximum Qc stays primarily on the duskside at all UTs, although is more spatially variable in
MLT during the dark season and can be located on the dawnside at later UTs. All regions of Qc become more
prominent at approximately 17 UT, which corresponds to the peak in solar conductivity that can also be seen
in Figure 3. The largest values of Qc occur in Figure 4c, which is expected due to high solar conductivity and
large convection electric fields that are associated with high geomagnetic activity (Ahn et al., 1992).

During the dark season, the magnitude of Qc is lower and there is also more variability in the location of max-
imum heating. This stays mostly close to dusk but becomes sporadic in Figure 4f. This could be an indication
of lower data coverage, or greater morphological variability in the convection electric field during active peri-
ods and dark months. The latter suggestion agrees with the conclusions made by Matsuo et al. (2003) and
Pettigrew et al. (2010) that the reconnection topology might vary with changing solar induced conductivity,
thus affecting the convection morphology.

As discussed previously, HWM14 shows asymmetry between dusk and dawn neutral winds, leading to
increased Joule heating on the dawnside. This is shown by the constantly positive dawnside Qw for all plots in
Figure 4. Qw is mostly negative on the duskside, apart from a range of UTs centered around 12 UT which turn
positive. This range reduces slightly with increased geomagnetic activity levels. As in Figure 3, this indicates
that on average, neutrals typically flow in the direction of the plasma on the duskside, while the opposite is
true for the dawnside. The change from negative to positive on the duskside must be due to UT variations
in the relative neutral-ion morphologies. Qc plots show that for the most part the convection electric field
only varies on the dusk side due to solar conductivity enhancements when considering the statistical pat-
terns presented here. This means that the neutral wind morphology is likely changing direction more than
the plasma with UT on the duskside. This agrees with previously observed neutral wind asymmetries (Baron
& Wand, 1983). It is important to note, however, that on an event-by-event basis, electric field variability can
potentially contribute much more to Qc UT variability.

As a result of Qw , the morphology of Qj differs significantly from Qc. Dawnside Joule heating becomes more
enhanced between 12 UT and 24 UT and increases in magnitude and UT spread with increasing geomagnetic
activity. The Qw hot spot on the duskside also causes the corresponding Joule heating peak to move closer
to magnetic local midnight. This is in contrast to Qc, for which the peak generally changes very little in MLT,
apart from during the dark season high Ap index bin as mentioned previously (Figure 4f ). This is clearest in
Figure 4c due to a clear trend in maximum Joule heating migrating from about 14 MLT to 19 MLT between 00
UT and 10 UT. Due to the Qw reductions in heating at all other UT’s on the duskside, dawnside heating plays a
much larger role than when considering Qc alone.

As estimation of the total Joule heating in the Northern Hemisphere, we can calculate the area-integrated
heating rates for each Joule heating pattern upwards of 50∘ of magnetic latitude. This was done for each hour
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Figure 4. Magnetic local time sector averages for Qc , Qw , and Qj with universal time (UT). Ap index ranges shown are for
the light (a–c) and dark (d–f ) season bins shown in Figure 2.

of UT in each Ap index range for both the light and dark seasons. The results showing the area-integrated Qc,
Qw , and Qj values (

∑
Qc,

∑
Qw , and

∑
Qj , respectively) are shown in Figure 5.

The most prominent feature of all
∑

Qc components in Figure 5 is a diurnal cycle, mediated by the variation in
solar EUV Pedersen conductivity causing increased heating at approximately 17 UT. This trend is more promi-
nent during the light season than dark, which is reasonable because the variation of solar illumination on the
summer polar cap is much greater than that on the winter.

∑
Qc increases with increasing Ap index due to

corresponding stronger electric fields and electron precipitation releated conductivity enhancements asso-
ciated with high geomagnetic activity. Both Figures 5c and 5f show higher variability than the others, which
is most likely due to having less data per UT bin, although the general trend is still clearly visible. It should be
noted that the limited occurrence of high Ap index times will weigh the 27–400 bin to the lower geomagnetic
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Figure 5. Area-integrated Qc , Qw , and Qj heating rates with increasing universal time (UT). Ap index ranges shown are for the light (a–c) and dark (d–f ) season
bins shown in Figure 2.

activities, which will in turn weight down the area-integrated values. Therefore, we expect the
∑

Qc values
shown in Figures 5c and 5f to be underestimates of very active periods.∑

Qw , shows a trend which is separate from that of the solar EUV conductivity variations, displaying larger
amplitudes at higher Ap indices. This is clearest in Figure 5b as a semidiurnal pattern which varies between
a positive and negative values. This means that it is possible for the overall net contribution from the wind
correction to the area-integrated Joule heating rate to be negative or positive, depending on UT. With increas-
ing geomagnetic activity,

∑
Qw is most often negative. This agrees with Lu et al. (1995) that on average, the

neutral winds have a net negative effect on Joule heating with respect to convection heating.

In Figures 5c and 5f where
∑

Qw is constantly negative, the semidiurnal trend still shows minima at approx-
imately 04 UT/14 UT and maxima at 10 UT/22 UT. Before, we have seen that Qw is mostly positive on the
dawnside and negative on the duskside. This implies that the negative values for

∑
Qw in Figures 5c and 5f

are due to heat reductions on the duskside being larger in magnitude than the increased heating on the
dawnside. This in turn indicates that neutrals tend to move in the direction of the plasma flow more at higher
geomagnetic activities than lower because

∑
Qw becomes increasingly negative. Considering that ion-neutral

drag plays an important role in neutral morphologies, it is reasonable to assume that the increase in plasma
velocity that accompanies active periods increases the drag force on the neutrals, thus forcing them into a
morphology closer to that of the plasma.

The minima and maxima in
∑

Qw modify
∑

Qj substantially from
∑

Qc at higher Ap indices, illustrated by the
separation between the

∑
Qj and

∑
Qc lines. To show the proportion of the area-integrated Joule heating

which is due to the wind correction, we show the percentage of
∑

Qw as a proportion of
∑

Qc in Figure 6.
All Ap index ranges contain peaks in the positive direction at approximately 10 UT, which is 7 hr prior to the
diurnal peak in solar conductivity seen in Figure 5. There are also troughs in the negative direction on either
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Figure 6. Percentage change in area-integrated Joule heating rate due to the area-integrated wind correction against
universal time (UT). All Ap index ranges are shown for the (a) light and (b) dark seasons.

side of the central peak, which decrease in magnitude at times approximately before 04 UT and after 15 UT.
The

∑
Qw trend is otherwise diurnal in nature for the 0–6 Ap index range.

During the light season, the difference between the lowest and highest percentage changes due to the wind
correction is 7%, 13%, and 13% for Ap ranges 0–6, 7–22, and 27–400, respectively. In the dark season, the per-
centage differences change to 10%, 13%, and 14% for the same ranges. These magnitude differences are not
insignificant and demonstrate the importance of taking UT into consideration when calculating Joule heat-
ing. The tendency for the wind correction to increase heating from Qc is also greater in the dark season than
light. This is due to the large solar EUV conductivity differences between hemispheric summer and winter
months. The conductivity has a large influence on the convection heating, but not as much on the wind cor-
rection, implying the magnitude of the neutral velocity with respect to the plasma convection is dictated more
by changes in geomagnetic activity than season. This is almost certainly the case for the plasma convection
(Ruohoniemi & Greenwald, 2005) and has also shown to be true for the neutrals (Killeen et al., 1995).

5. Summary

Approximately 800,000 SuperDARN plasma convection patterns were used together with the HWM14, IGRF,
and Hardy et al. (1987) and Rich et al. (1987) conductivity models to generate statistical patterns for Joule
heating, the convection heating, and wind correction, averaged in hours of UT. These were filtered addition-
ally in order to differentiate between season and geomagnetic activity level, as both are expected to have
considerable effects on Joule heating.

As the convection heating is modulated only by the Pedersen conductivity and convection electric field, the
morphology remains relatively constant in the MLAT-MLT frame with UT as the variation in dipole tilt changes
the magnitude for a fixed geomagnetic activity range, while the magnitude peaks at approximately 17 UT
when the magnetic pole is most sunlit. Increasing geomagnetic activity is associated with stronger, more
spatially equatorward convection electric fields that extend to more local times (Ahn et al., 1992); there-
fore, convection heating also increases and spans more local times. During the hemispheric dark months,
when conductivity changes are much lower than during the light months, convection heating becomes more
spatially variable, indicating some convection variability with UT.

The wind correction, which in this study is used as a measure of neutral wind influence on convection heating,
has a similar morphology for both light and dark seasons and all geomagnetic activity ranges. Neutral winds
consistently increase heating on the dawnside indicating they are statistically always opposing the plasma.
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On the duskside, the wind correction is mostly negative, apart from during periods of UT which range from
8 to 11 hr in length during the light season and 10–15 hr in the dark season. These sign changes indicate
directional changes in the neutrals with respect to the convection plasma as UT progresses, thus introducing
a UT dependence to Joule heating which is separate from that induced by solar conductivity. The magnitude
of the wind correction is larger at higher geomagnetic activity levels and during the light season.

Joule heating, which is the sum of the convection heating and wind correction, is affected by both in
several ways:

1. The morphology of the wind correction consistently enhances Joule heating on the dawnside in agreement
with several previous studies (Deng & Ridley, 2007; Matsuo et al., 2003; McHarg et al., 2005; Thayer et al.,
1995). The wind correction UT dependence can either enhance or diminish Joule heating on the duskside,
as well as introduce additional magnetic local time variability. If it is assumed that under steady geomag-
netic activity levels, the convection electric field does not vary much spatially with UT (in the MLAT-MLT
frame), then the Joule heating morphology variability must be due to neutral wind UT variability such as
that brought about by Coriolis forces and solar pressure gradients. Magnetic local time averages for Qw

range between approximately −3 and 2 mW/m2, while the corresponding Qc can reach around 8 mW/m2

during the sunlit months at high activity levels on average. These are, however, general underestimates of
the actual peak values that both Qw and Qc can reach due to the spatial averaging across local time bins
carried out here, as well as the weighting of the largest Ap index bin toward lower indices mentioned in (3).

2. Solar-induced conductivity is higher in the hemispheric light months, resulting in higher magnitudes of
Joule heating. This conductivity is also at a maximum at approximately 17 UT, which coincides with a maxi-
mum dipole tilt angle toward the sun but does not necessarily coincide with maximum Joule heating in all
regions due to negative wind corrections on the duskside.

3. The area-integrated (upward of 50∘ MLAT) wind correction rate is semidiurnal in nature. This propagates
into the area-integrated Joule heating rate, which causes it to be sometimes either larger or lower than
the area-integrated convection heating depending on UT. At higher levels of geomagnetic activity, the
area-integrated wind correction becomes increasingly negative, meaning Joule heating no longer exceeds
the value for convection heating on an area-integrated basis.

4. As a result of the diurnal variation in the area-integrated wind correction described above, the percentage
contribution of the wind correction to the area-integrated Joule heating rate can vary by ±14% depending
on season and geomagnetic activity level.

5. Because changes in solar EUV conductivity with season affects convection heating more than the wind
correction, Joule heating in the hemispheric winter months is greater influenced by the neutral winds.

It is important to note that this method of generating statistical patterns of Joule heating does capture the
increased heating due to convection electric field variability (Codrescu et al., 1995). This is because patterns
of Joule heating are calculated at every SuperDARN time step instead of using statistically averaged electric
fields such as that derived by Ruohoniemi and Greenwald (1996). However, the limitations of HWM14 means
that the neutral atmosphere response time cannot be accounted for. The statistical Pedersen conductivity
models used also do not include temporal or small scale variability, which can be significant especially at
auroral latitudes (Vickrey et al., 1981). Further study will utilize high time resolution observations of neutral
winds and electric fields to investigate Joule heating in comparison with the model presented here. Overall, it
is clear that when considering the effect of the neutral winds on Joule heating calculations, its corresponding
UT dependence can be a dominant driver of diurnal heating variations both spatialy and in magnitude.
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