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a b s t r a c t

A selective single phase black a-Cr2O3 nanoparticles was bio-synthesised via simple straight-forward
green synthesis approach. The process involves extraction of phytochemicals contained in peels of
sweet potatoes. Extraction was done in distilled water under constant magnetic stirring at a temperature
of 70e80 �C resulting in a dusty yellow colour aqueous extracts. Afterwards, chromic nitrate salt was
added to extracts resulting in reduction of metal salt to metal nanoparticles. Obtained precipitates were
dried and annealed in the air for 2 h ready to be applied without further post synthesis modifications.
SEM and EDS analysis of annealed precipitates reveal distinct shapes and high purity of nanoparticles.
The effects of the annealing temperature are evident in the nanoparticle sizes. SAED and XRD patterns
expose bright diffraction peaks which are harmonized to the rhombohedral structure of pure Eskolaitea-
Cr2O3. By quantitative analysis of XRD data, it was noted that lattice parameters and crystal sizes slightly
decrease w.r.t increase annealing temperature. Raman spectra recorded peaks ascribe to vibrations in A1g

and Eg mode whereas FTIR analysis show absorption bands at 641 and 632 cm�1 which evidence the
presence of a-Cr2O3 nanoparticles. UVeVis absorbance peak generated Cr2O3 nanoparticles are observed
at 402 nm yielding a band gap of 3.08eV. Magnetism results of a-Cr2O3 nanoparticles shows linear in-
crease upon field increasing, which can be elucidated by the existing of uncompensated spins at the
surface of the nanoparticles that may lead to nonmagnetic or antiferromagnetic state. Zero field cooling
(ZFC) results of a-Cr2O3 nanoparticles were analysed based on Curie-Wien relation which yield values of
magnetic moment (meff) of the synthesised Cr2O3 nanoparticles close to the value that was assigned for
Cr2þ.The density functional theory (DFT) with the PW91, PBE, PBESOL and a Hubbard U Coulomb
interactionwas utilized to study the optimum structure, electronic and magnetic properties of antifer-
romagnetically ordered Cr2O3. The computed results are consistent with the experimental
measurements.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Chromium oxide exhibits different phase composition due to
thermodynamic properties of its CreO binary system. Some re-
ported oxides whose chromium valences are combination of three
ork (NANOAFNET), iThemba
7129, Somerset West, South
and six include Cr3O8, Cr5O12, Cr2O5, Cr6O15 [1,2]. Of these higher
oxides, Cr2O3which is an inorganic trivalent oxide widely known
for its stability in the CreO binary system under ambient conditions
has received significant attention [3]. Of particular interests to the
scientific community is Cr2O3 nanoparticles. Owing to their particle
size and shape tenability, Cr2O3 nanoparticles with awide band gap
of 3.0eVhave become the centre of attention for robust research
and industrial applications.They have found application in coating
materials [4], digital recording systems [5], wear resistance [6],
pigment [7], colorant [8] as well as in selective solar energy col-
lectors [9].
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Conventional approach to syntheses nano-sized Cr2O3 particle
includessolid thermal decomposition [10],hydrothermal process
[11] and sol-gel method [12].Kim, Dae-Wook et al. [12] employed
precipitationegelation reaction method and calcined at different
temperatures to obtained chromic oxide nanoparticles of different
sizes. Zhong, Z. C., et al. [13]used laser induced deposition tech-
nique to fabricate nanoscale Cr2O3particles. Tsuzuki, and McCor-
mick [14] reported a study on synthesis of Cr2O3 nanoparticles via
mechanochemicalreaction of sodium dichromate and sulphur. By
using gas-condensation method, Balachandran, U.et al. [15]syn-
thesised nanophaseCr2O3 with average particles size of 10 nm. In a
similar fashion D. Vollath, D. et al. [16]synthesisednanocrystalline
Cr2O3, particles in microwave plasma.

Yet, the above-mentioned physical and chemical methods have
some limitationson usingnano-sized Cr2O3particles in industrial
applications. This is because, the methods produce low yield,
Fig. 1. Phytochemical constituen

Fig. 2. Graphical diagram of bio-synthesis of Cr2O3 nanopart
require the use of harmful chemicals, expensive preparation routes
and equipment’s. Therefore, the R &D community has endorsed
bio-synthesismethodor green process which involves the use of
microorganism or plants parts to syntheses various nanoparticles
including Cr2O3 nanoparticles.

Nowadays, bio-synthesis of nanoparticles using plant extractsis
popular owing to the fact that the process is cost-effective, eco-
friendly, clean, simple, produces high yield, reliable, biocompatible,
and offers a better alternative to chemical and physical methods
[17]. Nanoparticles synthesised via plant extracts exploit phy-
tochemicalscontained in the plant to operate as reducing agents
and singlet oxygen scavengers, therefore reducing metal salts to
nanoscale. As such resultant nanoparticles of various sizes, shapes
and with better stability can be instantly applied without any post
synthesis modification. Furthermore, with abundance plant di-
versity especially in Africa, research on bio-synthesis of
ts in sweet potatoes peels.

icles using extracts obtained from sweet potatoes peels.



Fig. 3. SEM images of Cr2O3nanoparticles showing morphology of samples annealed at (a) 300 �C, (b) 500 �C, (c) 700 �C.
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nanoparticles using plant parts such as seeds, fruits, leaves, barks,
roots, peels still extensively on-going [18e20]. Discovered abun-
dant plants with bioactive elements used in synthesis of nano-
particles consider as attractive field for researches and scientists.
Each plant extracts has unique metabolites responsible for nano-
particles formation. Hence, innovation comes from specific plant or
plant parts that are used in the study to achieve a better response
compared with other studies.

Sweet potato scientifically known as Ipomoea batatas L. is one of
themost important consumed crops inmany parts of theworld due
to its economic and health benefits. It peels are however discarded
Fig. 4. EDS spectra showing elemental compositions o
yet they contain several phytochemical constituents (see Fig. 1)
such as phenolic [21], flavonoid, alkaloids, steroids, saponins, tan-
nins and anthocyanin b-carotene [22].Some reported pharmaceu-
tical activities, associated withpeels of sweet potatoes are
antioxidant, anticancer activity, antidiabetic activity and anti-
inflammatory activity [23].

In view of this, the present study report for the first time bio-
synthesis of black a Cr2O3 nanoparticles using sweet potatoes
peel extracts. The structure, electronic, optical and magnetic
properties of chromium oxide were analysed experimentally and
theoretically.Especially, by using first-principles calculations based
f Cr2O3nanoparticles annealed 300� , 500� , 700 �C.



Table 1
Elemental composition of Cr2O3 nanoparticles with their respective atomic percentages. Each nanoparticle type and shape reveals different atomic percentages of their
elements.

Elements Atomic % of annealed samples with distinct shapes

Atomic %
300�C nanograins

Atomic %
500�C nanograins

Atomic %
500�C nanorods

Atomic %
500�C rhomboid

Atomic %
700 nanograins

Atomic % nanorods Atomic % rhomboid

O 60.96 7.56 21.99 20.60 61.92 66.22 61.36
Cr 39.04 92.44 78.01 79.40 38.08 33.78 38.64

Table 2
Comparisonof physical properties of Cr2O3 nanoparticles using green chemistry approach.

Extracts Morphology Particle size (nm) Band gap (eV) ref

Mukiamaderspatana Well separated 65 2.9 [38]
Allium Sativum Spherical 46e72 3.0 [39]
Callistemon viminalis Cubic-like 92.2 Didn’t report [40]
Aspargillusniger Hexagonal 66 2.9 [41]
Tridaxprocumbens Strips with rough surface 80e100 2.7 [42]
Ipomoea batatas L rhombohedral, elongated shaped 3, 93 3.08 Present work

Fig. 5. HRTEM images of Cr2O3 nanoparticles annealed at 300 �C showing (aeb) morphology of the nanoparticles, (c) singular nanograin, (d) SAED pattern, inset is the histogram of
particle size distribution.
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Fig. 6. HRTEM images of Cr2O3 nanoparticles annealed at 500 �C showing (aeb) morphology of the nanoparticles, (c) singular nanograin showing distinct planes, (d) SAED pattern,
(e) histogram of particle size distribution.
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on density functional theory (DFT) within the generalized gradient
approximation (GGA), the structural, electronic, and magnetic
properties of antiferromagnetic chromium oxide were obtained
which are in a good agreement with our experimental
investigations.

2. Materials and sample preparation details

Chromicnitrate salt of analytical grade and sweet potatoes were
purchased from Hopkin and Williams Ltd and Zimbabwelocal
market respectively. For extraction process, peels of sweet potatoes
were thoroughly washed several times with distilled water to
remove any sand particles and air dried. 100.0g of dried peels were
weighed into 300 mL of distilled water. The content was heated at
70e80 �C under constant magnetic stirring for 2 h yieldingdusty
yellow colour solution. Obtained aqueous solutionupon cooling
was sieved and filtered twice with a laboratory standard test sieve
(4 mesh 5 mm aperture) and Whatman filter paper (55 mm cat no
1820055)respectively, to remove any residue. The dusty yellow
aqueous extracts ready to be use for synthesis recorded a pH of 7.
For bio-synthesis of black a Cr2O3nanoparticle using sweet potatoes
peel extracts, 2.0g of chromic nitratesalt was added to 50 mL of
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previously prepared aqueous extracts resulting immediately to
dark blue colour mixture. The pH of the mixture (extracts þ salt)
dropped to 4. The mixture was allowed to dry at 100 �C in an oven
for 9 h and dark blue colour precipitates were collected. The pre-
cipitatesobtained post drying were annealed at 300, 500, 700�Cin
air for 2 h and subsequently characterized using SEM, EDS, HRTEM,
XRD, Raman, FTIR andmagnetism. Schematic representation of bio-
synthesis procedure is illustrated in Fig. 2.
Fig. 7. HRTEM images of Cr2O3 nanoparticles annealed at 700 �C showing (aeb) morphology
(e) histogram of particle size distribution.
3. Characterization techniques

Annealed samples were carbon coated and imaged by Zeiss
crossbeam 540 FEG SEM and high resolution transmission electron
microscopy (Tecnai 720). Elemental compositions in the samples
were analysed withOxford instrument with a X-max Solid state
silicon drift detector.

To identify phase and crystallography of samples, XRD analysis
was performed using a Bruker AXS D8 Advance with radiation
(lCuka ¼ 1.5406 Å).
of the nanoparticles, (c) singular nanograin showing distinct planes, (d) SAED pattern,



Fig. 8. Observed (black diamond) and calculated (red line) XRD patterns for Cr2O3 annealed at (a) 300 �C, (b) 500 �C, (c) 700 �C. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Table 3
Refined structure parameters of (a) Cr2O3_500�Cand (b) Cr2O3_700 �C nanoparticles.

a

Atom x y z Biso

Cr 0.000 0.00 0.3423 0
O 0.316 0.00 0.250 0

b
Atom x y z Biso

Cr 0.000 0.00 0.3452 0
O 0.327 0.00 0.250 0
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A T64000 micro-Raman spectrometer (HORIBA Scientific, Jobi-
nYvon Technology) with a 532 nm laser wavelength and spectral
acquisition time of 120s was used to investigate the vibrational
modes of samples.

To obtain the infrared absorption on samples, we used Fourier-
Transform Infrared (FTIR) spectroscopy in the 400e4000 cm1 range
on a PerkinElmer 100 Spectrometer.

UVeVis absorbance was conducted using Cary 5000
UVeViseNIR spectrophotometer with double beam.

A vibrating sample magnetometer (VSM) (Cryogenic ltd, UK)
was used to conduct the magnetism study.

4. Computational methods

The density functional theory (DFT) calculations were per-
formed with the Quantum Espresso [24]using the plane-wave basis
sets and the Vanderbilt ultra-soft pseudopotentials [25]within the
scalar relativistic framework. The structural and electronic prop-
erties of the rhombohedral primitive cell of antiferromagnetic
Cr2O3 were obtained using the spin polarized generalized gradient
approximation (GGA) within three different exchange-correlation
functionals of PW91 [26], PBE [27] and PBESOL [28].

In order to account the effects of strong intra-atomic electronic
correlations, we included a Hubbard U Coulomb interaction
[29e34] to the Cr 3d and O 2p states which contribute significantly
to the top of the valence band and the bottom of the conduction
band. This on-site interactionwill increase the energy gap between
the occupied and unoccupied states leading to a wider band gap
closer to the experimental value.

By applying a range of effective U values between 0 and 8 eV to
the Cr d state, the optimized structure, band gap, and magnetic
moment of antiferromagnetic Cr2O3 are calculated using the PBE
functionals. Additionally, the effects of applying the 3 and 5 eV on-
site Coulomb interactions to the O 2p states were examined [35].

In the structural optimization a 4� 4� 4 k-point mesh over the
irreducible Brillouin zone, according to the Monkhorst- Pack
scheme [36] was used. For the density of state and the band
structure 8� 8� 8 k-point grid was employed. A cut-off energy of
650 eV was used for the plane-wave basis set. The convergence
threshold for the electronic structure was considered10�6Ry.



Fig. 9. Unit cell representation of Cr2O3 obtained from cell parameters in Table 3.
Fig. 10. Raman spectra of Cr2O3 nanoparticles annealed at 300 �C, 500 �C, 700 �C.
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5. Results and discussion

5.1. Mechanism of nanoparticle formation

Phenolic and Flavonoids are among the active phytochemicals
contained in sweet potatoes peels which would act as both
chelating and capping agents that result in formation of nanoscale
of the particle. For a plausible mechanism of reaction of trans-
formation of chromium nitrate to Cr2O3 nanoparticle, a chemical
reaction of biological compounds from our plant extracts is pro-
posed. The altered chemical behaviour of active phytochemicals
and chromium nitrate may result in oxidation of biological com-
pound through free radical and then followed by electrostatic
attraction between free radical and cation of precursors (chromium
nitrate). After the heat treatment the product decomposes to give
rise to Cr2O3 nanoparticles.In accordance with UVeVis analysis of
sweet potatoes peel extracts, two characteristic peaks are observed
at 280 and 330 nm associated with absorption due respectively to
B-ring cinnamoylsystem and A-ring benzoyl system of flavonoid. In
addition, XRD patterns of annealed precipitate exposed Bragg
peaks which are perfectly matched to Eskolaitea-Cr2O3nano-
particles. Therefore, it can be inferred that aqueous extracts of
sweet potatoes peels which is pH sensitive favours formation of
single phase Cr2O3nanoparticles.

5.2. SEM,EDS, HRTEM

The morphology of bio-synthesised samples annealed at
different temperatures (300 �C, 500 �C, 700 �C)is shown in SEM and
HRTEM images. Precisely, Fig. 3 (a,b,c) shows SEM image of
Cr2O3_300 �C, Cr2O3_500 �C andCr2O3_700 �Cnanoparticles
respectively. It can be seen from SEM image that Cr2O3_300 �C
nanoparticles are agglomerated and not well formed. One is unable
to tell exact shape of nanoparticles. Yet as annealing temperature
Table 4
Refined parameters extracted from Rietveld analysis using MAUD. Values presented
in parenthesis are calculated uncertainties.

Cr2O3 annealed at a(Å) c(Å) Strain e(*1e4) Size (Å)

300 �C e e e e

500 �C 4.95 (10) 13.591 (3) 1.01 (4) 776 (6)
700 �C 4.959 (4) 13.610 (4) 3.590 (5) 924 (9)
increased to 500 and 700 �C, (see Fig. 3 (b, c)), one can vividly see
well defined nanoparticles with distinguish shapes. Specifically,
SEM image for Cr2O3_500 �C reveal distinguishable rhomboid
shaped nanoparticles (designated by red arrowed), elongated
nanorods (blue arrowed) and highly agglomeratednanoparticles
(green arrowed). As the temperature increased further to 700 �C,
we observed that the agglomerated nanoparticles elongateto form
nanorods (See Fig. 3(c)).

From the SEM images only, it can be understood that low
annealing temperatures of 300 �C, Cr2O3 precipitates undergo
incomplete/insufficient oxidation to form well defined nano-
particles. However at higher annealing temperatures of 500 and
700 �C, Cr2O3 nanoparticles become well-formed revelling distinct
shapes.

To identify chemical elements and purity of synthesised sam-
ples, EDS analysis were performed and results are shown in Fig. 4.
According to EDS spectra, the most pronounced and only chemical
elements presents on samples are O and Cr. Cleary, there are no
other chemical elements identified in the sample which confirm
purity of synthesised sample as Cr2O3nanoparticles.Table 1 gives
the atomic percentages of chemical elements on samples. As one
can see in this table, there are differences in the atomic percentages
of the chemical elements in the different shape of nanoparticles
(see Table 2).

HRTEM images of Cr2O3_300 �C, nanoparticlesare shown in
Fig. 5(aed). At such annealing temperature of 300 �C, one could
observe spiralshaped and agglomerated nanoparticles with average
particle size calculated as 3.44 nm (see Fig. 3(a and b)). The singular
nanograin shown in Fig. 5(c) is amorphous; hence it is difficult to
evaluate the appropriate dhkl distances. Moreover, SAED image
displayed in Fig. 5 (d) show rings with no diffraction peaks. The
Histogram of particle size distribution of Cr2O3_300 �C is shown in
inset.

Fig. 6(aed) shows HRTEM images of Cr2O3_500 �C nano-
particles. As can be seen in Fig. 6(a), Cr2O3_500 �C is composed of
different shapes of nanoparticles with particle diameter ranging
from 17 to 50 nm.A singular nanograin shown in Fig. 6(b) reveals
distinct shapes designated by red and blue arrows. Each nanograin
as displayed in Fig. 6(c) exposes distinguishable planes with
appropriate dhkldistance. SAED image shown in Fig. 6(d) exposes-
bright scattered diffraction spots due to planes which are in
harmonized with rhombohedra structure of Eskolaite Cr2O3. His-
togram of particle size distribution of Cr2O3_500 �C is shown in
Fig. 6(e).



Fig. 11. (aeb): FTIR spectra of annealed Cr2O3 nanoparticles at (a) higher wave number,
(b) lower wave number.

Fig. 12. UVeVis absorbance spectrum for (a) aqueous sweet potatoes peel extracts, (b)
precursor and extracts.
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Fig. 7(aed) present HRTEM images of Cr2O3_700 �Cwhich reveal
(a,b) elongated nanorods, and rhombohedral shaped nanoparticle
designated by blue and red arrow respectively. Average particle size
evaluated using image J software is 93.5 nm. Distinct planes with
appropriate dhkl distances evaluated as 0.81 nm, 0.78 nm, 0.76 nm
and 0.29 nm, 0.44 nm, 0.41 nm on rhombohedra shaped nano-
particles and elongated nanorods respectively are observed on a
singular nanograin (See Fig. 7(c)). Fig. 7(d) is SAED image of
Cr2O3_700 �Cwhich revealsmany bright scattered diffraction spots.
The presence of so many diffraction spots confirms crystallinity of
the samples. Histogram of particle size distribution of Cr2O3_700 �C
is respectively plotted in Fig. 7(e).

From HRTEM analysis, it is seen that Cr2O3_300 �C present
almost non-identifiable shape of agglomerated nanoparticles. The
corresponding SAED image shows diffuse rings with absence of
diffraction peaks. This could indicate amorphous nature of the
nanoparticles. In contrary to that, HRTEM images of Cr2O3_500 �C
reveal well defined shapes of nanoparticles. It is also observed that
as annealing temperature is increased further to 700 �C, HRTEM
images show presence of well-formednanorods. In addition, the
nanoparticle size of Cr2O3_700 �C increases. This follows from that
fact that particles sizes increases with increasing annealing tem-
perature as it was reported in literature [37]. As evidenced from
SAED images of both Cr2O3_500 �C and Cr2O3_700 �C nanoparticles,
so many bright diffraction spot are seen. This confirms the crys-
talline and poly crystalline nature of Cr2O3_500 �C and
Cr2O3_700 �C nanoparticles respectively.
5.3. Quantitative XRD data analysis using MAUD

Fig. 8 (a,b,c)shows observed and calculated crystallographic
phase of synthesised annealed samples investigated by XRD spec-
troscopy and MAUD analysis. Materials Analysis Using Diffraction
(MAUD) software is a Rietveld program which was used to fit the
XRD diffraction data [43]. It is observed from XRD pattern that
samples annealed at 300 �C show no peaks. This means, at lower
annealing temperature, nanoparticles are amorphous. Nonetheless
at higher annealing temperature (500, 700 �C), XRD spectra shows
series of peaks with increase intensity w.r.t increased annealing
temperature. MAUD software was used to quantitatively analyze
the XRD patterns and retrieve relevant information such as lattice
parameters, strain, size and atomic positions. Atomic positions are
reported in Table 3 with the cell representation shows at Fig. 9.

Rhombohedral structure proposed by Kantor, Anastasia, et al.
[44]of Eskolaite Cr2O3which belong to R-3cH space group was used



Fig. 13. Field-dependent magnetization measured at room temperature (Rt) for (a)
Cr2O3_500 �C and (b) Cr2O3_700 �C.

Fig. 14. Zero - field cooling (ZFC) results between 2 K and 300 K for (a) Cr2O3_500 �C
and (b) Cr2O3_700 �C nanoparticles. Black open circles represent experimental date
while red solid lines represent the least square fitting (LSQ) of ZFC data. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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to fit experimental data. As can be seen, the model fit fairly well
with experimental data. From Rietveld analysis, lattice parameters
of Cr2O3nanoparticles w.r.t annealing temperature were evaluated.
Accordingly, lattice parameters (a, c) decreases slightly for samples
of lower annealing temperature (See Table 4).

From quantitative XRDanalysis, it can be deduced that crystallite
size increases with increasing annealing temperature. This obser-
vation is in agreement with conclusions obtained from SEM and
HRTEM analysis.

5.4. Raman, FTIR

In order to determinevibrational mode of the synthesised
annealed samples, Raman spectroscopy at ambient conditions was
performed. A laser source of 532 nmwas used to excite the samples
and results are shown in Fig. 10. According to reports obtained from
literature, Raman spectra for Cr2O3 nanoparticles record about five
to six peaks [45]. Though other researchers report more than six
Raman peaks from Cr2O3 nanoparticles. For instance, Hart, T.R. et al.
[46]reported seven Raman peaks of Cr2O3synthetized at ambient
conditions. They assigned two A1g modes of Cr2O3 at 266 and
547 cm�1, and five Eg modes at 235, 290, 352, 528 and 617 cm�1.
McCarty, K. F. and Boehme, D. R [47].reported six Raman bands and
identified the bands centred at 304 cm�1 and 553 cm�1 as A1g
summery and other bands centred at 353, 401, 529, 616 cm�1 as
Egsymmetry of chromium oxide.Shim, Sang-Heon et al. [48]
observed a Raman shift (556 cm�1) of Cr2O3 measured at 0.09 GPa.

In the present work, Ramaninvestigation of sweet potatoes peel
mediated Cr2O3nanoparticles, recordedfourRaman peaks. The
Raman spectra shown in Fig.10present one distinguishable peak
identical on all annealed samples. This peak is centred at 547 cm�1

and is ascribed to the A1g modes.In addition, other less intense
peaks at 305 and 347 cm�1 ascribe to vibrations in A1g and Egmodes
respectively are identified in the samples. These peaks are consis-
tent with the peaks of Cr2O3which have been reported in literature
[49,50]. It is also seen that at higher annealing temperature of
700 �C, additional peak is observed at 857 cm�1 which could be
assigned to the CrVIeO vibrations of symmetric phonon modes.
Yang, Jing, et al. [51]reporteda similar peak on synthetic chromium
oxide gel investigated using hot-stage Raman spectroscopy. They
attributed the peak to the symmetric stretching modes of
OeCrIIIeOH. All the peaks observed from the Raman spectra on our
sample correspond to chromium oxide.

Fig. 11 (a-b)present FTIR spectra ofsweet potatoes peel mediated
Cr2O3 nanoparticles.The spectra show shifts in wave numbers of
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absorption with increasing annealing temperature. More accu-
rately, one can noticechanges incharacteristics peaks which
become shaper with increasing annealing temperature. This could
be an indicative of crystallinity of annealed samples. On the FTIR
spectra (Fig. 11 (a)), NeH stretching observed at 3437 cm�1 is
identified on all samples. However, stretching vibrations of CeH
observed at 2092 cm�1 is identified on only Cr2O3_300 �C. In
addition, C]O stretching vibration are identified on all samples
though observed at different wave numbers. For instance, one can
see absorption at 1648, 1644, 1639 cm�1 (see Fig. 11(a)) corre-
sponding to C]O stretching in Cr2O3_300 �C, Cr2O3_500 �C,
Cr2O3_700 �C respectively. Meanwhile, absorption bands observed
at 1152, 1144, 1117 cm�1 which is assigned to CeN vibration is
identified on Cr2O3_300 �C, Cr2O3_500 �C, Cr2O3_700 �C respec-
tively. The peaks at 951, 907 and 903 cm�1 (see Fig. 11(b)) are
assigned to the Cr]O vibrations [52]. One can also see absorption
bands at 641 and 632 cm�1which are evidence of the presence of a-
Cr2O3nanoparticle. At lower wave numbers (Fig. 11(b)) such as 584,
578, 574 cm�1, other absorption bandswhich are typical of OeCreO
Fig. 15. (a) Rhombohedral primitive cell of Cr2O3 with antife

Table 5
Lattice constants a and c, axial ratio c/a, magnetic moment (mBÞ, and band gap Eg of antife
on DFT þ U. In Ref. [59]the effective U�J ¼ 4 eV.

Functional a ½Ao�
PW91 4.937
PBESOL 4.845
PBE þ D3 4.917
PBE þ U UCr ½eV � UO ½eV �

3 0 5.028
3 3 5.015
3 5 5.007
6 0 5.102
6 3 5.082

PBE þ U [32] 3 5 5.028
PBE þ U [58] 4* 0 5.073
Exp (This work) 4.959
vibrations are observed. These bands are attributed to the Eumode.
Such bands are similar to what has been reported in literature for
Cr2O3 [40].
5.5. Optical analysis

To identify the phytochemicals responsible for reducing metals
salt to its nanoscale and to determine the band gap for the samples,
UVeVis absorbance was measured. Fig. 12 (a) shows UVeVis
absorbance spectrum for freshly prepared sweet potatoes peels
extracts. Two strong absorbance peaks are seen at 285 and 330 nm.
These prominent peaks are indicative of the presence of phenoli-
cand flavonoids [53]. As stated in the introduction, phenolicand
flavonoid are identified in Ipomoea batatas L. and thus considered
as reducing agents in synthesis of Cr2O3 nanoparticles.

Fig. 12(b) shows absorbance spectrum of mixture
(precursor þ extracts). It should be noted that measurement was
recorded immediately precursor was added to extracts. Therefore
immediate appearance of peak suggests instant nanoparticle
rromagnetic spin order (b) Hexagonal Unitcell of Cr2O3.

rromagnetic Cr2O3. Our results are compatible with the other DFT calculations based

c ½Ao� c=a m ½mB =atom� Eg ½eV �
13.818 2.798 2.021 1.580
13.762 2.840 2.121 1.540
13.792 2.806 2.218 1.560

13.775 2.74 2.56 2.415
13.714 2.73 2.482 2.798
13.697 2.74 2.483 2.928
13.862 2.72 2.612 2.882
13.819 2.72 2.585 3.357
13.794 2.74 e 2.96
13.839 2.727 3.01 2.6
13.610 2.74 2.48 [58] 3.080



Fig. 16. (a) The ratio of cell-lengths c/a in Hexagonal cell (b) the band gap and (c) the
magnetic moment for Cr2O3 versus UCr (eV). The red, green and dark red points
represent the results after applying the U potential to the O orbitals. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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formation. Proposed mechanism of reaction is based on chemical
reaction between flavonoids in extracts andchromic nitrate salt
giving rise to Cr2O3 nanoparticles. The absorbance peakgenerated
Cr2O3nanoparticles isnoted at 402 nm. Energy Band gap energywas
estimated by using Planck’s equation given as;

Еg ¼ hc
l

(1)

Wherehis Planck’sconstant, cis speed of light, lis the wavelength,
Еgis the band gap energy. From equation (1), estimates energy band
gap is 3.08eV which is consistent with value reported in literature
for Cr2O3nanoparticles.

5.6. Magnetism study

To further investigate the physical properties of the synthesised
nanoparticles, we have performed the magnetic measurements on
two samples, i.e, Cr2O3_500 �C and Cr2O3_700 �C nanoparticles
using the vibrating-sample magnetometer (VSM).The field-
dependent magnetization measured at room temperature (Rt) are
shown in Fig. 13(a) and (b) for Cr2O3_500 �C and Cr2O3_700 �C
nanoparticles, respectively. To obtain accurate results, these mea-
surements were performed on a small portion of the powder that
was inserted into a capsule and packed with small amount of
vacuum grease to avoid grossmotion of the powder in themagnetic
field. It is clear from Fig. 13(a) and (b) that magnetization results of
all samples show a linear increase upon field increasing. Such linear
behaviour followed from the fact thatCr2O3 nanoparticles annealed
at different temperatures possess unsaturatedmoments that would
result in a linear, paramagnetic contribution to the magnet-
ization.Moreover, this behaviour can beelucidated by the existing of
uncompensated spins at the surface of Cr2O3 nanoparticleswhich
may lead to nonmagnetic or antiferromagnetic state of the nano-
particles as it was evident from literature [54,55].

In order to confirm the magnetic and oxidation stateof the
synthesised nanoparticles, we have presented Zero - field cooling
(ZFC) results between 2 K and 300 K for Cr2O3_500 �C and
Cr2O3_700 �C nanoparticles in Fig. 14(a) and b, respectively. Asitcan
be seen from the (ZFC) results of the two samples that the magnetic
moments increases upon cooling and no evident of any kind of
magnetic orderingoccurring in the measured temperatures ran-
ge.Thusthe enhanced magnetic moments may originate from the
uncompensated spins at the surfaceof the synthesised Cr2O3na-
noparticles or due to the variance between the inner and internal
spins of the surface of Cr atoms [56]. However, (ZFC) data could be
fitted to Curie-Wien relation [51,52] given as

c¼
NA m2eff

3kB ðT � qPÞ
(2)

where cis the magnetic susceptibility, NA is Avogadro’s number, KB

is Boltzmann’s constant, meff is effective magnetic moment and qp is
curie temperature. The least square fitting (LSQ) of (ZFC) data of
Cr2O3_500 �C and Cr2O3_700 �C nanoparticles to Curie-Wien rela-
tion are shown by red solid line Fig. 14(a) and b. The values of meff
obtained from (LSQ) are 5.23 BM and 5.07 BM for Cr2O3_500 �C and
Cr2O3_700 �C nanoparticles, respectively. It should be noted that
the obtained values ofmeff are much close to that value of 4.9BM
assigned for Cr2þ ion [53].Therefore based on the values of meffof the
synthesised Cr2O3nanoparticles, one can expect that the surface of
Cr ion is Cr2þ rather than Cr3þ. On the other hand, the values of qp
obtained from the (LSQ) are �55.32 and �72.85 for Cr2O3_500 �C
and Cr2O3_700 �C nanoparticles, respectively. It is noted from the
literature [56,57]that the negative values of qp are assigned for the
antiferromagnetic materials. Thus thevalues of qpmay indicate that
the synthesised Cr2O3 nanoparticles are mostly antiferromagnetic.
5.7. Structural, electronic and magnetic propertiesfrom DFT
analysis

Cr2O3 can be described by a rhombohedra unit cellor hexagonal
cell parameterswithR3c space group represented in Fig. 15(a) and
(b), respectively. It is antiferromagnetic in the ground state with a
(þ- þ -) spins for the Cr atoms along the c-axis [31,33].

The geometry of antiferromagnetic rhombohedral unit cell of



Fig. 17. The band structure of anti-ferromagnetic Cr2O3 using (a) PBE functional (b) after applying UCr ¼ 3; UO ¼ 5 eV . Electronic total and partial density of states of bulk
Cr2O3calculated with (c) PBE functional (d) after applying UCr ¼ 3;UO ¼ 5 eV .
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chromia was optimized using the PW91, PBE, and PBESOL. The
calculated lattice constants, magnetic moments, and band gap are
listed in Table 5. Generally, PW91, PBESOL and PBE functionals
overestimate the ratio of lattice constants by 1.9%, 3.5%, and 2.3%,
respectively and underestimate the band gap and the magnetic
moment.

For the PBEþ D3 calculations, we applied the Hubbard potential
to the Cr atoms in the range 1e8 eV. The ratio of lattice constants,
band gap andmagnetic moment versus the UCrare plotted in Fig.16.
The structural ratio and the magnetic moment match with our
experimental value for UCr ¼ 2:5 eV roughly, while the band gap is
still much lower than the observed one. By increasing the U
parameter, the structural ratio decreases, while the band gap and
magnetic moment increase. GGAþUwithUCr ¼ 6:0 eV give rises to
the largest band gap of 2.88 eV.

In order to correctly model the valence band, it is required to
apply a þU to the O p states in addition to the Cr d states [32,33].
Here, we examined a few values of a þU applied to the O p state.
Results illustrated with the filled circles in Fig. 16 indicate that the
chosen values of UCr ¼ 3 eV and UO ¼ 5 eV overestimate the values
of a and c by 0.048 and 0.087 A, respectively. Themagnetic moment
overestimate just by 0.01% and the band gap underestimate by 5%
compared to our experiment.

Fig. 17 shows the band structures, total and partial electronic
density of states of antiferromagnetic Cr2O3 calculated with the
PBE, PBE þ U (UCr ¼ 3 eVand UO ¼ 5 eV). Applying the U interac-
tion increases the indirect band gap from 1.560 to 2.9 eV which is
very close to the value observed in our experiments.

Generally, the values of UCr ¼ 3;UO ¼ 5 eV leads to an accept-
able agreement between the structural and the electronic proper-
ties with our experiment.

6. Conclusion

The study reports experimental and computation analysis of
bio-synthesised black a-Cr2O3 nanoparticles. Aqueous extracts
obtained from peels of sweet potatoes serve as reducing agents in
bio-synthesis approach. SEM analysis of annealed samples reveals
rhomboid shapenanoparticles and elongated nanorodswhile EDS
analysis confirmed synthesise of pureCr2O3 devoid of any impurity.
HRTEM images reveal singular nanograins with distinct shapes and
appropriate dhkl distances. SAED and XRD patterns confirmed
crystalline nanoparticles which increase with annealing tempera-
ture. XRD analysis also reveals Bragg peaks consistent with
Rhombohedral structure of pure a-Cr2O3. Raman spectra show A1g
modes at peak position of 547 cm�1 identical on all annealed
samples. Meanwhile, FTIR spectra present absorption bands at 641
and 632 cm�1 which are evidence of the presence of a Cr2O3
nanoparticle. Magnetic measurements analysis may indicate that
the synthesised Cr2O3 nanoparticles are mostly
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antiferromagnetic.The optimized geometry, electronic and mag-
netic properties of antiferromagnetically ordered Cr2O3were stud-
ied using DFT/GGA level of theory. Our studies indicate that
applyinga þ U coulomb interaction to the d state of Cr (3 eV) and
the p state of O (5 eV) give rise to the best agreement with the
experimental observables.
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