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ABSTRACT
Large monitoring campaigns, particularly those using multiple filters, have produced replicated
time series of observations for literally millions of stars. The search for periodicities in such
replicated data can be facilitated by comparing the periodograms of the various time series.
In particular, frequency spectra can be searched for common peaks. The sensitivity of this
procedure to various parameters (e.g. the time base of the data, length of the frequency
interval searched, number of replicate series, etc.) is explored. Two additional statistics that
could sharpen results are also discussed: the closeness (in frequency) of peaks identified as
common to all data sets, and the sum of the ranks of the peaks. Analytical expressions for the
distributions of these two statistics are presented. The method is illustrated by showing that a
‘dubious’ periodicity in an ’Asteroid Terrestrial-impact Last Alert System’ data set is highly
significant.

Key words: methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

The type of data considered in this paper is a low-amplitude
sinusoidal signal embedded in white noise:

y(tkj ) = Ak cos(2πν0tkj + φk) + e(tkj );

j = 1, 2, . . . , Nk ; k = 1, 2, . . . , K, (1)

where the Ak are amplitudes, ν0 is the (common) frequency, φk are
the phases of the signal, and e is uncorrelated noise. The K time
series in equation (1) are each observed in Nk time points tkj, which
will in general be irregularly spaced. In the simulations presented
below, the noise is conveniently assumed zero-mean Gaussian with
standard deviation σ k,

e(tkj ) ∼ N (0, σ 2
k ),

but the specific distribution is not too important. Note also that the
noise standard deviations, amplitudes, and number of observations
per time series may differ, although it will be assumed in the
theoretical treatment below that

A1 = A2 = · · · AK σ1 = σ2 = · · · σK N1 = N2 = · · · NK .

This assumption is made for the sake of expositional clarity, not out
of necessity. In fact, the units of the different time series need not
be the same; for example, intensity measurements from different
parts of the electromagnetic spectrum (radio, optical, X-ray, etc.)
and/or quantities derived from spectra (radial velocities, equivalent
widths, etc.) can all be included.

� E-mail: ckoen@uwc.ac.za

The analyses below will be performed in the frequency domain.
A central role will therefore be played by spectral transformations
of the data. The amplitude spectrum S of data { y(tj)} is defined in
terms of the periodogram

I (ν) = 1

N

∣∣∣∣∣∣
N∑

j=1

[y(tj ) − y] exp(−2πiνtj )

∣∣∣∣∣∣
2

(2)

as

H (ν) = 2

N

√
I (ν) . (3)

In equations (2) and (3), ν is the frequency, y is the mean of the time
series, and i = √−1. Searching for sinusoidal signals embedded in
a noisy time series usually involves plotting I or H against ν, to see
whether there are power or amplitude excesses at any frequencies.
The hypothesis test

H0: The time series is pure noise

H1: There is a signal in the time series (4)

is usually performed by comparing, in some way, the height of
the largest spectral peak to the level of the rest of the spectrum
– see e.g. Frescura, Engelbrecht & Frank (2008). A somewhat
different scenario is considered in this paper, namely establishing
significance levels for the presence of sinusoidal signals when more
than one independent realization of the time series is available, as
in equation (1).

Fig. 1 shows the amplitude spectra of three independent simulated
data sets of the form equation (1). In each data set, ν0 = 0.05 d−1,
A = 0.007 mag, σ = 0.02 mag, and N = 150. In order to obtain
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Significance levels of frequencies 49

Figure 1. Amplitude spectra of three simulated data sets, each consisting of a sinusoid with amplitude 7 mmag with superposed white noise with σ = 20 mmag.
The (red) vertical line shows the position of the sinusoid frequency ν0 = 0.05 d−1.

Figure 2. The average of the three spectra in Fig. 1. The (red) vertical line
shows the position of the sinusoid frequency ν0 = 0.05 d−1.

realistic irregular data spacings, observation times of a few stars
were taken from the ’Asteroid Terrestrial-impact Last Alert System’
(ATLAS) variable star catalogue (see Heinze et al. 2018). The time
spans covered by the three data sets are 506, 658, and 501 d. The red
vertical line in the Figure marks the position of the signal frequency
ν0. The highest peak in the bottom spectrum is indeed at ν0, but in
both the other two spectra, the peak at ν0 is ranked fourth. The most
likely conclusion drawn from Fig. 1 is that there is no evidence for
a periodicity in any of the three spectra.

Fig. 2 demonstrates that coadding the spectra does not greatly
improve the situation. Although the tallest peak is at the correct
frequency, its height (7.2 mmag) is not markedly in excess of all
other peaks, and only 2.4 times the mean noise level (3.06 mmag).

Nonetheless, as will be demonstrated below, it is possible to
correctly identify ν0 from the three spectra in Fig. 1, and with high
significance. This is essentially done by comparing the positions of
peaks extracted from each of the spectra. The first step in the analysis
is therefore to identify the positions (frequencies) of all peaks, and
then to search for peak positions which are closely similar across
all spectra.

It is well known that the frequency resolution of the periodogram
is ∼1/�T, where �T is the time base covered by the observations
(e.g. Kovács 1981). Experimentation gave good results with peak
widths taken to be 0.8/�T. If there are K data sets, peaks are
considered coincident if there is some overlap of each peak with all
others. In set-theoretic notation,

P1 ∩ P2 ∩ · · · ∩ PK �= ∅ (5)

is required, where for each peak Pk = [P0k − 0.4/�Tk, P0k +
0.4/�Tk], P0k being the frequency of maximum power in spectrum
k.

The next section of the paper presents the results of simulations
for the noise only case (A = 0 in equation 1). This paves the way
for the significance level determinations demonstrated in Section 3.

2 NULL H YPOTHESI S SI MULATI ONS

It is, of course, possible to obtain chance coincidences of spectral
peak positions. In this section of the paper, the impact of various
properties of the time series on such false alarm probabilities is
studied. Aside from the number K of independent time series and the
number of observations N, included in the study are the following:
the mean time baseline �T , the frequency interval (0,νE) searched,
the number of peaks L from each spectrum, which is taken into
consideration (starting with the highest), and the spacing of the
measurements. As far as the latter is concerned, the ATLAS spacings
are supplemented by random exponentially distributed intervals
between measurements.

Table 1 summarizes the results of an extensive study – each line
is the outcome of at least 10 000 simulations. Briefly:

1 Comparing results for different K, the probability of finding
peaks coincidences decreases rapidly with K. This is no surprise
– finding four peaks aligned by chance is clearly more rare than
finding two or three.

2 The larger νE, the smaller p0. The reason is that if the top
ranked L peaks are spread over a wider frequency interval (0, νE),
the probability of a chance peak coincidence is reduced.

3 Not surprisingly, the probability of finding peak coincidences
increases with L, the number of peaks from each data set, which is
taken into account.
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50 C. Koen

Table 1. Null hypothesis simulation results. Meanings of the symbols are:
K – number of spectra compared; L – the peak rank to which each spectrum
is searched; N – number of observations in the simulated time series; νE – the
upper limit of the frequency range over which the spectrum is calculated;
�T – mean (over the K time series) time span of the observations; A,
E – observation spacing, either resembling ATLAS or with exponentially
distributed times between observations; p0 – the probability of finding at
least one spectral peak alignment.

K L N νE �T Spacing p0

2 5 150 0.1 582 A 0.52
2 5 150 0.1 575 E 0.55
2 5 150 0.2 582 A 0.29
2 5 150 0.1 1202 A 0.28
2 5 150 0.1 2930 A 0.13
2 5 150 0.5 582 A 0.13
2 5 250 0.1 624 A 0.51
2 10 150 0.1 582 A 0.96
2 10 150 0.1 572 E 0.97
3 5 150 0.1 555 A 0.071
3 5 150 0.1 561 E 0.075
3 5 150 0.2 555 A 0.020
3 5 150 0.1 1135 A 0.017
3 5 150 0.5 555 A 0.0030
3 5 250 0.1 605 A 0.067
3 10 150 0.1 555 A 0.46
3 10 150 0.1 568 E 0.47
4 5 150 0.1 546 A 0.0081
4 5 150 0.1 586 E 0.0070
4 5 150 0.2 561 A 0.0011
4 5 150 0.1 1117 A 7.9E-4
4 5 150 0.5 561 A 1.0E-4
4 5 250 0.1 587 A 0.0063
4 10 150 0.1 546 A 0.12
4 10 150 0.1 553 E 0.12

4 The probability p0 of a spurious peak alignment decreases
with increasing �T . This follows because the spectral resolution
improves, spectral peaks are narrower, and the probability of a
chance coincidence is therefore reduced.

5 The number of observations N in each data set has little
influence on p0. The same is true of the two types of data spacing
considered.

3 C A L C U L AT I N G p-VALUES

The probabilities in the last column of Table 1 provide a first step
towards obtaining significance levels for peak coincidences.

Two further independent statistics are useful for improving the
estimation of peak-coincidence p-values. The first is

S =
K∑

k=1

rk,

where rk is the rank of the peak amongst peaks in spectrum k. For
example, there is a single peak coincidence in Fig. 1, near ν = 0.05;
the ranks of the three peaks are r1 = 4, r2 = 4, and r3 = 1, giving
S = 9. In the absence of any signal, the ranks rj will be completely
random between unity and L, whereas, in general, the rk will tend
to be smaller in the presence of signals, hence S will also be small.

An expression for the probability function of S is available, on
recognizing that its genesis is similar to a so-called ‘urn’ problem.
Imagine an urn, with L balls inside, numbered from one to L. Now
draw, with replacement, K balls from the urn, and note the sum S of

the K numbers drawn. The probability function PS of S is given by

PS(x) = L−K

M∑
r=0

(−1)r
(

K

r

)(
x − rL − 1

K − 1

)
K ≤ x ≤ KL, (6)

where

M = min

(
K,

x − K

L

)

(Charalambides 2005). The cumulative probability function is

FS(x) = L−K

M∑
r=0

(−1)r
(

K

r

)(
x − rL

K

)
. (7)

Fig. 3 compares equation (6) with the results of one of the simulation
experiments reported in Table 1.

The second statistic is the width w of the interval covered
by the K coincident-peak frequencies. Again, this is expected to
be smaller if peaks are due to a sinusoidal signal rather than a
chance near-alignment of peaks due to noise. Analytical expressions
for the probability density function (PDF) fw and the cumulative
distribution function (CDF) Fw of w are derived in Appendix A, for
the special case where all �T are equal. The situation is considerably
more complicated if the time baselines of the different data sets are
different, and it is unclear if simple expressions for fw and Fw exist
for this general case.

Results for one of the simulations in Table 1 are displayed in
Fig. 4. The dotted line in the bottom panel is Fw derived in the
Appendix, calculated using the mean of the three values of � =
0.4/�T. It evidently provides a good approximation of the empirical
CDF in the lower tail, which is of greatest interest.

Returning to Fig. 1, there is a single coincidence of peaks amongst
the three spectra, close to the true signal frequency of 0.05 d−1.
According to the relevant entry in Table 1 (K = 3, L = 5, N =
150, νE = 0.2 d−1, �T = 555 d), the probability of obtaining a peak
coincidence by chance is p0 = 0.02. The sum of ranks is S = 9. Using
equation (5), the probability of obtaining S ≤ 9, given that there is a
peak coincidence, is p1 = 0.58. Finally, w = 6.86 × 10−4 d−1, with
p2 = Fw(0.00069) = 0.23. It may be concluded that observing this
particular configuration of spectral peaks, or any more convincing,
is p0p1p2 = 0.0026.

It is also possible to compare the spectra two at a time. The results
of doing so are summarized in Table 2. The only comparison that
is significant at the conventional 5 per cent level is that of spectra 1
and 3 (p = 0.036).

If the search had been to weaker peaks, specifically L = 10,
then for K = 3, p0 = 0.14, and Pr(S = 9) = 0.084, and hence the
significance level would be p0p1p2 = 0.0027. If only two spectra
are compared, the probability of obtaining a spurious peak match
rises to p0 = 0.76.

4 POW E R F U N C T I O N S

The power of a statistical test is defined as the probability of rejecting
the null hypothesis when it is indeed false. In the present context,
the alternative hypothesis in equation (4) is not precise enough, and
‘power’ here will rather be the probability of correctly identifying
ν0, or an alias of it.

Fig. 5 illustrates that why it is necessary to allow the possibility
that an alias of ν0 is identified. Each panel of the diagram is based
on 10 000 simulations of K data sets with irregular time spacings,
with each simulated data set consisting of a sinusoid (frequency
ν0 = 0.02 d−1 and amplitude A = 0.01 mag) plus white noise with
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Significance levels of frequencies 51

Figure 3. Distribution of the sum of ranks for one of the simulations reported in Table 1 (K = 3, L = 10, νE = 0.1, N = 150, and �T = 568). The bars show
the result of 10 000 simulations, while the filled circles denote the probability function (equation 6).

Figure 4. The distribution of the frequency interval widths defined by the
positions of three near-coincident peaks, for one of the simulations reported
in Table 1 (K = 3, L = 10, νE = 0.1, N = 150, and �T = 568). The top
panel shows a histogram estimate of the PDF. In the bottom panel, the solid
(black) line is the empirical CDF based on the data in the top panel, while
the (red) dotted line shows the theoretical result (equation A3).

σ = 0.02 mag. The spectra of each set of K data sets is searched
for peak coincidences. Typically, more than one such coincidence
is found. Only that with the smallest p-value is retained. In Fig. 5,
the further requirement p < 0.01 is imposed, i.e. effectively the
hypothesis test is carried out at the 1 per cent level; this leaves 6609
(K = 2), 9075 (K = 3), and 8917 (K = 4) estimates of ν0. Of these,
56 (K = 2), 4 (K = 3), and 0 (K = 4) are neither close to ν0 nor
to any nearby alias: Put another way, the percentages of incorrect
frequency identifications amongst those significant at the 1 per cent
level are 0.85 per cent, 0.04 per cent, and 0 per cent for K = 2, 3,
and 4, respectively. Only ‘correct’ frequency estimates are shown
in Fig. 5.

The probability of correctly extracting ν0 (or a close alias) from
time series with σ = 0.02 mag white noise is plotted in Fig. 6.
Time intervals between observations were taken to be exponentially
distributed, with �T ≈ 550 d. The highest L = 5 peaks over the
range (0, νE = 0.1 d−1] in each spectrum were taken into account.

Perhaps the biggest surprise in Fig. 6 is the good performance of
the two-peak comparison when testing at the 5 per cent level. The
smaller probability of identifying the correct frequency when com-
paring four spectra is likewise a surprise. These results are put into
proper context by Fig. 7, which shows rather high probabilities of
an incorrect frequency determination when testing at the 5 per cent
level for K = 2. For K = 4, on the other hand, frequencies found
significant are quite unlikely to be wrong.

When testing the frequency at the 1 per cent level, ‘powers’ of
K = 3 and K = 4 are very similar. The probabilities of an incorrect
determination are also comparable for amplitudes larger than about
9 mmag. This suggests that there are situations where it is sufficient
to search for alignments of three peaks, with little to be gained by
attempting to match four peaks. (Note though, that Fig. 5 shows
that the correct alias is more likely to be selected if K = 4). For
K = 2, when testing at the 1 per cent level, the ‘power’ is excellent
for amplitudes 12 mmag or so, with the probability of a spurious
frequency identification being at the 0.5 per cent level or lower.

5 TWO APPLI CATI ONS TO REAL DATA

The first data sets analysed in this section, observations of the star
ATO 129.0947−26.1809, were extracted from the ATLAS variable
star catalogue (Heinze et al. 2018). The brightness of the star was
measured 84 times through the c (cyan) filter and 151 times through
the o (orange) filter. Single outliers were removed from each of the
two data sets. The respective time baselines covered were �T1 =
477 (c) and �T2 = 558 (o) d.

Amplitude spectra of the two data sets can be seen in Fig. 8. The
ATLAS period is given as 0.054255 d (ν = 18.4315 d−1), but it is
classified as a ‘dubious’ (‘probably not real’) variable. The highest
peak in the o data spectrum is indeed at 18.431 25 d−1.

There are no peak correspondences between the two spectra for
L < 7, so the two limits L = 10 and L = 20 are investigated. Results
are in Table 3. For L = 10, there is a single correspondence, at
ν = 18.4312 d−1. In order to evaluate the significance level, 12 000
permutations of each data set were performed, and the peak cor-
respondences were searched for. At least one peak correspondence
was found in 62 of the 12 000 synthetic data sets, i.e. p0 = 0.0052.
The probability p2 of the observed frequency range was evaluated
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52 C. Koen

Table 2. Parameters extracted from the amplitude spectra in Fig. 1. Spectra are numbered (1–3) from top to bottom.

Spectra compared Mean frequency Range w Sum of ranks p-value

1,2 0.0500 3.8E-4 8 0.096
1,3 0.0504 3.1E-4 5 0.036
2,3 0.0502 6.9E-4 5 0.091
1,2,3 0.0502 6.9E-4 9 0.0026

Figure 5. Estimates of ν0 from periodogram peak correspondences for K =
4 (top), K = 3 (middle), and K = 2 (bottom). The results in each of the panel
are based on 10 000 simulations. Note the obvious alias near 0.017 d−1 of
ν0 = 0.02 d−1. Given the uneven data spacings, aliasing is to be expected.

Figure 6. The probability of correctly identifying ν0 (or a close alias), as a
function of the signal amplitude. The open circles, the dots, and the broken
line respectively indicate results for K = 2, K = 3, and K = 4. Top panel:
frequencies tested at the 5 per cent level. Bottom panel: frequencies tested at
the 1 per cent level. Other relevant parameter values are N = 150 and L = 5.

both from the simulation results and from equation (A3), while the
probability p1 of the sum of ranks follows from equation (7). The
overall p-value is p = p0p1p2 = 0.00012, where the larger of the
two values of p2 was used. It follows that the periodicity in the
ATO 129.0947−26.1809 data is highly significant.

For L = 20, there are three peak correspondences. The first is,
of course, the same as was found for L = 10. The other two, less
significant correspondences, appear to be at ∼1 d−1 aliases of ν =

Figure 7. The probability that an incorrect frequency is found to be
significant. The open circles, the dots, and the broken line respectively
indicate results for K = 2, K = 3, and K = 4. Top panel: frequencies tested
at the 5 per cent level. Bottom panel: frequencies tested at the 1 per cent
level. Other relevant parameter values are N = 150 and L = 5.

Figure 8. Amplitude spectra of ATLAS observations of
ATO 129.0947−26.1809. Top panel: c filter. Bottom panel: o filter.

18.312 d−1 (Table 3). For L = 20, p0 = 0.015 was obtained from
5000 permutations of the data. Overall p-values are listed in Table 3.

The second example analysis is of radial velocity measurements
of ε Eridani (HD 22049). Mawet et al. (2019) extensively discuss the
evidence for an exoplanet associated with the star and provide two
new sets of radial velocities (their tables 5 and 6). Since the second
of these data sets spans a time period of only 3.3 yr, whereas the
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Table 3. An analysis of frequency spectra of ATLAS observations of ATO 129.0947−26.1809. Two probabilities are
given for the differences in the frequencies (i.e. range) obtained, respectively, from the c and o data sets. The first was
calculated from spectra of permuted data, while the second follows from equation (A3).

L Mean frequency Sum ranks Prob. (ranksum) Frequency range Prob. (range) Overall p

10 18.4312 9 0.36 9.99E-5 0.011, 0.065 1.2E-4
20 18.4312 9 0.090 9.99E-5 0.049, 0.065 8.8E-5
– 19.4338 17 0.34 1.50E-4 0.11, 0.097 5.6E-4
– 17.4286 19 0.43 1.40E-4 0.098, 0.090 6.3E-4

Figure 9. Amplitude spectra of two sets of radial velocity measurements
of ε Eri. Top panel: recent Keck/HIRES data (Mawet et al. 2019). Bottom
panel: Lick/Hamilton Spectrograph data (Howard & Fulton 2016).

Figure 10. The low frequency sections of the spectra in Fig. 9.

periodicity of interest is ∼7.4 yr, it is replaced by the considerably
more extensive radial velocities of the star collected by Howard &
Fulton (2016). Amplitude spectra of the two data sets (Mawet et al.
2019, table 5: N = 91, �T = 7.45 yr and Howard & Fulton 2016 :

Figure 11. Smoothed versions of the two spectra in Fig. 9. The thick blue
line: Keck/HIRES data. The thin black line: Lick/Hamilton Spectrograph
data.

N = 176, �T = 24.11 yr) are plotted in Fig. 9. Fig. 10 shows low
frequency details of the spectra.

Inspection of Figs 9 and 10 reveals that both spectra are dominated
by low frequency features. For νE = 0.5 d−1 (i.e. a short period limit
of 2 d), and L = 5, there are two peak coincidences between the
two spectra, both at very low frequencies – 3.95 × 10−4 d−1 (P =
6.94 yr) and 3.06 × 10−3 d−1 (P = 327 d). The two frequencies are
not independent: If the two data sets are prewhitened by the lower
(more significant) frequency, the spectra of the residuals show no
coincidences whatsoever for L ≤ 10. We therefore proceed only
with f = 3.95 × 10−4 d−1 – see Table 4.

In order to find the peak correspondence probability p0, the same
recipe as in the case of ATO 129.0947−26.1809 could be followed.
At least one peak coincidence is obtained in only 247 out of the
12 000 permutations, i.e. p0 = 0.002. However, there is an implicit
assumption in the use of the permutation method, namely that
the time dependence of the data can be adequately mimicked by
the random rearrangement of the observations amongst the times
of observation. In the frequency domain, this is tantamount to
assuming that the overall shape of the spectrum is flat – something
which clearly does not apply in the case of the radial velocity
measurements. Fig. 11 shows the results of smoothing the two

Table 4. An analysis of frequency spectra of two sets of radial velocity measurements of ε Eri.

L Mean frequency Sum ranks Prob. (ranksum) Frequency range Prob. (range) Overall p

5 3.954E-4 2 0.13 1.81E-5 0.094 0.006
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54 C. Koen

spectra; the plot demonstrates the substantial power excess, and
hence inflated likelihood of substantial peaks, at low frequencies.

Fortunately, a modification of the premutation method, which
delivers more realistc spectra, is fairly easy: The flat spectra of
permuted data are simply multiplied by the smooth functions
in Fig. 11, so that the simulated have the same overall shapes
as the observed spectra. The importance of this correction is
manifested by the increase of p0 to 0.51. The reason for the
large change is not difficult to find: Effectively, the largest peaks
will overwhelmingly be found in a narrow range at very low
frequencies so that the probability of peak coincidences is greatly
inflated.

The spectral shape also affects the distribution of the sum of
peak ranks, increasing the probabilities of small sums relative to
larger values. Thus p1 = 0.13 instead of 0.04 for the flat-spectrum
case. The statistic w is uniformly distributed over (0, 1.925E −
4), giving p2 = 0.094 for the observed value of 1.808 × 10−5 d−1.
The overall significance level for the peak coincidence is 0.006, i.e.
highly significant.

6 D ISCUSSION

An intriguing possibility raised by the theory of this paper is
applications to single data sets, by separating these into multiple
sets. This should be particularly useful in cases where there might be
multiple weak periodicities present, as such data present problems
for the usual approaches based on contrasting peak heights with
noise levels. The results above suggest that separating time series
into K = 3 subsets may be particularly fruitful.

AC K N OW L E D G E M E N T S

The scientific editor made a useful suggestion which led to the
inclusion of the second analysis in Section 5.
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APPENDI X A : THE PROBABI LI TY D ENSITY
F U N C T I O N O F TH E F R E QU E N C Y IN T E RVA L
SPANNED BY K N E A R - C O I N C I D E N T
SPECTRAL PEAKS

It is given that the K peaks are coincident, i.e. equation (4) holds,
where Pj = [P0j − �, P0j + �] = [aj, bj] (j = 1, 2, ···, K). It is
required to find, in the first instance, the cumulative distribution
function (CDF) of the interval spanned by the P0j, i.e.

w = max
j

P0j − min
j

P0j .

For convenience, assign the index j = 1 to the smallest P0j, i.e.
a1 < aj (j = 2, 3, . . . , K) also. Since all intervals Pj (j ≥ 2) must
overlap P1, it follows that all aj (j > 2) lie in the interval P1. In fact,
each of the aj (j > 2) is uniformly randomly distributed in [a1, b1].
The maximum of the aj, i.e. the upper order statistic a(K), then has
CDF

Fy(y) = [Fa(y)]K−1, (A1)

where Fa is the CDF of a uniform distribution on [a1, b1]. The latter
is easily shown to be

Fa(y)

⎧⎨
⎩

0 y < a1

(y − a1)(b1 − a1) a1 ≤ y ≤ b1.

1 y > b1

(A2)

From the definition of w,

w = a(K) − a1

and hence, from equations (A1) and (A2),

Fw(w) = Fy(w + a1) =
⎧⎨
⎩

0 w < 0
[w/(b1 − a1)]K−1 0 ≤ w ≤ b1 − a1

1 w > b1 − a1

=
⎧⎨
⎩

0 w < 0
(w/2�)K−1 0 ≤ w ≤ 2�.

1 w > 2�

(A3)

The PDF of w follows immediately as

fw(w) =
⎧⎨
⎩

0 w < 0
(K − 1)wK−2/(2�)K−1 0 ≤ w ≤ 2�.

0 w > 2�

(A4)
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