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Abstract. Galaxy surveys are an important probe for superimposed oscillations on the pri-
mordial power spectrum of curvature perturbations, which are predicted in several theoretical
models of inflation and its alternatives. In order to exploit the full cosmological information
in galaxy surveys it is necessary to study the matter power spectrum to fully non-linear
scales. We therefore study the non-linear clustering in models with superimposed linear and
logarithmic oscillations to the primordial power spectrum by running high-resolution dark-
matter-only N-body simulations. We fit a Gaussian envelope for the non-linear damping of
superimposed oscillations in the matter power spectrum to the results of the N-body simu-
lations for k . 0.6 h/Mpc at 0 ≤ z ≤ 5 with an accuracy below the percent. We finally use
this fitting formula to forecast the capabilities of future galaxy surveys, such as Euclid and
Subaru, to probe primordial oscillation down to non-linear scales alone and in combination
with the information contained in CMB anisotropies.

Keywords: cosmological parameters from LSS, galaxy clusters, physics of the early universe,
power spectrum
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1 Introduction

The study of departures from a simple power-law in the primordial power spectrum (PPS) of
curvature perturbations has been fueled by theoretical advances and observational progress
over many years (see ref. [1] for a review).

From a theoretical perspective, departures from a simple power-law can be a signature
of the breakdown of any of the assumptions behind standard single field slow-roll inflation
with Bunch-Davies initial conditions for quantum fluctuations [2–6]. In the analogy in which
primordial fluctuations can be seen as a cosmological collider for the physics of the early Uni-
verse [7, 8], these features could help in discriminating between inflation and alternative sce-
narios, or could provide hints for inflaton dynamics beyond slow-roll, and new heavy particles.

From the observational side, departures from a simple power-law in the PPS are of
extreme interest, despite the tighter and tighter constraints on their size due to the increasing
precision of cosmological observations. Well motivated theoretical models with features in
the PPS have led to an improvement in the fit to cosmic microwave background (CMB)
anisotropies data with respect to the simplest power-law spectrum since the WMAP first
year data [9] to the final Planck legacy data release [10]. However, these improvements in the
fit come at the expense of having extra parameters and these models have not been preferred
over the simplest power-law spectrum at a statistically significant level so far, see e.g. [10].

Next generation of cosmological observations will help in explaining whether the hints
for departures from a power-law spectrum for primordial fluctuations have a physical origin
or are a mere statistical fluctuation. In particular, large-scale structure (LSS) surveys are
very promising [11–23] since they can probe the PPS to smaller scales and can increase
the range of scales which are independently scanned by CMB anisotropy measurements.
It has been already quantified how future LSS surveys could significantly improve current
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constraints on theoretical models with features in the PPS by just using linear scales, i.e.
k . 0.1 h/Mpc [12, 15, 16, 21]. On the other hand, non-linear effects are important on
most of the scales which are probed by LSS surveys and for these models are not accurately
described by Halofit. Therefore, the study of non-linear dynamic is required to have full
access to the information for primordial features contained in the dark matter (DM) power
spectrum measurements as already studied in refs. [24–26].

In this paper, we study two templates for the PPS which include undamped oscillations
at small scales and therefore need the understanding of the non-linear gravitational instability
at the scales of interest for galaxy surveys. Among the several models of primordial features,
we choose the case of undamped linear or logarithmic oscillations superimposed on all the
scales of interest to a PPS described by a power-law [27–35]: these are the theoretical models
which lead to the largest improvement in the fit of CMB anisotropies and which need the
understanding of non-linear clustering on scales k & 0.1 h/Mpc, given the presence of oscil-
lations on all the scales. With these linear and logarithmic oscillations superimposed to the
PPS we run a set of high-resolution DM-only cosmological simulations with 1,0243 DM parti-
cles in a comoving box with side length of 1,024 Mpc/h (see [20] for N-body simulations with
different type of primordial features). We then develop a fitting function calibrated against a
set of N-body simulations with features in the PPS, following the approach previously used
in Halofit [36, 37] or HM-Code [38, 39] for ΛCDM and some of its extensions.

The paper is organized as follows. We begin in section 2 introducing the two templates
for oscillatory features that we study. In section 3.1, we describe the simulations. In sec-
tion 3.2, we use a Gaussian envelope for the non-linear damping and we calibrate it against
the N-body simulations; we also compare our findings with the leading-order theoretical pre-
dictions for the damping from refs. [25, 26]. We discuss in section 4 the damping of the baryon
acoustic oscillations (BAO) features versus the damping of the primordial linear oscillations.
We run a series of forecasts in section 5 with galaxy clustering up to kmax = 0.6 h/Mpc in
combination with CMB for a Euclid-like experiment and Subaru Prime Focus Spectrograph
(PFS), and we discuss the results in section 6. Section 7 contains our conclusions.

2 Superimposed oscillations on the primordial power spectrum

The type of superimposed oscillatory features on the PPS which we study in this paper are
predicted in several well motivated theoretical models. These features can be generated by an
oscillatory signal in time in the inflationary field potential or in the internal field space with
a frequency larger than the Hubble parameter H able to resonate with the curvature modes
inside the horizon [27]. They can be realized in many contexts as in axion inflation [28],
small-field models such as brane inflation [29], large-field models in string theory such as
axion monodromy [30], or as oscillations of massive fields [31, 32]. Superimposed oscillations
on the PPS are also generated when inflaton temporarily deviates from the attractor solution
at some point during its evolution [40, 41] or for non Bunch-Davies initial conditions [33–35].

We study two templates with superimposed oscillations on the PPS [27], the first with
linear oscillations

Pζ(k) = Pζ,0(k)

[
1 +Alin cos

(
ωlin

k

k∗
+ φlin

)]
, (2.1)

and the second with logarithmic oscillations

Pζ(k) = Pζ,0(k)

[
1 +Alog cos

(
ωlog log

k

k∗
+ φlog

)]
, (2.2)
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Model A log10 ω φ/(2π)

Lin. Osc. 0.03 0.8 0.0

Lin. Osc. 0.03 0.8 0.6

Lin. Osc. 0.03 0.87 0.0

Lin. Osc. 0.03 0.87 0.2

Lin. Osc. 0.03 1.0 0.4

Lin. Osc. 0.03 1.0 0.6

Log. Osc. 0.03 0.8 0.2

Log. Osc. 0.03 0.87 0.4

Log. Osc. 0.03 1.26 0.8

Log. Osc. 0.03 1.5 0.6

Table 1. Here we report the 10 cosmological models that we have considered for our analyses, each
of them identified by an amplitude A, a frequency ω, and a phase φ/(2π) (see eqs. (2.1) and (2.2)).
The first six (last four) models correspond to a superimposed linear (logarithmic) oscillation pattern.

where Pζ,0(k) = As(k/k∗)
ns−1 is the standard power-law PPS with pivot scale k∗ = 0.05

Mpc−1.

3 Accurate fitting formula for the non-linear matter power spectrum with
superimposed primordial oscillations

Galaxies trace the invisible cold dark matter (CDM) distribution and we can estimate their
power spectrum to extract information on the underlying power spectrum of primordial
fluctuations. While on linear scales the matter power spectrum can be computed for any
given initial conditions and cosmological model with dedicated Einstein-Boltzmann solvers
like CAMB1 [42, 43] or CLASS2 [44, 45], in the non-linear regime, one has to rely on cosmological
N-body simulations to study the non-linear gravitational evolution for every extension of the
ΛCDM cosmological model.

The halofit model has been successfully used to predict the small-scale non-linearities
for the ΛCDM cosmology and some of its simplest extensions such as models including
massive neutrinos [46] or non-standard dark energy equations of state (wCDM) [37]. So
far, this programme has not yet been pursued for models with primordial superimposed
oscillations, and we aim to start the process with the present analysis. In particular, we
wonder how superimposed oscillations will be damped on non-linear scales and if there will
be any additional effect like a running of the frequency or a de-phasing of the oscillations
due to the non-linear evolution of the perturbations.

3.1 Cosmological simulations

In order to perform our analysis, we have run a set of 10+1 high-resolution DM-only cos-
mological simulations corresponding to 6 (4) models with superimposed linear (logarithmic)
oscillations, all of them listed in table 1, plus the standard ΛCDM case. Each of the simu-
lations follows the non-linear evolution of 1,0243 DM particles in a comoving box with side

1https://github.com/cmbant/CAMB.
2https://github.com/lesgourg/class public.
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Figure 1. Relative differences with respect to the ΛCDM matter power spectrum between non-linear
matter power spectrum with undamped superimposed oscillation (green), non-linear matter power
spectrum obtained from the simulations (blue), and non-linear matter power spectrum reconstructed
with our semi-analytical damping (3.2) (dashed magenta) for the template with linear oscillation (2.1)
at five different redshift z = 0, 1, 2, 3, 4, 5 from the top to the bottom respectively.

length of 1,024 Mpc/h, using a gravitational softening length of 25 kpc/h, down to redshift
z = 0. The cosmological parameters have been fixed to the following values: Ωm = 0.321,
ΩΛ = 0.679, ns = 0.963, H0 = 66.9 km s−1 Mpc−1, and σ8 = 0.8. To minimise the noise in-
duced by cosmic variance, we also performed 3 more simulations with larger boxes, i.e. 1,0243

DM particles in a 2,048 Mpc/h size length box, only for the highest-frequency logarithmic
models, which are the most sensitive to the box size, and the ΛCDM case.

All simulations have been run with the N-body code GADGET-3, a modified version of
the publicly available numerical code GADGET-2 [47, 48]. The initial conditions have been
produced by displacing the DM particles from a cubic Cartesian grid according to second-
order Lagrangian Perturbation Theory, with the 2LPTic code [49], at redshift z = 99. The
corresponding input linear matter power spectra were computed with a modified version of
the publicly available code CAMB, with the superimposed oscillations given by eq. (2.1) for the
linear cases, and by eq. (2.2) for logarithmic cases. The values assigned to the amplitude A,
the frequency ω, and the normalized phase φ/(2π), associated with each of the models are
reported in table 1. In generating the initial conditions we turned off the Rayleigh sampling
as done in ref. [50], in order to fix the mode amplitude to the expected value of the linear
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Figure 2. Relative differences with respect to the ΛCDM matter power spectrum between non-
linear matter power spectrum with undamped superimposed oscillation (green), non-linear matter
power spectrum obtained from the simulations (blue), and non-linear matter power spectrum recon-
structed with our semi-analytical damping (3.2) (dashed magenta) for the template with logarithmic
oscillation (2.2) at five different redshift z = 0, 1, 2, 3, 4, 5 from the top to the bottom respectively.

power spectrum. We explicitly check that this aspect does not bias any of our results that
are always cast in terms of ratios between the case including primordial oscillations and
the corresponding baseline power-law case. For a more comprehensive analysis of Rayleigh
sampling and paired fixed field simulation we refer to ref. [51]. On top of these simulations, we
have used a Friends-of-Friends (FoF) algorithm [52] with the standard linking length b = 0.2,
in order to identify particle groups and to extract the statistics of the associated DM halos.

For all simulations we have extracted the matter and halo power spectra Pm(k, z) and
Ph(k, z) as a function of the Fourier wavemode k and of the redshift z by assigning the mass
of tracer DM particles and individual collapsed halos to a Cartesian grid with 1, 0243 cells
through a Cloud-In-Cell mass assignment scheme. The visual inspection of the ratio of each
model’s power spectrum to the reference ΛCDM scenario shows how the primordial pattern
of oscillations can still be clearly observed at low redshifts, with a significant damping of
the small-scale oscillations which we show between z = 5 and z = 0, for both the DM (see
figures 1 and 2 below) and the halos (see figures 3 and 4 below) distributions.

In figure 5, we show the relative differences between the non-linear matter power spec-
trum of one of the logarithmic models (Alog = 0.03, log10 ωlog = 0.8, φlog/(2π) = 0.2) with
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Figure 3. Relative differences with respect to the ΛCDM case, for the DM halo power spectra
computed from N-body simulations (red solid lines), for the template with linear oscillation (2.1) at
two different redshift z = 0, 2, from the top to the bottom respectively. We show on the left the
results for Alin = 0.03, log10 ωlin = 0.8, φ/(2π) = 0.6 and on the right for Alin = 0.03, log10 ωlin = 1.0,
φ/(2π) = 0.4. As a reference, we also plot the corresponding linear (dotted gray lines) and non-linear
(blue dashed lines) matter power spectra.

respect to the ΛCDM case. The solid lines of figure 5 refer to spectra extracted from initial
conditions produced through 2LPTic, at different redshifts. For comparison, we also show
one power spectrum extracted from the corresponding N-body simulation, at z = 5, which
is in very good agreement with the corresponding 2LPTic output (dot-dashed line). The
relative difference between the linear matter power spectra is plotted as a gray dotted line.

3.2 Fit model

We use our simulations to calibrate the small-scale damping induced by non-linear dynamics
on the oscillatory features superimposed in the matter power spectrum. To do so, we use a
least chi-squared method to find the best-fit solution of

χ2 (Σ) =
∑
i

5∑
z=0

kmax∑
k=kmin

[
Pi,fit(k, z,Σ)− Pi,sim(k, z)

σi(k, z)

]2

(3.1)

with linear loss function, where i runs over the different best-fit for the features parameters
listed in table 1, Pi,fit(k, z) is our semi-analytic template to model non-linear effects for the
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Figure 4. Relative differences with respect to the ΛCDM case, for the DM halo power spectra
computed from N-body simulations (red solid lines), for the template with logarithmic oscilla-
tion (2.2) at two different redshift z = 0, 2, from the top to the bottom respectively. We show on
the left the results for Alog = 0.03, log10 ωlog = 0.8, φ/(2π) = 0.2 and on the right for Alog = 0.03,
log10 ωlog = 1.26, φ/(2π) = 0.8. As a reference, we also plot the corresponding linear (dotted gray
lines) and non-linear (blue dashed lines) matter power spectra.

superimposed oscillations, and Pi,sim(k, z) is the non-linear matter spectrum from the simu-
lations. We set the variance σi(k, z) = Psim(k, z), where Psim(k, z) is the non-linear matter
power spectrum for a ΛCDM cosmology from the simulations. We consider wavenumbers
between kmin = 0.05 h/Mpc and kmax = 0.6 h/Mpc.

We write the semi-analytic template to model non-linear effects as:

Pi,fit(k, z,Σ) = P (k, z) [1 +Ai cos (ωiκX + φi)D(k, z,Σ)] , (3.2)

where P (k, z) is the non-linear matter power spectrum for a ΛCDM cosmology from the
simulations assuming that the small-scales enhancement of the matter power spectrum and
the BAO feature smoothing due to non-linear effects is the same as in ΛCDM cosmology
for this class of models. κlin ≡ k/k∗ for linear oscillations (2.1) and κlog ≡ log (k/k∗) for
logarithmic oscillations (2.2). D(k, z,Σ) is the damping function to model the damping of
superimposed oscillations on the matter power spectrum due to non-linear effects. Anal-
ogously to the damping used for BAO [53], we parameterize the damping function with a
Gaussian damping as:

D(k, z,Σ) = e−k
2Σ2(z)/2 , (3.3)

where Σ is the redshift-dependent parameter that we fit with our simulations.
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Figure 5. We show the relative differences between the non-linear matter power spectrum of one of the
logarithmic models (Alog = 0.03, log10 ωlog = 0.8, φlog/(2π) = 0.2) with respect to the ΛCDM case, as
extracted from initial conditions produced through 2LPTic (solid lines). We also show one power spec-
trum extracted from the corresponding N-body simulation, at z = 5 (dot-dashed line). As a reference,
we also report the relative difference between the linear matter power spectra (gray dotted line).

The 6 best fitting parameters for the linear feature models given in table 1 are:

Σlin(z) = [12.23, 8.00, 5.70, 4.40, 3.59, 3.05] Mpc ,

Σlin(z) = [12.26, 8.02, 5.73, 4.42, 3.61, 3.06] Mpc ,

Σlin(z) = [12.20, 7.96, 5.66, 4.36, 3.55, 3.01] Mpc ,

Σlin(z) = [12.26, 7.99, 5.68, 4.38, 3.57, 3.02] Mpc ,

Σlin(z) = [12.55, 8.23, 5.88, 4.54, 3.72, 3.17] Mpc ,

Σlin(z) = [12.54, 8.21, 5.85, 4.53, 3.71, 3.16] Mpc ,

where different values inside the square brackets refer to different redshift, i.e. z =
0, 1, 2, 3, 4, 5. Fitting simultaneously the 6 best-fit, we find:

Σlin(z) = [12.34, 8.07, 5.75, 4.44, 3.62, 3.08] Mpc . (3.4)

For the 4 best-fit of the logarithmic model (2.2) we obtain:

Σlog(z) = [11.30, 6.68, 4.47, 3.37, 2.71, 2.27] Mpc ,

Σlog(z) = [11.23, 6.35, 4.09, 2.99, 2.34, 1.91] Mpc ,

Σlog(z) = [12.40, 7.78, 5.35, 4.06, 3.29, 2.77] Mpc ,

Σlog(z) = [13.20, 8.32, 5.74, 4.36, 3.53, 2.98] Mpc ,

and fitting simultaneously the 4 best-fit, we find

Σlog(z) = [11.96, 7.26, 4.90, 3.72, 3.02, 2.55] Mpc . (3.5)

In figures 1–2, we show the comparison between the non-linear matter power spectrum for
ΛCDM obtained from CAMB with undamped superimposed oscillations in green, the non-linear
matter power spectrum obtained from the simulations in blue, and the non-linear matter

– 8 –



J
C
A
P
0
4
(
2
0
2
0
)
0
3
0

0.05 0.10 0.60
k [h/Mpc]

1.0

0.5

0.0

0.5

1.0

%
 d

iff
er

en
ce

0.05 0.10 0.60
k [h/Mpc]

1.0

0.5

0.0

0.5

1.0

%
 d

iff
er

en
ce

Figure 6. Percentage differences between non-linear matter power spectrum reconstructed with our
semi-analytical template (3.2) and the non-linear matter power spectrum obtained from the simula-
tions. We show the results from the Gaussian damping function (3.3) on the left panel for the linear
model and on the right panel for the logarithmic model. The semi-analytical non-linear matter power
spectra have been calculated using the simultaneous best-fit of the damping parameter Σ (3.4)–(3.5).

power spectrum for ΛCDM obtained from CAMB with superimposed oscillations obtained
with our fit in dashed magenta for the linear and logarithmic models, respectively with the
best-fit (3.4) and (3.5). The fit with the Gaussian envelope in eq. (3.3) provides an excellent
fit to the simulations with relative differences lower than 0.2% for the linear model and 0.6%
for the logarithmic one, up to k ≤ 0.6 h/Mpc, see left panels on figure 6. Note that the
absolute variance on the best-fit estimated for Σlin and Σlog is smaller then 0.02.

We then want to compare our findings with the analytic results previously obtained
in [25, 26]. The redshift behaviour from our simulations is very well reproduced by the
growth factor G(z), i.e. Σ(z) = ΣnlG(z), as analytically studied in [53, 54]. Based on our
eqs. (3.2)–(3.3), we compare our results for Σ(z) with the leading order from perturbation
theory [25, 26]:

Σ2
th(k, z) =

1

3π2

∫ Λ

0
dq [1− j0(qω) + 2j2(qω)]Plin(q, z) , (3.6)

where the separation scale Λ is suggested to be scale dependent Λ = εk with ε ∈
[0.1, 0.7] [26, 55] and jn are the spherical Bessel function. For the linear template we have
ω → ωlin/(0.05 Mpc−1) and for the logarithmic template ω → ωlog/k, as derived in [25, 26].
Figure 7 shows how our estimate for Σ(z) is consistent with the analytic estimates to leading
order for the linear and logarithmic wiggles according to [25, 26].

4 Comparison with the BAO signal

We now want to compare the linear template with the BAO signal. The matter power
spectrum can be modeled by a smooth power spectrum without wiggles (nw) plus the BAO
spectrum like:

P (k, z) ≈ Pnw(k, z) [1 +ABAO(k) sin (krs(z) + φ)] . (4.1)

The BAO signal in Fourier space looks very similar to the oscillatory pattern induced on
the matter power spectrum by the primordial linear oscillations (2.1) with a frequency
log10 (ωlin) ∼ 0.87.
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Figure 7. Comparison of our fit for the non-linear damping parameter Σ for linear (left panel)
and logarithmic (right panel) template of primordial oscillations at redshift z = 1 with theoretical
predictions to leading order [25, 26]. We display Σ(z = 1) in magenta and ΣnlG(z) in orange where
Σ(z = 1) and Σnl ≡ Σ(z = 0) have been fitted to the N-body simulations. The blue band shows
the theoretical prediction to leading order [25, 26] when the separation scale Λ varied in the range
(0.1 − 0.7) k for the same frequencies of our simulations. We include also the theoretical prediction
for the BAO damping with ω ∼ 110 Mpc/h (green line) and Λ = 0.5 k according to [55].
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z=0

BAO
Linear oscillations
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Figure 8. Comparison between the BAO signal at z = 0, 2, 4 (green solid line) extracted from
our ΛCDM simulation and our fit for the linear template with Alin = 0.07, log10 (ωlin) = 0.87,
φ/(2π) = 0.4 (magenta dashed line). The green curve shows the relative differences between the non-
linear matter power spectrum with and without BAO wiggles for ΛCDM (both without superimposed
oscillations). The dashed magenta curve shows the relative differences between the non-linear matter
power spectrum with and without superimposed linear oscillations (2.1) (both with BAO). We perform
the BAO signal subtraction with a polynomial method following ref. [57]. We tune it in order to have
a good BAO signal subtraction and non-distortion of the broadband power spectrum.

As can be seen in figure 8, even with a fine tuned frequency, the linear template is
different from the BAO signal at early times, i.e. z = 4: we can see the footprints of the Silk
damping on the BAO signal [56], but not on the primordial oscillations.
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Figure 9. Relative differences between the non-linear matter power spectrum for ΛCDM with the
smooth power spectrum without BAO. The blue dashed curve shows the relative differences for the
linear matter power spectrum, the orange curve shows the relative differences for the non-linear matter
power spectrum obtained with the Gaussian damping (3.3) with the damping parameter ΣBAO (4.2)
fitted to the N-body simulations, and the green curve shows the relative differences for the non-linear
matter power spectrum extracted from the N-body simulations.

As consistency check, we extract the damping of the BAO from our ΛCDM N-body
simulations. We fit BAO non-linear damping by using the Gaussian envelope (3.3):

ΣBAO(z) = [13.90, 9.15, 6.82, 5.66, 5.01, 4.62] Mpc . (4.2)

with an absolute variance on the ΣBAO estimated smaller than 0.7, which is consistent with
results in literature (see for instance ref. [58]). See figure 9 for a comparison of the linear and
non-linear BAO signal.

5 Forecast for future galaxy surveys

We describe in this section the Fisher matrix methodology for the galaxy clustering (GC)
and the CMB used for our forecasts. We also describe the specifications for the different
experiments considered: Euclid-like, Subaru Prime Focus Spectrograph (PFS), Planck -like,
and a CMB cosmic-variance (CV) experiment.

5.1 Galaxy power spectrum

We measure galaxy positions in angular and redshift coordinates and not the position in
comoving coordinates, i.e. the true galaxy power spectrum is not a direct observable. We use
a model for the observed galaxy power spectrum based on [59–61]:

Pobs(k
ref
⊥ , kref

‖ , z) =

[
Dref

A (z)

DA(z)

]2
H(z)

Href(z)
FFoG(k, z)

Pfit(k, z)

σ2
8(z)

+ Pshot(z) , (5.1)

where DA = r(z)/(1 + z) is the angular diameter distance, r(z) is the comoving distance,
H(z) = ȧ/a is the Hubble parameter, k2 = k2

⊥ + k2
‖, and µ = k‖/k = r̂ · k̂. This is connected

to the true galaxy power spectrum via a coordinate transformation [62]:

kref
⊥ =

DA(z)

Dref
A (z)

k⊥ , kref
‖ =

Href(z)

H(z)
k‖ . (5.2)
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In eq. (5.1), Pshot is the shot noise and we model the redshift-space distortions (RSD) as:

FFoG(k, z) =

[
b(z)σ8(z) + f(z)σ8(z)µ2

]2
1 + k2µ2σ2

r,p/2
e−k

2µ2σ2
r,z , (5.3)

where b(z) is the linear clustering bias, f(k, z) = d lnG(k, z)/d ln a is the growth rate, and
G(k, z) is the growth factor. Here the numerator is the linear RSD [63, 64], which takes into
account the enhancement due to large-scale peculiar velocities. The Lorentzian denominator
models the non-linear damping due to small-scale peculiar velocities, where σr,p is the distance
dispersion:

σr,p(z) =
σp(z)

H(z)a(z)
, (5.4)

corresponding to the physical velocity dispersion σp. We choose a value of σp = 290 km/s as
our fiducial [61]. An additional exponential damping factor is added to account for the error
σz in the determination of the redshift of sources, where:

σr,z(z) =
∂r

∂z
σz =

c

H(z)
σz . (5.5)

We model the smearing of the BAO feature according to [53, 61]:

Pdw(k, µ, z) = Pm(k, µ, z)e−Σ2
BAO(z)k2/2

+ Pnw(k, µ, z)
(

1− e−Σ2
BAO(z)k2/2

)
, (5.6)

where ΣBAO(z) ≡ ΣBAOG(z) with ΣBAO(z = 0) = 9.3 Mpc/h. Here Pdw is dressed with the
damped primordial oscillation fitted to the N-body simulations according to eq. (3.2).

Finally, the finite size of a galaxy survey and the survey window function introduce
couplings between different modes k and, as a consequence, discrete bandpowers should be
considered in the analysis in order to avoid these correlations. We model the observed matter
power spectrum (5.1) in bandpowers averaged over a bandwidth ∆k with a top-hat window
function as in refs. [12, 25]:

P̂obs(ki, z) =
1

∆k

∫ ki+∆k/2

ki−∆k/2
dk′Pobs(k

′, z) . (5.7)

5.2 Fisher analysis

We follow the same approach as in ref. [21] (see also refs. [59, 65]). The Fisher matrix for
the observed matter power spectrum (5.1), for a i-th redshift bin, is given by:

FGC
αβ (zi) =

∫ 1

−1
dµ

∫ kmax

kmin

k2 dk

8π2

∂ lnPobs(k, µ, zi)

∂α

∂ lnPobs(k, µ, zi)

∂β
Veff(zi) , (5.8)

where k and µ are the ones related to the reference cosmology, ∂Pobs/∂α is the derivative
with respect to the α element in the cosmological parameter vector θ. The effective volume
in the i-th redshift bin, is given by [66]:

Veff(k, µ, zi) ' Vsurv(zi)

[
n(zi)Pobs(k, µ; zi)

n(zi)Pobs(k, µ, zi) + 1

]2

, (5.9)

where Vsurv(zi) is the comoving volume in the i-th redshift bin.
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The full set of parameters θ includes the standard shape parameters
{
ωc, ωb, h, ns

}
,

the redshift-depedent parameters
{
H,DA, log (fσ8)

}
zi

, the redshift-depedent nuisance pa-

rameters
{

log (bσ8) , Pshot, σp
}
zi

together with the three extra parameters of the primordial

oscillatory feature model
{
AX , log10(ωX), φ/(2π)

}
(see section 2). After marginalizing over

the nuisance parameters, we project the redshift-dependent parameters on the final set of
cosmological parameters{

ωc, ωb, h, ns, ln
(
1010As

)
,AX , log10(ωX), φ/(2π)

}
. (5.10)

The Fisher matrix for CMB angular power spectra (temperature and E-mode polariza-
tion) is [67–71]:

FCMB
αβ = fsky

∑
`

2`+ 1

2
tr [C`,αΣ`C`,βΣ`] , (5.11)

where C` is the covariance matrix, C`,α ≡ ∂C`/∂α is the derivative with respect to the α ele-
ment in the cosmological parameter vector θ, and Σ` ≡ (C` + N`)

−1 is the inverse of the total
noise matrix with N` the diagonal noise matrix. The effective noise NX

` is the instrumental
noise convolved with the beams of different frequency channels [16]. We adopt the specifica-
tions denoted as CMB-1 in [16] for a Planck -like sensitivity, which reproduce uncertainties
for standard cosmological parameters similar to those which can be obtained by Planck [72].

We study the predictions for a CV-CMB experiment considering the specifications of
fsky = 0.7, and a multipole range from `min = 2 up to `max = 2500.

The full set of parameters θ for the CMB includes{
ωc, ωb, h, ns, τ, ln

(
1010As

)
,AX , log10(ωX), φX/(2π)

}
. (5.12)

We marginalize over τ the Fisher matrix of the CMB before combining it with the one of the
GC.

5.3 Galaxy clustering specifications

We focus on two spectroscopic galaxy surveys. First, we consider a Euclid-like spectroscopic
survey that will probe fsky = 15, 000 deg2 over a redshift range 0.9 ≤ z ≤ 1.8 divided in 9
tomographic redshift bins equally spaced. We adopt the predicted redshift distribution of the
number counts of Hα-emitting galaxies, dN/dz, per square degree for Euclid-like Hα-selected
survey from ref. [73] with Hα + [NII] blended flux limits of 2× 10−16 erg s−1 cm−2 and dust
method from [74], and the linear clustering bias from ref. [75]. Secondly, we consider the
Subaru Prime Focus Spectrograph (PFS) which will map emission line galaxies spanning a
redshift range 0.8 < z < 2.4 over 1,464 deg2 [76]. In this case, we assume a redshift accuracy
of σz = 0.001 for both the two experiments.

6 Results

We now discuss our results for the two oscillatory models considered (see section 2 for the
parameterizations). The marginalized 68% constraints on the amplitude A (for different
values of log10 (ωX) around the best-fit AX = 0.03 and φX/(2π) = 0.2) for a Euclid-like
experiment are shown in figure 10 and can be summarized as follows:
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• using the linear matter power spectrum in (5.1), we recover uncertainties on the am-
plitude consistent with the ones obtained in ref. [15] for the linear model (2.1) and in
refs. [15, 16] for the logarithmic model (2.2) for kmax = 0.1 h/Mpc. We find similar
uncertainties using the non-linear matter power spectrum when kmax = 0.1 h/Mpc.
This confirms the validity of using the linear theory when restricting to these scales;

• when kmax = 0.6 h/Mpc, we find that Euclid-like can decrease the uncertainties σ (A)
by a factor 2 when log10 (ωX) > 1.0 thanks to our modelling of non-linear effects. Note
that incorrectly by discarting non-linear effects one would get much tighter constraints.
We find that a Euclid-like survey can lead to uncertainties which improve on a CV-CMB
for log10 (ωlin) > 1.3 and log10 (ωlog) > 1.6;

• another interesting aspect is that the improvement in term of uncertainties saturates
at kmax = 0.3 h/Mpc for the model considered. This trend is due to the non-linear
damping which smooths most of the oscillations for k > 0.3 h/Mpc for z < 2;

• finally we see that for the linear model the uncertainties for frequencies around the
BAO frequency log10 (ωlin) ' 0.87 are sensitively degraded, as pointed out in ref. [25].

Our best forecasted constraint from Euclid-like GC in combining with CMB-1 (Planck -like)
information for both the two models (X = lin, log) corresponds to σ (AX) ' 0.0018 for
log10 (ωX) = 1.1 and σ (AX) ' 0.0026 for log10 (ωX) = 2.1, respectively.

We then consider PFS. We find also in this case that the improvement in terms of uncer-
tainties saturates around kmax = 0.3 h/Mpc, even if PFS covers redshifts larger than z = 2.
Despite the smaller sky coverage compared to Euclid (by ∼ 10%), we find similar uncertain-
ties for PFS when combined with CMB information, 2 times larger than the uncertainties
obtained for the same frequencies for the Euclid-like specifications.

Finally, we combine the two GC clustering experiments with a future full-sky CV-CMB
experiment inspired by proposed CMB satellites [77–79]. Despite the large improvement by
a factor of 3 in terms of uncertainties when we consider CMB alone (see figure 10), once we
combine CMB with GC information the improvement from Planck -like to CV is minor and
. 10% for log10 (ωX) > 1.

In figure 10, we can see that the uncertainties for high frequencies become large. This
is due to the window function (5.7) which progressively damp frequencies ωlin & 0.05/∆k.
For ∆k ' 0.005h/Mpc, close to the fundamental mode of BOSS and PFS, frequencies higher
than ωlin ∼ 10 start to be damped. For the spectroscopic survey expected for Euclid a
smaller bandwidth of ∆k ' 0.0025 should guarantee optimal constraints up to ωlin ∼ 20. For
the logarithmic model the oscillations persist on small scales up to higher frequencies. The
addition of the density field reconstruction to the analysis as done in ref. [25] can further
improve the constraints.

7 Conclusions

Global features in the primordial power spectrum provide a variety of information on the
physics of the early Universe ranging from the detection of new heaviest particles, of the
presence of a fast-roll stage, to fine details in the inflationary dynamics. They can also be
used to discriminate between inflation and alternative scenarios in presence of signals which
are oscillatory in time.
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Figure 10. Marginalized uncertainties on AX as function of the frequency ωX for the linear model
(left panel) and the logarithmic model (right model). We show uncertainties for CMB-1 (magenta)
and for Euclid-like (combined with Planck -like information) in the top (bottom) panels for different
maximum wavenumber considered kmax = 0.1, 0.3, 0.6 h/Mpc (solid, dashed, dotted). Green lines
refer to the linear matter power spectrum in (5.1) and the blue lines to the non-linear matter power
spectrum. CMB CV uncertainties are in dashed-magenta.

LSS experiments (also in the perspective of the next coming surveys) give the opportu-
nity to further investigate the presence of any salient features in the matter power spectrum,
complementing the constraints based on CMB anisotropy measurements to smaller scales.
In refs. [14–19, 25], it has been already pointed out the complementarity between the mat-
ter power spectrum from future galaxy surveys and the angular power spectrum from the
measurements of CMB anisotropies in temperature and polarization to help in characterizing
primordial features in the primordial power spectrum. In particular, in refs. [15, 16] it has
been shown how future LSS surveys will be able to improve current constraints on these
oscillatory-features models just by using linear scales, i.e. k . 0.1 h Mpc−1.

In order to study the imprints of primordial features on all scales probed by galaxy
surveys, we have run a set of high-resolution DM-only cosmological simulations corresponding
to different models with linear and logarithmic superimposed oscillations with 1,0243 DM
particles in a comoving box with side length of 1,024 Mpc/h and 2,048 Mpc/h (see [20, 24] for
previous applications of N-body simulations to different models of primordial features). Our
study is important to understand the fully non-linear regime for the clustering in models with
primordial features. Our results complement analytic approximations based on a perturbative
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treatment, see refs. [24–26], and show a compatible non-linear damping with respect to
analytic results to leading order. We stress that these effects are relevant for current galaxy
surveys like BOSS and eBOSS [80], DESI [81], DES [82], as well as for future experiments
such as Euclid and PSF-Subaru.

After calibrating the damping of the primordial oscillations with a semi-analytical tem-
plate (3.3) against the matter power spectrum extracted from the N-body simulations at
different redshifts, we have studied the forecasted uncertainties extending our previous anal-
ysis [16] on the capability of GC up to quasi-linear scales k . 0.1 h/Mpc to improve the
uncertainties for such class of primordial models. The uncertainties on the amplitude of the
linear (logarithmic) primordial oscillations for a wide Euclid-like experiment covering the red-
shift range 0.9 ≤ z ≤ 1.8 over a sky patch of 15,000 deg2 around a fiducial value Alin = 0.03
(Alog = 0.03) are σ (AX) ' 0.0025 (0.0034) for log10 (ωX) = 0.1, σ (AX) ' 0.0017 (0.0018)
for log10 (ωX) = 1.1, σ (AX) ' 0.0041 (0.0026) for log10 (ωX) = 2.1 and for a deeper exper-
iment as PFS covering the redshift range 0.8 ≤ z ≤ 2.4 over a sky patch of 1,464 deg2 are
σ (AX) ' 0.0044 (0.0032) for log10 (ωX) = 0.1, σ (AX) ' 0.0026 (0.0029) for log10 (ωX) = 1.1,
σ (AX) ' 0.0096 (0.0064) for log10 (ωX) = 2.1, in combination with Planck -like CMB tem-
perature and polarization anisotropies and assuming kmax = 0.6 h/Mpc. We find an improve-
ment by a factor 2 including non-linear scales from kmax = 0.1 h/Mpc to kmax = 0.6 h/Mpc.

Oscillatory features in the PPS also generate highly correlated signals in terms of non-
Gaussianities [27, 83–85] and specific features appear also in the bispectrum (see ref. [86] for a
review), so that primordial features can also be searched for in the bispectrum [87], or jointly
in the power spectrum and bispectrum [88–90]. In addition, a scale-dependent contribution
to the clustering bias is expected in the presence of primordial non-Gaussianity [91–94]. This
last effect has been studied in ref. [21] for large-scale features and in ref. [95] for oscillatory
features resulting in a very small effect that upcoming surveys will be unable to detect.
Direct studies of the imprint from these oscillatory features on the matter bispectrum are
still promising in order to have a tighter and more robust detection of this features. A first
investigation of the matter bispectrum in these models has been presented in ref. [26] using
perturbation theory, and it will be important to further extend this framework in order to
see how non-linearities affect higher-order statistics.
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