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ABSTRACT
The nature of the time correlated noise component (the 1/f noise) of single dish radio telescopes is critical to the detectability
of the H I signal in intensity mapping experiments. In this paper, we present the 1/f noise properties of the MeerKAT receiver
system using South Celestial Pole tracking data. We estimate both the temporal power spectrum density and the 2D power
spectrum density for each of the antennas and polarizations. We apply singular value decomposition to the data set and show
that, by removing the strongest components, the 1/f noise can be drastically reduced, indicating that it is highly correlated in
frequency. With two-mode subtraction, the knee frequency over a 20 MHz averaging is about 3 × 10−3 Hz, indicating that the
system induced 1/f-type variations are well under the thermal noise fluctuations over a few hundred seconds time-scales. We also
show that such cleaning on the time ordered data has very little impact on the 21-cm signal itself. The 2D power spectrum shows
that the 1/f-type variations are restricted to a small region in the time–frequency space, either with long-wavelength correlations
in frequency or in time. This gives a wide range of cosmological scales where the H I signal can be measured without further
need to calibrate the gain time fluctuations. Finally, we demonstrate that a simple power spectrum parameterization is sufficient
to describe the data and provide fitting parameters for both the 1D and 2D power spectrum.
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1 IN T RO D U C T I O N

A major goal of modern cosmology is to understand the formation
and evolution of the cosmological large-scale structure (LSS), as
well as the information it carries from the early Universe. In the past
decades, cosmologists have traced the LSS fluctuations with wide
field spectroscopic and photometric surveys of galaxies (Cole et al.
2005; Eisenstein et al. 2005; Anderson et al. 2014; Hinton et al. 2017).
However, these surveys are often limited with either cosmologically
small volumes or lower sampling density. Furthermore, detecting
individual objects at high significance is time consuming.

Recently, the 21-cm emission line of neutral hydrogen (H I)
hyperfine spin–flip transition, has been proposed as another
cosmological probe of the LSS (e.g. Battye, Davies & Weller 2004;
McQuinn et al. 2006; Pritchard & Loeb 2012). Instead of observing
the H I emission line from individual galaxies, cosmologists proposed
to measure the total H I intensity of the galaxies within large voxels,
a technique known as H I intensity mapping (IM; Chang et al. 2008;
Loeb & Wyithe 2008; Mao et al. 2008; Pritchard & Loeb 2008;
Wyithe & Loeb 2008; Wyithe, Loeb & Geil 2008; Peterson et al.
2009; Bagla, Khandai & Datta 2010; Seo et al. 2010; Lidz et al. 2011;
Ansari et al. 2012; Battye et al. 2013). Because of the low angular
resolution requirement, an H I IM survey can be quickly carried
out with single dishes and extended to very large survey volumes.
The H I IM technique was explored with the Green Bank Telescope
(GBT) by measuring the cross-correlation function between an H I
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IM survey and an optical galaxy survey (Chang et al. 2010). Later,
the cross-correlation power spectrum between an H I IM survey and
an optical galaxy survey was also reported with the GBT and Parkes
telescopes (Masui et al. 2013; Wolz et al. 2017; Anderson et al. 2018),
while the H I IM autopower spectrum remains undetected (Switzer
et al. 2013). There are several planned H I IM experiments targeting
the post-reionization epoch, such as the Tianlai project (Chen 2012),
the Canadian Hydrogen Intensity Mapping Experiment (CHIME;
Bandura et al. 2014), the Baryonic Acoustic Oscillations from
Integrated Neutral Gas Observations (Battye et al. 2013), and the
Hydrogen Intensity and Real-Time Analysis experiment (Newburgh
et al. 2016). The SKA has also been proposed as a major instrument to
probe cosmology using this technique (Bull et al. 2015; Santos et al.
2015; Square Kilometre Array Cosmology Science Working Group
2020). Recently, it was also proposed to have an H I IM survey with
the newly built MeerKAT telescope in single-dish mode (Santos et al.
2017).

There are several challenges for H I IM power spectrum detection.
The primary challenge is to remove the bright continuum radiation of
the Milky Way and extragalactic galaxies. The continuum radiation
foreground is known to have a smooth frequency spectrum and can be
extracted by fitting the spectrum with low order polynomial functions
(Mao 2012). However, due to instrumental effects, the smooth-
spectrum assumption breaks down and the foreground signal leaks
into higher order fluctuation modes. Several foreground cleaning
methods have been proposed to try to address this (Alonso, Ferreira
& Santos 2014; Wolz et al. 2015) and used in the analysis of GBT
and Parkes H I IM survey (Switzer et al. 2015; Wolz et al. 2017).
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H I IM measurements also require the receiver system to be stable.
However, the receiver system noise is known to have time correlated
fluctuations, the so-called 1/f-type noise (1/f noise). Such 1/f noise
injects long-range correlations in time and leads to stripes in the
final IM map. Since the measurements are performed in single dish
mode (autocorrelation), they do not benefit from the suppression
of 1/f noise afforded by interferometric measurements. The 1/f
noise effect has been discussed in previous analyses of cosmic
microwave background (CMB) experiments (Janssen et al. 1996).
Several different destriping methods have been proposed and tested
with the analysis of CMB data (Maino et al. 2002; Seiffert et al.
2002; Keihänen et al. 2004; Kurki-Suonio et al. 2009; Sutton et al.
2010).

The effect of 1/f noise on an H I IM survey has been analysed
through simulations (Bigot-Sazy et al. 2015; Harper et al. 2018). In
the case of H I IM, the data are collected across multiple frequency
channels. However, the correlation of 1/f noise across frequency is
currently not very well understood. In this work, we develop a 1/f
noise power spectrum density estimator to extract the temporal and
spectroscopic 1/f noise properties of the MeerKAT receiver system
using astronomical observation data. We also apply singular value
decomposition (SVD) to the data in order to reduce the 1/f-type
fluctuations. The paper is organized as follows: Our power spectrum
density analysis method and the 1/f noise model are introduced in
Section 2; the details of observation data are given in Section 3,
the SVD method is introduced in Section 4, a mask filling method
is introduced in Section 5 to reconstruct the missing data due to
the Radio Frequency Interference (RFI) flagging, the results are
discussed in Section 6, and the conclusions are summarized in
Section 7.

2 1 /F NOISE POW ER SPECTRUM DENSITY
M O D E L

2.1 Temporal power spectrum density

The time-ordered data (in arbitrary units) as a function of time t and
frequency ν, d(t, ν), can be modelled as the input temperature, Tin(t,
ν), multiplied by the gain, G(t, ν):

d(t, ν) = G(t, ν)Tin(t, ν) + n(t, ν), (1)

where n(t, ν) represents the white noise term (a Gaussian variable
uncorrelated in time and frequency). The input temperature can be
expressed as Tin = (Text + Trx), where Text is the external temperature
(sky, atmosphere and ground effects), convolved by the telescope
primary beam, and Trx is the receiver temperature. The gain, G(t, ν),
refers to the gain of the amplifiers in the receiver.

There are several sources of temporal fluctuations in equation (1).
First, we have the usual sky fluctuations. Since in these observations
the telescope is fixed and pointing at the South Celestial Pole (SCP),
we do not expect to see much variation, except as a result of point
sources or our galaxy moving in and out of asymmetries in the
primary beam (rising and setting could also be an issue but the
contribution will be about 30◦ from the beam centre). With the
MeerKAT beam model (Asad et al. 2019), as well as the sky model
from PyGSM,1 we found that the temperature fluctuation due to
the beam asymmetries is at the ∼ 0.1 per cent level over the 2.5 h
of observation. Likewise, we do not expect fluctuations due to the
atmosphere or ground pick-up during this observation time since

1git@github.com:telegraphic/PyGSM.git

the dish is fixed. Moreover, these contributions should be smooth in
frequency and therefore removed in the cleaning process.

We then have instrumental fluctuations. There are changes in
the receiver temperature, gain as well as the intrinsic white noise
fluctuations mentioned above that should integrate down in time.
The receiver temperature is dominated by the contribution from the
first low-noise amplifier (LNA). This LNA is located within the
cryostat whose physical temperature is relatively stable due to its
large thermal inertia. The temperature injected by cryogenic LNAs
is found to only have a weak dependence on physical temperature
once cooled below 50 K. We therefore expect Trx to be quite stable
over the time-scales of our study. Also, the slow gain drifts (over hour
scales) are expected to be calibrated out either through noise diodes
or sky calibrators. We finally have the ‘non-calibrated’, correlated
gain fluctuations that are the focus of this paper (the 1/f noise). This
correlated noise has simple statistical properties (at least on time-
scales �1 h), which we describe next.

In order to model the fluctuations, we define, G(t, ν) ≡ Ḡ(ν) +
δG(t, ν), Text(t, ν) ≡ T̄ext(ν) + δText(t, ν), and Trx(t, ν) ≡ T̄rx(ν) +
δTrx(t, ν), where we use an overbar to define the time-averaged
quantities. We subtract and divide the data by its time average,
d̄(ν), taking only the varying part for the rest of the analysis:
δd(t, ν) ≡ d(t,ν)

d̄(ν) − 1. By dividing by d̄(ν) we also cancel out the
frequency dependence both from the sky and instrument (the part
that is stable in time, e.g. the bandpass). To first order we can then
write

δd(t, ν) ≈ δText(t, ν)

T̄in(ν)
+ δTrx(t, ν)

T̄in(ν)
+ δG(t, ν)

Ḡ(ν)
+ n(t, ν)

T̄in(ν)Ḡ(ν)
. (2)

As described above, we expect fluctuations in the gain, δG(t,ν)
Ḡ(ν) , to

dominate this. However, our analysis does not make any distinction
between the different components and we could as well assume
that the fluctuations in the receiver temperature or even the sky, are
included. In fact, as we will see later, we believe that the first mode
is dominated by the sky contribution, possibly due to a small offset
from the SCP. To that effect, we can claim that our results are upper
limits as they can include more fluctuations than just the classical 1/f
noise.

We are going to assume that we can model the ‘non-calibrated’
instrument fluctuations through a correlated Gaussian distribution
(both in time and frequency). These can be characterized by the tem-
poral power spectrum density function, Ŝt (f , ν), which is estimated
via the Fourier transfer of δd(t, ν) along the time axis as

Ŝt (f , ν) =
∣∣∣∣∣∣
√

δt

Nt

Nt −1∑
p=0

δd(pδt, ν) exp[−2πifpδt]

∣∣∣∣∣∣
2

, (3)

in which, f is the temporal frequency; δt is the time resolution of the
data (t = pδt), and Nt the number of time samples.

If we only have the white noise fluctuations, we can write

St (f , ν) ≡ 〈Ŝt (f , ν)〉 = δt

Nt

Nt −1∑
p=0

〈
δ2
d (pδt, ν)

〉
(4)

= δt
σ 2

n

T̄ 2
in(ν)Ḡ2(ν)

= δt

T̄ 2
in(ν)

T̄ 2
in(ν)

δtδν
= 1

δν
, (5)

where σ 2
n is the white noise variance and σ 2

n /Ḡ2(ν) = T 2
in

δνδt
for a fre-

quency bin width of δν and integration time of δt (e.g. Wilson, Rohlfs
& Hüttemeister 2009). Please note that, since δd is normalized with
the system temperature, the power spectrum density is normalized
with T 2

sys. The power spectrum in the time direction from the extra
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1/f-type noise component can then be modelled as (Harper et al.
2018)

St
fn(f , ν) = 1

δν

(
fk

f

)α

, (6)

where α is the spectral index of the noise. This enforces that for large
f the 1/f noise power spectrum goes to zero and the overall power
spectrum becomes dominated by white noise. Our model for the full
temporal power spectrum density function is then

St (f , ν) = A

δν

(
1 +

(
fk

f

)α)
, (7)

where A (∼1) is as a free parameter fit together with α and fk.

2.2 2D power spectrum density

The 1/f noise can potentially be correlated in frequency. We need
therefore to consider a 2D power spectrum to fully describe its
statistics. This 2D power spectrum density can be estimated by
Fourier transforming the observed time-ordered data along the time
and frequency axes:

Ŝ(f , τ ) =
∣∣∣∣∣∣
√

δtδν

NtNν

Nt −1∑
p=0

Nν−1∑
k=0

δd exp [−2πi (fpδt + τkδν)]

∣∣∣∣∣∣
2

, (8)

in which f is the temporal frequency and τ is the spectroscopic
frequency (the Fourier conjugate in the frequency domain). In
this case, if we only have white noise fluctuations, Ŝ(f , τ ) = 1.
Following Harper et al. (2018), we then build an empirical 2D power
spectrum density model as

Sfn(f , τ ) = F (f )H (τ ), (9)

where we assume that the correlations in time and frequency are
separable and only a function of |t − t

′ | and |ν − ν
′ |. In reality, the

system can be more complex than this, especially if we have non-
linearities and ultimately we need to check the validity of our model
through the data itself as we will see later. In the equation above, F(f)
describes the temporal correlation power spectrum,

F (f ) = 1

δν

(
fk

f

)α

, (10)

with fk the knee frequency defined at the frequency resolution of δν).
H(τ ) is the spectroscopic correlation power spectrum density, which
can be modelled as

H (τ ) =
( τ0

τ

) 1−β
β

, (11)

where β specifies the amount of correlation across frequencies and τ 0

= 1/(Nνδν). Combining the white noise term, the 2D power spectrum
model can be expressed as

S(f , τ ) = A

(
1 + 1

Kδν

(
fk

f

)α ( τ0

τ

) 1−β
β

)
, (12)

in which, K = ∫
d τ sinc2(πδντ )

(
τ0
τ

)(1−β)/β
. The derivation of equa-

tion (12) is shown in the appendix. A ∼ 1 due to the normalization
with T 2

sys. In our analysis, A is set as an overall amplitude parameter
that can be constrained by the observation data together with f0, α,
and τ 0.

The knee frequency fk as a function of frequency resolution is an
important consideration for the LSS correlation signal on the largest
scale sizes. For example, if we are interested in line-of-sight scales

of ∼ 100 Mpc h−1, at 900 MHz (i.e. z ∼ 0.6), this corresponds to
frequency scales of ∼ 25 MHz. Depending upon the knee frequency,
at the ∼ 25 MHz frequency resolution there is the potential to
detect the 1/f noise more significantly than at lower values of the
frequency resolution. The knee frequency at two different frequency
resolutions, δν, δν

′
, is related via

lg fk = lg fk′ + 1

α
lg

(
Kδν

K ′δν ′

)
. (13)

The derivation is shown in the appendix. We test the shift of
the knee frequency with simulated time-ordered data. Fig. 1(a)
shows the waterfall plots of the simulated time-ordered data with
different frequency correlation properties. As β → 0, the 1/f noise
becomes fully correlated over the frequency band. As β → 1, the
frequency correlation length is reduced and the 1/f noise between
different frequencies becomes independent (down to the frequency
resolution).

The corresponding temporal power spectrum of the simulated
data is shown in Fig. 1(b). The black solid curve shows the power
spectrum with 0.1 MHz frequency resolution, which is the raw
frequency resolution of the simulation, while the red curve shows
the power spectrum after averaging over 10 frequency channels. The
dashed curves show the simulation with only 1/f noise (set white
noise level to 0). The horizontal lines indicate the white noise level
with frequency resolution of 0.1 MHz (blue) and 1 MHz (green),
respectively. The cross-points with the vertical lines indicate the
knee frequency at the corresponding frequency resolution, which is
estimated with equation (13). The white noise floor, as expected,
is reduced by one order of magnitude after frequency averaging.
However, the 1/f noise level behaves differently with different β

values. In the case of β = 0, the 1/f noise is fully correlated over
the frequency band. The level of 1/f noise power spectrum does not
change with averaging frequency channels, but the white noise does.
The different behaviour between 1/f noise and white noise results in
a higher knee frequency value at lower frequency resolution. With
β increasing, the 1/f noise behaves more like the white noise. In the
case of β = 1, the 1/f noise if fully uncorrelated between frequencies
and the power spectrum level is reduced by one order of magnitude as
well. In this case, the knee frequency does not change with frequency
resolution.

2.3 Parameter fitting

The parameters that characterize the 1/f noise can be constrained by
fitting the model against the measured noise power spectrum. We
build the χ2 function both for temporal and the 2D power spectrum
density function:

χ2
t =

∑
f

(〈Ŝt (f )〉ν − St (f )
)2

σ 2
Ŝt

, (14)

χ2 =
∑
f ,τ

(
Ŝ(f , τ ) − S(f , τ )

)2

σ 2
Ŝ

, (15)

in which, 〈 〉ν represents the average over the frequency channels
and σŜt , σŜ are the estimated errors of the temporal and 2D power
spectrum density, respectively. The errors of the temporal power
spectrum density are estimated via the standard deviation of the
power spectrum density using different frequency channels:

σ 2
Ŝt = 1

Nν

(〈(Ŝt (f ))2〉ν − (〈Ŝt (f )〉ν)2
)
, (16)

where Nν is the number of frequency channels.

MNRAS 501, 4344–4358 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/4344/6039330 by U
niversity of the W

estern C
ape user on 11 M

ay 2021



MeerKAT 1/f noise analysis 4347

Figure 1. (a) The waterfall plot of the simulated time-ordered data using the model of equation (12) as the input power spectrum. The simulation uses 1/f noise
parameters: fk = 0.1 Hz at frequency resolution δν = 1 MHz, α = 2.5 and different values of β as shown in each panel. β = 1 corresponds to uncorrelated
1/f noise across frequency, while β → 0 is fully correlated (one can still see a fluctuation since we cannot simulate β = 0 exactly). (b) The temporal power
spectrum density of the simulated time-ordered data as shown in Fig. 1(a). The black-dashed curve shows the power spectrum of pure 1/f noise simulation (set
white noise equals to 0) with frequency resolution of 0.1 MHz and the solid curve shows the simulation with white noise added; The red dashed/solid curve
show the same simulations with frequency resolution reduced to 1 MHz. The horizontal lines indicate the white noise level with frequency resolution of 0.1
(blue) and 1 MHz (green), respectively. The cross-points with the vertical lines indicate the knee frequency at the corresponding frequency resolution, which is
estimated with equation (13). For β = 1 (fully uncorrelated), we expect the 1/f noise power spectrum to be inversely proportional to the frequency resolution.

The error on the 2D power spectrum density is estimated with
jackknife samples (Efron 1982), which is widely used in LSS surveys.
Following the jackknife method, the total time-ordered data is evenly
divided into N = 200 sub-time blocks. By dropping one sub-time
block at a time, we estimate the 2D power spectrum density using
the remaining N − 1 sub-time blocks and obtain N realizations as the
jackknife samples. The errors are then estimated from the jackknife
samples as

σ 2
Ŝ,JK = N − 1

N

N∑
k=1

(
Ŝk(f , τ ) − 〈Ŝk(f , τ )〉k

)2
, (17)

where Ŝk(f , τ ) is the 2D power spectrum density estimated using the
kth jackknife sample and 〈 〉k represents the average over the jackknife
samples. The jackknife errors are then used in the parameter fitting.

We constrain the free parameters by minimizing the χ2 function,
using the publicly available Markov Chain Monte Carlo algorithm
emcee (Foreman-Mackey et al. 2019).

3 O B S E RVAT I O N S A N D DATA R E D U C T I O N

Details on the MeerKAT telescope can be found in Jonas & MeerKAT
Team (2016), Camilo et al. (2018), and Mauch et al. (2020). In
order to characterize the 1/f-type fluctuations of the system noise,
we need a constant input signal and a long-duration observation.
Both requirements can be satisfied by tracking the SCP over several
hours. Two SCP data sets are used in our analysis. One was collected
in 2016 with a few antennas; the other was collected in 2019 using
the majority of the MeerKAT array.

2016 SCP Data The data in 2016 (SCP16) were observed
with three of the MeerKAT antennas, named M017, M021, and
M036, pointing at the SCP. The observation started with a 20 Hz
sampling rate for 3.5 min (Experiment ID 20160922-0004), followed
by 1 Hz sampling rate for 2 h (Experiment ID 20160922-0005). The
frequencies range from 856 to 1711.791 MHz, with 4096 frequency
channels and 0.209 MHz frequency resolution.

2019 SCP Data The SCP tracking data in 2019 (SCP19) was
observed on April 24 (Experiment ID 20190424-0024) using ∼60

antennas over 2.5 h. The data were taken with a 0.5 Hz sampling rate.
The frequency range and resolution for the data in 2019 are the same
as in 2016.

Fig. 2 shows the frequency spectrum of the SCP tracking data,
averaged over the observation time. The top panel shows the spectrum
of all three antennas used in the SCP16. The bottom panel shows the
spectrum of the first six antennas used in the SCP19 observation.
The amplitude shown here is the uncalibrated raw detector output
power. The scattering of the amplitude across antennas is mainly
due to the different digital gain settings. We use the relatively RFI-
free frequency range between 1294.8672 and 1503.8516 MHz for
the rest of the analysis but exclude the H I signal from our galaxy at
1420MHz.

As discussed in Section 2, we are interested in the fluctuations
around the time average, δd(t, ν) = d(t,ν)

d̄(ν) − 1. We then need to
normalize the data by its time average. Note, however, that we use
median values instead of the mean values to avoid time-varying RFI.
We expect the receiver temperature as well as most external sources
to be constant during the observation time since the telescope is
fixed and observing the SCP. Therefore, this normalization should
calibrate out the telescope bandpass as well as most spectral features
from the sky, ground pick-up and atmosphere. The remaining
time and frequency fluctuations in δd(t, ν) are expected to be
from 1/f and white noise. However, some fluctuations can still be
present from sources rising and setting and due to primary beam
asymmetries. The waterfall plots of the normalized data are shown
in Fig. 3.

Three antennas from SCP16 at 1 Hz sampling rate are shown in
the top left-hand, top right-hand, and bottom left-hand panels of
Fig. 3, while one antenna from SCP19, as an example, is shown
in the bottom left-hand panel. In each panel, the two polarizations
are shown in the top and bottom sub-panels. The colour scale is
restricted to run between the mean value plus/minus two times the
root mean square (rms) of the data shown. The amplitude varies
over both frequency and observation time. The variation of SCP16
data is around 0.3 per cent of the mean, Tsys, which is much less
than the SCP19 data. The SCP19 data show strong variations in time
while showing strong correlations across frequency. Such frequency-
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Figure 2. The frequency spectrum of SCP tracking data. The top panel shows
the spectrum of the SCP16 20Hz data; the bottom panel shows the SCP19
data. In each panel, the top/bottom sub-panels show the two polarizations.
The y-axis is the uncalibrated raw detector output power.

correlated variations are synchronous across different antennas,
which indicates a larger overall environment variation during the
2019 observation.

4 TIME-ORDERED SVD

We apply SVD to the time-ordered data in order to extract its strongest
components. If the 1/f noise is strongly correlated in frequency, we
expect the SVD will be able to remove it while keeping the H I

signal unaffected on the scales of interest. Foregrounds should also
be removed in this process. SVD corresponds to the following matrix
decomposition:

D = U�V†, (18)

where D is the data matrix with shape of nt × nν ; the columns
of U = {u0, ..., unt

} and V = {v0, ..., vnν
} are the temporal and

spectroscopic modes and � is a nt × nν diagonal singular value
matrix. The symbol † denotes the conjugate transpose. Both the
temporal and spectroscopic modes are sorted according to their
singular values, and the first Nm modes are subtracted:

Dc = D − U�′V†, (19)

where �
′

equals � with diagonals beyond Nm set to 0. It can be
further expressed as

Dc = D −
Nm∑
i=0

ui(u
†
i D) (20)

= D −
Nm∑
i=0

(Dvi)v
†
i , (21)

where ui, u
†
i , vi, and v

†
i are the elements of U, U†, V, and V†

respectively.
The singular values of the SCP data sets are shown in Fig. 4,

normalized with the first (largest) singular value. The first five
singular values are shown on the left of the black-dashed line and
the rest are shown on the right. It is clear that after the first five
modes there is little variation in the amplitude. Therefore, we restrict
the analysis in this paper to the first five modes. The temporal and
spectroscopic modes for SCP16 and SCP19 are shown in Figs 5
and 6, respectively. In each panel, the two polarizations are shown
in the upper/lower sub-panels with the blue/green colours and the
temporal/spectroscopic modes shown in the left/right sub-panels,
respectively. The areas shown in yellow are the re-filled values due
to the RFI flagging, and the orange curves are the Wiener filtered
smooth curves. We will discuss our mask-filling strategy in Section 5.

The 20 and 1 Hz data of SCP16 have significant differences in the
singular values, as well as the singular modes. The left-hand panel of
Fig. 4 shows the singular values of all three antennas of both the 20
and 1 Hz data of SCP16; the singular values of the 1 Hz data decrease
more quickly than those of the 20 Hz data. This is because the 20 Hz
data have much shorter observation time than the 1 Hz data and the
SVD modes are dominated by the system noise. This difference can
also be seen with the SVD modes in Fig. 5. The two panels of Fig. 5
show the SVD modes of the antenna M017 of SCP16 data, where
the 1 Hz data are on the left and the 20 Hz data are on the right. We
can see that, at least for the first three modes, both for the temporal
and spectroscopic modes, the 1 Hz data have clear variation shapes;
but the modes of 20 Hz data are mostly noise dominated.

The singular values of the data of SCP19 are shown in the right-
hand panels of Fig. 4. Only the first six antennas are shown here as
examples; the rest of the antennas have the same trend as these first
six antennas. The SVD modes of the SCP19 data are shown in the
Fig. 6, in which the left-hand and right-hand panel show the modes
of two different antennas as examples. Similar to the SCP16 1 Hz
data, with long enough observation time, the system variations both
along time and frequency are well represented with the first several
singular modes.

5 POW ER SPECTRUM I N THE PRESENCE O F
R F I FL AG G I N G

The gaps due to the RFI flagging result in significant window function
effects in the final power spectrum. To reduce the impact of this effect
in our analysis, we fill the missing data with values reconstructed with
the SVD modes. The mask-filling strategy is described below.

First of all, some data are removed across either whole frequency
channels or whole time samples. Frequency channels that are
contaminated by some known narrow band RFI are fully masked
for the whole observation time. The H I emission line of the Milky
Way, which is in our selected frequency band, is also removed. On the
other hand, some short time duration occasional RFI, for example,
due to transiting satellites, are masked across the whole frequency
band. By ignoring the masked frequency channels and time stamps,
the rest of the data are merged into a continuous frequency-time
matrix. SVD is applied to this merged data.
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MeerKAT 1/f noise analysis 4349

Figure 3. The waterfall plots of the SCP tracking data. The SCP16 1 Hz data observed by antenna M017, M021, and M036 are shown in the top left-hand, top right-
hand, and bottom left-hand panels, respectively; The SCP19 data observed by M001, as an example, is shown in the bottom right-hand panel (0.5 Hz sampling rate).
The frequency range is truncated between 1294.8672 and 1503.8516 MHz, which is relatively RFI-free. The power amplitude of each frequency is normalized
with the median values along the time axis. The colour scale is restricted between the mean value of the shown data plus/minus two times of the rms of the data.

Figure 4. The singular values of each of the SVD modes, normalized to the first singular value. The black-dashed line indicates the first five singular values.
The left-hand panel shows the singular values of the SCP16 data, both for 1 and 20 Hz sampling rate, observed with different antennas. The right-hand panels
show the singular values of data from April 24, SCP19. The results of the first six antennas are shown in different colours. For the 20 Hz data, the changes in
amplitude are small since the modes are dominated by noise.

We take the resulting first five temporal and spectroscopic modes,
which have larger singular values than the noise modes, and fill the
masked regions with linear interpolation. The interpolation is applied
for each of the temporal and spectroscopic modes individually.

However, if the singular modes are noise dominated, such as the
first several modes of SCP16 20 Hz data, the interpolation is ignored
and the masked region is filled with the mean value of the singular
mode. Then, we apply a Wiener filter to each of the masked-filled
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4350 Y. Li et al.

Figure 5. The singular modes of each of the first five SVD modes, of antenna M017, as an example, of the SCP16 data, with results of 20 Hz data on the left-hand
panel and 1 Hz data on the right. The HH and VV polarization are shown in the top and bottom sub-panels, respectively; and the temporal and spectroscopic
modes are shown in the left-hand and right-hand sub-panels, respectively. The areas shown in yellow are the re-filled values due to the RFI flagging, and the
orange curves are the Wiener filtered smooth curves. We discuss our mask-filling strategy in Section 5).

Figure 6. Same as Fig. 5 but shown with the modes of antenna M000 (left) and M001 (right) of the SCP19 data. The two polarizations are shown in the top and
bottom sub-panels; and the temporal and spectroscopic modes are shown in the left-hand and right-hand sub-panels, respectively.

singular modes to make the filled values smoothly connect with the
unmasked region. The smoothed filling values are shown with the
orange curves in Figs 5 and 6.

We then subtract the Wiener-filter-smoothed singular modes from
the five modes, estimate the rms of the residuals for each mode, and
add random noise to the filling values according to the residual
rms of each mode. The noise-added filling values are shown in
yellow in Figs 5 and 6. Using only these five modes we construct
a new data set (through equation 18) that now has values in the
missing gaps. We could be tempted to use these values to fill
the flagged gaps in our original data. However, this reconstructed
data with the first five modes still has noise missing (from the
remaining modes). In order to account for this, we subtract this
new data set from the original data set and estimate an overall
noise rms using the non-flagged part of the data. We then add
random noise to the new data set using this rms and use its
values to fill the flagged gaps in the original data. The original
masked data and masked filled data of SCP19 (antenna M001)
are shown in the top left-hand and top right-hand panels of Fig. 7,
respectively.

Finally, we perform SVD a second time to the mask-filled data.
The waterfall plots with the first one, two, and five modes removed
are shown in the bottom left-hand, bottom middle, and bottom right-
hand panels of Fig. 7. The corresponding first five modes are shown
in Fig. 8. The power spectrum estimation discussed in Section 6 is
performed with the mask-filled data.

6 R ESULTS AND DI SCUSSI ON

6.1 The temporal power spectrum density

We now focus on the analysis of the power spectrum along the
time domain and how it compares to our model. The temporal power
spectrum is estimated by Fourier transforming the data along the time
axis. Before the power spectrum estimation, we reduce the frequency
resolution down to ∼ 20 MHz by averaging every 100 frequency
channels. The frequency averaging can reduce the white noise level
and shift the knee frequency to the high end of f. However, as we
discussed before, the shift of the knee frequency is also dependent
on the frequency correlation of the 1/f noise.
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MeerKAT 1/f noise analysis 4351

Figure 7. The top left-hand panel shows the waterfall plots of the mean-subtracted data before SVD mode subtraction; The top right-hand panel shows the
same data with the RFI masks filled; The bottom left-hand, bottom middle, and bottom right-hand panels are the waterfall plots of the mask filled data with one,
two, and five SVD modes subtracted. All these data are the SCP19 observation with antenna M001.

Figure 8. The waterfall plots of the first five SVD modes from the mask filled data. All these data are the SCP19 observation with antenna M001.

The temporal power spectrum density results of SCP16 data
observed with the three antennas are shown in Fig. 9, and the results
of the first three antennas of SCP19 data are shown in Fig. 10. The two
polarizations are shown in the left-hand and right-hand subpanels.
We do not show the raw data as it is mostly dominated by external
sources (e.g. sky and ground pick-up). This should be very smooth

in frequency with our observation and most of it should be removed
with the first SVD mode. The results with one- ,two-, and five-
mode subtraction are shown in different colours as labelled in the
legend. The errors of the power spectrum density are estimated via
the variance over different frequency channels. Significant 1/f-type
noise in the power spectrum is visible in all the plots. After SVD
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4352 Y. Li et al.

Figure 9. The temporal power spectrum density of the SCP16 data. The
results of the three antennas are shown in different panels. In each panel,
the results of two polarizations are shown in the left-hand and right-hand
subpanels; The results with one-, two-, and five-mode subtraction are shown
in different colours as labelled in the legend. The errors of the power spectrum
density are estimated via the variance over different frequency channels.

modes subtraction, the 1/f-type noise power is reduced and flat white
noise dominates the power spectrum over a wide frequency range,
with a clear knee frequency visible. This indicates that most of the
1/f noise is correlated in frequency.

For the SCP16 data, the results with 1 Hz sampled data are shown
with empty markers and the 20 Hz sampled data with filled markers.
Both show good agreement of the white noise floor (Fig. 9). This level
is also consistent with the theoretical value in equation (7) given by

Figure 10. Same as Fig. 9 but for SCP19 data sets. The results of the first
three antennas are shown in different panels. The solid lines are the fitted 1/f
noise temporal model using equation (7).

1/δν, which at δν = 20 MHz corresponds to ∼5 × 10−8. The noise
floor is also slightly reduced with the five modes subtraction. Note,
however, that it is still equal or above the predicted theoretical white
noise value. Mostly likely, this noise floor reduction is due to the
removal of correlated modes in frequency but that are fluctuating on
short time-scales.

We also notice that the SVD mode subtraction does not work well
with antenna M021 for the 20 Hz sampled data, especially for the
VV polarization. As shown in Fig. 4, the singular values of this
antenna with 20 Hz sampled data are barely reduced. With 1 Hz
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MeerKAT 1/f noise analysis 4353

Figure 11. The 2D power spectrum density estimated with SCP19 data. From the top left to the bottom right, each panel shows the result with no SVD modes sub-
traction, one mode, two modes, and five modes subtraction. The two polarization are shown in the left-hand/right-hand sub-panels. All the plots are truncated with
the same colour scale. The white contours shows the levels 2, 10, 102, and 103. and the dashed contours show the fitted power spectrum model at the same levels.

sampled data, M021 has larger singular values for the second and
third modes compared with the other two antennas. By looking at
the waterfall plot in Fig. 3, M021 has more fluctuations than the
other two antennas. This indicates that the system of M021 was quite
unstable during the observation of SCP16.

The SVD mode subtraction works well for the SCP19 data, as
shown in Fig. 10. We only show the results of the first three antennas
because the other antennas have similar behaviors. Comparing to
SCP16 data sets, the f upper bond of SCP19 is limited by the lower
time sampling resolution. The solid lines in Fig. 10 are the fitted 1/f
noise temporal model using equation (7). Again, we do not fit to the
raw data here as that would require a more complex model, possibly
with a running power law. Once we remove one or more modes the
fit using equation (7) works quite well. Removing two modes is quite
conservative and we expect it to be done for most data analysis.

After the subtraction of the first singular mode, the 1/f type
correlation in time is highly reduced and the knee frequency is
reduced below 10−2 Hz. A clear white noise floor is shown at the
high-f end and the noise floor is ∼5 × 10−8, which is consistent with
both the SCP16 data, as well as the model prediction. With additional
singular modes subtraction, the knee frequency is further reduced.
Again, the noise floor is slightly reduced with five-mode subtraction.

6.2 2D power spectrum density

The 2D power spectrum density is estimated by Fourier transforming
the data along both the time and frequency axes. The results for

SCP19 are shown in Fig. 11 for one antenna (M000) as an example.
From top left-hand to the bottom right-hand panels, it shows the
2D power spectrum with zero, one, two, and five SVD modes
subtracted, as labelled in the title of each panel. The results for the two
polarizations are shown in the left-hand and right-hand subpanels,
respectively. The white contour shows the levels 2, 10, 102, and 103.
The dashed contours show the fitted 2D power spectrum model at
the same power spectrum levels as the measurements. Since we are
analysing the power spectrum of δd (equation 12), the 2D power
spectrum of the white noise should be at a level of 1.

The top left-hand panel of Fig. 11 shows the results of the data
without singular mode subtraction. The power spectrum is peaked at
the low-τ end, which indicates a strong correlation across frequency
channels. Such strong frequency correlation results in a smooth
frequency spectrum, which is clearly shown in the waterfall plots
(top panels of Fig. 7). The power spectrum has a tail below f ∼
10−2 extending to higher τ . Such a tail structure indicates other 1/f
components, which are less correlated across frequency channels.
However, the model is only fitted to the component with strong
frequency correlation as it is the dominant one and the model assumes
a single spectrum index. This is also the reason why the temporal
power spectrum model cannot fit the data without singular mode
subtraction as discussed in Section 6.1.

The strong frequency correlated component can be removed by
subtracting the first singular mode. The waterfall plots of the first
singular mode are shown in the top panel of Fig. 8, which have
structures consistent with the raw data. The 2D power spectrum of
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4354 Y. Li et al.

Figure 12. The fitted fk, 20MHz versus α (left-hand panels) and β (right-hand panels) for each of the antennas. Top/bottom panels show the results of HH/VV
polarizations. The results with 1, 2, and 5 modes subtracted are shown with different colours.

the data with first mode subtracted is shown in the top right-hand
panel of Fig. 11. Comparing to the top left-hand panel, the strong
frequency correlated component is subtracted out.

The first singular mode has consistent fluctuations between po-
larizations, as well as different dishes, which indicates that it is due
to the environmental variations. The sky fluctuation is supposed to
be strongly correlated across frequencies and could be the main
contribution to the first mode. Its residuals could even remain in
the second mode. However, the fluctuations of the first mode along
time are ∼ 1 per cent of the system temperature, which is higher
than what we would expect from the beam asymmetries. After some
investigation, we found that, during the observation, dishes were
tracing the celestial point with Dec = −90◦ of epoch of J2000, which
is about 6 arcmin off the SCP of current epoch. Such minor offset
pointing could potentially cause large enough sky fluctuations during
the 2.5-h observation to explain this first mode. We do not quote 1/f
values without SVD subtraction given this sky contamination of the
first mode and warn that there could also be some residuals in the
second mode.

With more singular modes subtraction, the 1/f-type power spec-
trum is highly reduced and the knee frequency is also reduced
to lower values. The 2D power spectrum model, equation (12), is
fitted to the measurements for each antenna and polarization with a
differing number of SVD modes subtracted, individually. The fitting
parameters fk, 20MHz, α and β are shown in Fig. 12, where each square
marker shows the fitting value for one antenna. The results for the two
polarizations are shown in the left-hand and right-hand panels and the
results with 1, 2, and 5 singular mode subtraction are shown in differ-
ent colours as labelled in the legend. The median value of the fitting
parameters, as well as the rms, over all dishes are listed in Table 1.

The fitting value for fk, 20MHz is continuously reduced with ad-
ditional singular mode subtraction. With 2 modes subtraction, the
knee frequency at 20 MHz is reduced to around 3 × 10−3 Hz, which
indicates that the system 1/f-type variations are well under the
thermal noise fluctuation over ∼ 3 × 102 s. The time-scale can be
even longer with five modes subtraction.

Figure 13. The spectroscopic correlation power spectrum density, H(τ ), of
SCP19 data. The results for two polarizations are shown in the left-hand and
right-hand panels and the results with 1, 2, and 5 mode subtraction are shown
with different colours. The errors are estimated with the jackknife samples.
The solid lines show the corresponding best-fitting H(τ ) model.

In order to further check the quality of the 2D fit, we decided to ex-
tract the spectroscopic power spectrum density, H(τ ) in equation (9),
from the estimated 2D power spectrum. To get a better signal to
noise, we use a weighted average across the f bins:

H (τ ) = 1

W

fmax∑
fmin

w(f )K

(
S(f , τ ) − A

F (f )

)
(22)

in which, A, fk, and α use the best-fitting values. W = ∑
w(f) is the

normalization factor and we take w(f) = (F(f)/K)2 in order to down-
weight the low-amplitude (noisy) contributions. The results with 1, 2,
and 5 mode subtraction for one antenna (M000) are shown in Fig. 13
in different colours. The left-hand and right-hand panels show the
results of two polarizations, respectively. The solid lines show the
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MeerKAT 1/f noise analysis 4355

Table 1. The median values of fitting parameters across all dishes. The errors are the rms of the fitting values across all dishes. The median values of
reduced χ2 across all dishes are listed in the last column, where d.o.f. = 236 and 21 are the degree of freedom for 2D and 1D power spectrum density,
respectively.

lg fk,20MHz α β χ2/d.o.f.
HH VV HH VV HH VV HH VV

2D power spectrum density
1 mode subtraction −1.67 ± 0.39 −1.87 ± 0.34 1.51 ± 0.24 1.61 ± 0.43 0.31 ± 0.05 0.30 ± 0.05 1.453 1.151
2 mode subtraction −2.40 ± 0.25 −2.52 ± 0.26 1.65 ± 0.52 1.74 ± 0.39 0.45 ± 0.06 0.41 ± 0.07 1.037 1.047
5 mode subtraction −2.96 ± 0.11 −3.07 ± 0.17 1.56 ± 0.64 1.47 ± 0.73 0.51 ± 0.05 0.52 ± 0.08 2.660 1.996

1D power spectrum density
1 mode subtraction −2.24 ± 0.19 −2.22 ± 0.18 2.28 ± 0.34 2.24 ± 0.41 – – 3.930 3.954
2 mode subtraction −2.40 ± 0.21 −2.40 ± 0.21 1.83 ± 0.40 1.98 ± 0.38 – – 2.123 2.214
5 mode subtraction −2.78 ± 0.14 −2.85 ± 0.21 1.28 ± 0.26 1.47 ± 0.37 – – 1.259 1.218

corresponding best-fitting H(τ ) model. The errors are estimated with
the jackknife samples. As discussed, we assume a single power-law
power spectrum density for the spectroscopic correlations, which
does not seem enough with 1 mode subtraction. With 2 mode
subtraction, however, the model fits the measurements quite well.
The mean reduced χ2 of the 2D power spectrum fitting, averaged
over the measurements of all antennas, are (1.037, 1.047) for (HH,
VV) polarizations. The power spectrum density starts deviating from
a power law at the low-τ end with five-mode subtraction, as the 1/f
spectroscopic correlation is oversubtracted.

6.3 Impact on H I signal

The temporal and spectroscopic wavenumber, f and τ , are related to
the cosmological scales k by

τ = ν0

ν2
obs

c

H (z)

k‖
2π

, f = k⊥χ (z)u

2π
, and k2 = k2

‖ + k2
⊥, (23)

in which, k is in units of Mpc−1h; ν0 = 1420MHz is the rest-frame H I

emission line frequency, c is the speed of light, νobs is the observing
frequency, and u is the scanning speed. We assume the fiducial
cosmology parameters from Planck Collaboration VI (2018; h =
0.6736, �m = 0.3153 and �� = 0.6847).

Assuming an observation at 900 MHz with scanning speed of
5 arcmin s−1, the corresponding cosmological scales projecting to
the f − τ space are shown with the white-dotted lines in Fig. 14.
We see that there is a large region in the f − τ space that will be

available for the H I measurements. In particular, even without any
mode subtraction, most contamination, either because of 1/f noise or
foregrounds is constrained to a region of low f or low τ . The available
scales are enough to probe Baryon Acoustic Oscillations and even
primordial non-Gaussianity at k ∼ 0.01Mpc−1h (Fonseca, Maartens
& Santos 2017). In order to probe smaller k⊥ modes we will need
to increase the survey speed or rely on extra calibration such as with
noise diodes.

We have shown that through SVD mode subtraction we are able to
push the 1/f noise contamination to large time-scales. One possible
concern is if such cleaning can also remove the H I signal. In order
to investigate the signal loss fraction of the SVD mode subtraction,
we build a transfer function:

T (f , τ ) = Sc(f , τ )

S(f , τ )
, (24)

where S(f, τ ) is the 2D power spectrum estimated using the simulated
time-ordered data, Dsim, which includes only the H I signal and Sc(f,
τ ) is the power spectrum of the same time-ordered simulation with
SVD mode subtraction:

Dc
sim = Dsim −

Nm∑
i=0

ui(u
†
i Dsimvi)v

†
i . (25)

To generate the time-ordered simulation, we simply assume the
observation to be a drift-scan targeting at the celestial equator. This
would be more typical of an actual 21-cm survey (observing the
SCP would give a signal constant in time). We use the temporal

Figure 14. Same as Fig. 11 but only for the results with no SVD mode subtraction (left) and five-mode subtraction (right). The white-dotted lines indicate the
corresponding cosmological scales projecting to the f − τ space, assuming observations at 900 MHz with scanning speed of 5 arcmin s−1. k is in units of Mpc−1h.
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4356 Y. Li et al.

and spectroscopic modes, ui and vi, that are obtained from the SVD
decomposition of the combined simulated and real time-ordered data,
Dsim + Dreal. This way we can test the expected effect on the H I signal
of such decomposition.

We found that the projection of the simulated time-ordered data to
the temporal and spectroscopic mode is close to 0:

u
†
i Dsimvi ∼ 0. (26)

Therefore, the signal loss is negligible [e.g. T(f, τ ) ∼ 1]. With five
SVD modes removed, the signal loss is less than 3 per cent and
only at large scales where f ∼ fmin and τ ∼ τmin. This can be
understood because the cleaning is done in the time-ordered data
while the H I signal ‘lives’ in map space. Although the projection of
the cosmological scale k to the f-τ space depends on the scanning
speed and frequency range, given the negligible signal loss in the full
f-τ space, the time-ordered cleaning will have a negligible impact on
the H I signal with most scanning strategies.

7 SU M M A RY A N D C O N C L U S I O N S

In this work, we measured the power spectrum density of the 1/f
noise for the MeerKAT receiver system. The analysis is performed
with SCP tracking data to avoid sky variations. Two SCP tracking
data sets are used in this analysis. We find a relatively RFI-free
frequency range from 1313.6758 to 1461.8457 MHz. Absolute flux
calibration is ignored in our analysis as the data are normalized with
the time-averaged system temperature for each frequency channel.

We apply SVD to the data and determine how effective removing
the first several principal components is on suppressing the time–
frequency correlated noise. The results show that indeed, the 1/f noise
can be drastically reduced by removing the first few SVD modes.
Moreover, the correlation features are shown to be well described by
the proposed noise model with just a few parameters once the first
two SVD modes are removed. With two mode subtraction, the data
averaged over 20 MHz has a knee frequency (fk) of ∼ 3 × 10−3 Hz,
indicating that the system 1/f-type variation is well under the thermal
noise fluctuation over a few hundred seconds time-scales. This
increases further with five modes removed. The results from this
analysis, along with the described noise power spectrum model, can
be used in realistic noise simulations for MeerKAT and extended to
SKA1-Mid.

The 2D power spectrum shows that the 1/f noise is constrained to
a small region of either low τ or low f, e.g. large-scale correlations
in time or in frequency. This provides many scales where the H I

signal can be probed without contamination. With scanning speeds
of 5 arcmin s−1, 103 s time-scales would correspond to ∼80◦, which
is enough for our cosmological purposes. Longer time-scales can be
achieved using noise diodes. Our calibration plan is to use celestial
sources for calibration on time-scales ∼ 1.5 hour (absolute flux and
bandpass calibration) and noise diodes for shorter time-scales. We
can then apply a conservative SVD cleaning on the time-ordered
data (e.g. two modes) in order to remove most of the 1/f noise
contamination. These modes correspond to large-frequency scales
where we expect the 21-cm correlations to be negligible.

We further tested the effect of the SVD subtraction on the 21 cm
itself. According to the transfer function of the signal loss fraction,
the proposed cleaning has negligible impact on the H I signal. Any
further residual noise can be included in the map making process
which will allow for correlated noise in frequency.

The 1/f noise has been a substantial challenge to precision
cosmology with single dish telescopes in the past and, if it is not
carefully treated, has been shown to be detrimental to future H I

IM experiments. We have demonstrated here a methodology that
can be used to effectively suppress 1/f noise in single dish H I IM
observations that should preserve the cosmological signal. In future
work, we plan to demonstrate the effectiveness of this technique to
extract the 21-cm signal both on simulated and real MeerKAT data.
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APPENDIX A :

A1 Relation between temporal power spectrum density and 2D
power spectrum density

The temporal power spectrum density can be expressed as

Sij (f ) = 〈δ(f , νi)δ
†(f , νj )〉 =

∫
d ν d ν ′ φi(ν)φ†

j (ν ′)ξ (f , νij )

(A1)

in which, ν ij = ν i − ν j, φi(ν) is the spectroscopic window function
and δ(f , νi) = ∫

d ν φi(ν)δ(f , ν); ξ (f, ν ij) is related to the 2D power
spectrum density, S(f, τ ), via inverse Fourier transform,

ξ (f , νij ) =
∫

d τS(f , τ ) exp
[
2πiτνij

]
. (A2)

Substituting equation (A2) to equation (A1), the temporal power
spectrum density can be further expressed as

Sij (f ) =
∫

d τ φi(τ )φ†
j (τ )S(f , τ ), (A3)

where φi(τ ) = ∫
d ν φi(ν) exp[−2πiτν] is the Fourier transform of

the spectroscopic window function. If we ignore the cross-correlation
between frequencies, the diagonal term of the temporal power
spectrum density is

Si(f ) =
∫

d τ φ2
i (τ )S(f , τ ). (A4)

A2 The white noise level

If we use a top-hat window function with width of δν, the Fourier
transform of the top-hat window function, φi(τ ), can be expressed
with a sinc function:

φi(τ ) = sinc(πδντ ), (A5)

where the window function is normalized with
∫

d τφ2
i (τ ) =∫

d τφi(τ ) = 1/δν. Substituting the 2D white noise power spectrum
model (the first term of equations 12), (A4) becomes

A

∫
d τ φ2

i (τ ) = A

δν
, (A6)

which is consistent with the white noise term of 1D power spectrum
density model equation (7).

A3 The knee frequency conversion between frequency
resolutions

We first model the 2D 1/f noise power spectrum density with f0 at
arbitrary frequency resolution:

S(f , τ ) = A

(
f0

f

)α ( τ0

τ

) 1−β
β

. (A7)

Substituting the noise model into equation (A4),

A

(
f0

f

)α ∫
d τφ2

i (τ )
( τ0

τ

) 1−β
β = AK

(
f0

f

)α

, (A8)

where K is

K =
∫

d τ sinc2(πδντ )
( τ0

τ

) 1−β
β

. (A9)

The 1D power spectrum model assumes the 1/f noise is reduced with
factor of δν, which indicates that the 1/f noise is uncorrelated across
frequencies. That equivalent to set β = 1 in the 2D power spectrum
density model:

AK

(
f0

f

)α

= A

(
f0

f

)α ∫
d τ sinc2(πδντ )

( τ0

τ

)0

= A

δν

(
f0

f

)α

. (A10)

Comparing with the second term of 1D power spectrum density
model equation (7), we have f0 = fk. This indicates that, if the 1/f
noise is fully uncorrelated across frequencies, the knee frequency is
constant with any frequency resolution.

On the other hand, if β → 0, the spectroscopic spectrum density
index is approaching to +∞ and the spectroscopic power spectrum
density model becomes a Dirac delta function, H(τ ) → δD(τ ). In this
case, we have

AK

(
f0

f

)α

= A

(
f0

f

)α ∫
d τ sinc2(πδντ )δD(τ )

= A

�ν

(
f0

f

)α

, (A11)

where �ν = 1/τ . When τ = 0, �ν → +∞, indicating the infinity
frequency bandwidth.

However, the measurements are always limited within finite
frequency bandwidth. If we write the integrals in terms of discrete
sums, equation (A4) is expressed as

Si(f ) =
Nν−1∑
p=0

φ2
i (pτ0)S(f , pτ0)τ0, (A12)
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where τ 0 is the minimal spectroscopic frequency interval and related
to the minimal frequency interval ν0 via τ 0 = 1/(Nνν0) = 1/�ν, where
�ν is the full frequency bandwidth. The equation (A11) becomes

A

⎛
⎝Nν−1∑

p=0

sinc2(πδνpτ0)τ0δ
D
p

⎞
⎠ ×

(
f0

f

)α

= A

�ν

(
f0

f

)α

. (A13)

Comparing with the 1D power spectrum density model, we have

1

�ν

(
f0

f

)α

= 1

δν

(
fk

f

)α

, (A14)

lg f0 = lg fk − 1

α
lg

δν

�ν
. (A15)

When δν = �ν, we have f0 = fk, which indicates that f0 is the knee
frequency at full frequency bandwidth, which is corresponding to the
minimal spectroscopic frequency interval τ 0.

In the case of 0 < β < 1, the shift of f0 with frequency resolution
is dependent on the frequency correlation properties. The relation of
fk between different frequency resolutions, δν and δν

′
, is expressed

as

lg fk,δν = lg fk,δν′ + 1

α
lg

(
Kδν

K ′δν ′

)
. (A16)

Replacing f0 with fk, we have equation (12):

S(f , τ ) = A

(
1 + 1

Kδν

(
fk

f

)α ( τ0

τ

) 1−β
β

)
. (A17)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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