

Abstract- This paper discusses a way of offering voice

instant messaging based on Internet Protocol using

Session Initiation Protocol. The purpose of this

investigation is to enhance the modern social

communication amongst the people of South Africa who

are already accustomed to text-based instant messaging.

The proposed application aims to implement the

traditional Push-to-Talk technology using Internet

Protocol. Thus the proposed IP-based Push-to-Talk is a

new approach to voice communication which emulates a

walkie-talkie system. On the mobile phone IP-Push-to-

Talk herein referred to as Push-to-Talk over a cell phone

can be viewed as a voice SMS. The adoption of a Push-

to-Talk service was inspired by the fact that it applies

half-duplex communication. This enhances the primary

objective of offering a cheap voice instant messaging. In

half-duplex communication, only one person can talk at

a time, thereby avoiding bidirectional charging. The

project was implemented on two platforms, a PC and a

mobile phone. The PC Push-to-Talk was implemented

through client server approach whilst the mobile Push-

to-Talk through a peer-to-peer approach. Several

software engineering strategies were used for user

requirements gathering as well for testing. Six users

participated in the test and the results were gathered

through questionnaires. The results showed that, half-

duplex communication is efficient and yet very

economical as it makes less usage of system resources.

Index Terms— Network services, Protocols, Push-to-

Talk, Session Initiation Protocol, Real-Time Transport

Protocol

I. INTRODUCTION

Internet Protocol-based push-to-talk (IP-PTT) is a new

instant messaging (IM) type of communication that is voice-

based rather than text-based like many popular IM services.

IP-PTT uses the PTT concept of radio systems that have

been in existence for years, similar to a walkie-talkie or

citizen's band (CB) radio. IP-PTT makes use of Internet

protocol over a variety of networks instead of analog radio

frequencies. IP-PTT can operate using standards of Voice

over Internet Protocol (VoIP). The communication model

for IP-PTT is half-duplex whereby only one person can talk

at a time [1] [2] [3], following on the walkie-talkie and CB

radio models. This can allow IP-PTT more efficiency than

real-time VoIP since only one person can talk at a time

eliminating interruptions [www.mobilein.com].

Transmission of voice occurs through a push or press of a

dedicated PTT button. A PTT session is initiated when

button is pressed and terminated when released. The call set-

up and termination can easily be controlled by the Session

Initiation Protocol (SIP), a protocol more often used for

real-time VoIP. The transmission of IP-PTT voice data

packets occurs as normal. Because of IP's ubiquitous nature,

IP-PTT can eliminate the geographical limitations imposed

on traditional PTT systems.

Many South Africans have joined the community of

mobile instant messaging through MXit [4]. MXit is free

mobile text-based IM system developed locally in South

Africa. Since MXit is both mobile and text-based, a voice-

based IP-PTT similar in functionality to MXit would no

doubt increase use of mobile data. Modern communication

technology worldwide is converging to a mobile

environment, and South Africans are much more likely to

have a cell phone than a computer

[http://mybroadband.co.za/news/cellular/11723.html].

Mobile IP-PTT is often referred to as PTT over a cell

phone (PoC). PoC can support 2.5 and 3rd generations of

mobile data networks as well as the next generation network

[3] [www.mobilein.com]. The concept of PoC was

introduced in 2003 and standardization started in 2004 with

the first version finalized in 2005 [www.mobilein.com] [6].

The Open Mobile Alliance (OMA) is the official standards

body that oversees all of the infrastructures and processes

supporting PoC. In June 2006, the first version OMA PoC

1.0 was released. PoC is available and popular on many

cellular networks around the world, but unfortunately not in

South Africa. We find this situation curious since PoC seems

a natural way to increase data usage, and therefore, revenue

generation, in South Africa. In the USA, Nextel

communications and Motorola network providers offer the

service, and both Orange and Vodafone offer PoC in the

UK. The Nextel PTT service is called Direct Connect [1].

As shown in [12], PoC can even be implemented using

Bluetooth. Thus there are many options for building PoC

systems, some for revenue and some for recreation.

This paper presents exploratory work to design, build and

evaluate a purely IP-based PTT system, first on a PC and

then on a mobile phone. Two methods of implementation

were explored: a) a client-server approach was employed on

the desktop PC application where the server was used to

relay the real-time packets between two IP-PTT clients, and

b) a peer-to-peer (P2P) approach was employed for the

mobile phone PoC prototype. The latter approach does not

involve any middle layer as it transmits directly from one

endpoint to the other.

The rest of this paper is organized as follows; Section II

comprises the bulk of the paper and presents the methods for

the design and evaluation of the prototypes. Section III

discusses the findings, and Section IV highlights conclusions

and avenues for future work.

Internet protocol-based push to talk

Hlabishi I. Kobo, William D. Tucker and Michael J. Norman

Department of Computer Science

University of the Western Cape, Private Bag X17, Bellville 7535 South Africa

Tel: +27 21 9592461, Fax: +27 21 9593006

E-mail: {2654952, btucker, mnorman}@uwc.ac.za

II. METHODS

This section presents the methods used to define and

analyse user requirements, the design of the prototypes and

the protocols used to implement them, and finally the

procedure for testing the prototypes and the results obtained

from those tests.

Standard software engineering (SE) approaches were used

throughout the development process. A generic SE life cycle

was adopted and used iteratively as in the incremental

model (see Fig. 1). User requirements are always a

determinant factor in software development. User

requirements data were gathered through structured

questionnaires and interviews with students in our university.

Fig. 1 shows the overall iteration of the project development

with the final product, in this case, being the PC and mobile

phone prototypes.

Fig. 1. The customary project life cycle provides an overview of

the entire project, and consequently provides an outline for this

section. These steps were iteratively applied to achieve the

development of the prototypes.

A. User requirements

Many instant messaging services offered on mobile

phones are text-based. According to a survey of 20 students

at our university, users are still using short messaging

service (SMS) even though they could send thousands of

messages with a cellular IM service for the cost of a single

SMS. This is because IM usage is charged by byte rather

than by message. We found that the users interviewed want

a convenient way of exchanging messages. According to

most of them, SMS is not convenient in urgent situations due

to the amount of time it takes to key in a message and they

recognise that it is also expensive. Because cellular voice

calls are even more expensive, these were key areas that the

users identified as beneficial with a voice-based IM-like

application such as PoC. The users' concerns include

emergency situations, planning events like parties, as well as

general social interaction amongst students on campus.

For the users interviewed, youths in particular want to

engage in social interactive communications with friends,

family and colleagues. They want voice instant messaging in

place of textual IM and they would also prefer that the

service be affordable. They also want the system to support

real-time communication without any difficulties. About

70% of the people interviewed have a PoC application

integrated on their mobile phones but they cannot use it

because network service providers do not support it. We

discovered that Vodacom offers a PTT service, but for only

corporate customers. None of the students interviewed

worked for a corporation. It is interesting that some of the

corporate areas supported include construction, transport,

security, distribution, manufacturing, and surface mining, as

well as companies operating in catering, hospitality and

courier industries (Pieter Uys, Vodacom Chief Operating

Officer, December 2005.) Yet this does not apply to the vast

majority of South African users.

Users interviewed told us they encounter difficulties to

use text instant messaging in urgent situations. Users often

make use of 'language compression' to enhance the speed of

the keying in a message, such as "b4" and "2cu", as well

reducing the amount of data to be sent and the consequent

cost. This type of spelling and vocabulary can easily lose the

contextual meaning of the message. This is mainly because

people have different understandings of any given 'mobile'

language, and it is usually based on phonetic contractions of

spoken English. This can be acceptable by English-literate

people. However, the English literacy of South African

people is typically very low [www.eee.co.za]. For these

reasons, people we interviewed deduced that text-based

instant messaging is not 'multilingual friendly'. Thus, overall,

the concept of a voice-based approach to IM seemed

feasible to the users we interviewed.

B. Requirements analysis and design

Thorough analysis of the user requirements provided us

with the design direction of the system. Fig. 2 illustrates a

use-case view of the requirements analysis in terms of the

functional activities that a user can perform. Fig. 3 shows a

high level view of the design relationships between

technology objects, in this case, a client and multiple

servers.

Fig. 2. A use-case diagram shows the users (on the left outside the

box) as role players. They use the entities of the application via the

phone’s user interface to the underlying functionality.

Fig. 3. The relationships between objects identify how one object

maps to another. Many clients can use a single server. The M

represents 'many' while a 1 represents 'one', i.e. M:1 qualifies the

many-to-one relationship of multiple clients for one PoC server.

Floor control is also of vital importance because it

controls the allocation of the floor during IP-PTT sessions.

To obtain the floor, or the ability to speak, a client sends the

PTT request to the PoC server and waits for feedback. The

status of the floor is broadcast to all parties by the PoC

server. Fig. 4 provides a high level description of the floor

control class with UML (unified modelling language).

Fig. 4. Floor control methods illustrate the high level design of the

floor control of the PoC application. The methods manage the PoC

application’s functional operation to give a user the ability to speak

in half-duplex mode.

C. Protocols and prototypes

The prototypes runs on two platforms, PC and mobile,

and although they are not explicitly compliant, both use

common protocols defined in the IP Multimedia Subsystem

(IMS). IMS is a functional architecture based on IP that

provides multimedia services [7]. IMS is specified by the

3rd generation partnership project 3GPP [7] [8] and

extended further by the European Telecommunication

Standard Institute (ETSI) [7] to accommodate the

convergence of multimedia services in the next generation

network [7] [8]. Session Initiation Protocol (SIP) forms the

core of the IP-PTT architecture. SIP is a signalling protocol

used for multimedia session set-up and termination [9]. SIP

is used in this context for the creation and termination of

PTT calls. Fig. 5 shows the basic flow of voice messages.

Fig. 5. Message flow in SIP, as taken from [13]. User A first sends

an invite to user B that goes through the network proxy before the

endpoints can communicate. The message flow is described in

more detail in Table I.

TABLE I

 SIP MESSAGE FLOW TAKEN FROM [13].

Step Action Description

1 A calls B INVITE A sends an INVITE

request to the proxy.

2 100 Trying Proxy sends a 100

response to A to

acknowledge the request.

3 INVITE Proxy forwards invite to B

4 100 Trying B acknowledges request

with a 100 response.

5 180

Ringing
B sends a 180 response to

the proxy to indicate that

B is being alerted.

6 180

Ringing
The proxy forwards

B's180 response to A.

7 B answers 200 OK B sends a 200 response to

the proxy for connection

established.

8 200 OK The proxy forwards B's

200 response to A.

9 ACK A acknowledges the 200

response from the proxy.

10 ACK The proxy forwards the

acknowledgement to B.

11 B terminates BYE B sends a BYE request to

the proxy.

12 BYE The proxy forwards B's

BYE request to A.

The fourteen steps in Fig. 5 are described in more detail in this

table. The flow here shows a typical SIP call set-up and

termination between two user agents acting via a proxy. The last

two steps from Fig. 5 are ignored.

The voice components within a given IP-PTT prototype is

synchronously streamed over the IP network using Real-time

Transport Protocol (RTP) [10]. RTP works together with

RTP Control Protocol (RTCP) that provides RTP with

statistics and control information. Presence on the

application is provided by the SIP presence protocol

extension, SIMPLE (Session Initiation Protocol for Instant

Messaging and Presence Leveraging Extensions). The

process of passing voice over the Internet is managed by

these IP protocols, and others such as User Datagram

Protocol (UDP), and is collectively referred to as VoIP.

The implementation of our IP-PTT prototype used two

architectures. The first was a client-server approach used for

desktop PC IP-PTT (see Fig. 6). This method places a

server in between IP-PTT clients. The server relays real-time

voice as packet data from one end to the other. Another

purpose of the server is the registration and authentication of

users. The server used in this case was an open source

Asterisk server (www.asterisk.org). We used an open source

Java-based SIP environment called SIP communicator (sip-

communicator.org) as the basis for the desktop IP-PTT

client. We used SIP communicator because of its simplicity

and object-oriented style that enabled us to implement the

IP-PTT in a straight-forward fashion using well-documented

classes and methods. We used a wired local area network

(LAN) as the transport medium for this approach.

Fig. 6. Client-Server approach, The application on the clients uses

SIP signalling with RTP as the voice carrier between the server and

the clients. This is a typical VoIP application on a LAN.

The second approach was PoC deployed in P2P fashion.

Another open source SIP stack, PJSIP (www.pjsip.org) was

used on the mobile phone as the basis for the P2P approach.

PJSIP is an open source SIP stack for the Symbian platform,

and we chose to work with a Nokia phone. The network

medium for this approach was WiFi. Fig. 7 shows the

overview of this P2P approach. The network media in this

case is WiFi to ensure free mobility, although it should be

noted that any cellular data protocol may also be used. WiFi

is essentially 'free' in our lab, whereas 2.5G and 3G data are

not.

The most distinct factor of IP-PTT is the use of half-

duplex real-time voice communication. We used the

WireShark packet analyzer to observe the packet flow for

the assurance of one-way communication.

Fig. 7. Peer-to-peer architecture. This approch allows the clients to

communicate directly with each other without the need for an

interim relay server.

D. Evaluation

The evaluation of the prototypes was based on testing

using various strategies commonly used by computer

scientists as a part of the overall software development life

cycle. Validation testing was carried out to examine whether

the functionality of the software functioned in a manner

reasonably expected by the end-user [11]. Stress testing was

also conducted to test the system under immense pressure

from a variety of traffic-related factors. We also conducted

performance testing to examine the run-time performance of

the software within the context of the overall integrated

system [11]. Performance was tested with end-users and

systematically measured with the Windows task manager.

Six users 'hands on' tested the system, and structured

questionnaires and interviews were again used to gather user

feedback. The users were given three task scenarios to

choose from: social interaction, emergency and corporate

(secretariat) situations. The task scenarios were used to test

the efficiency of the application from a user’s perspective.

We tested both prototypes as follows: on the local area

network (LAN) using two PCs and on a WiFi network using

Nokia E51 and E71 handsets.

The results were gathered from the various testing

methods outlined above, thus examining the application

from different angles in order to triangulate a firm picture of

how the prototypes performed from both technical and user

orientations. The validation test was successful as 100% of

the users completed the task at hand, and about 95% of the

users were satisfied with the results. Fig. 8 shows a graphical

representation of the results for the following two questions:

Question 1: Did you manage to complete your task?

Question 2: Are you satisfied with the efficiency of the

application?

Note that most of the questions from the questionnaires

are not included in this paper.

http://www.pjsip.org/

Fig. 8. Validation test results. The graph shows user satisfaction as

well as the task completion rate. The x-coordinate shows the test

factors and the y-coordinate shows the percentages of Yes/No

answers.

The reason given for any unsatisfactory answers was

mainly about the voice stream cuts, which was not the same

for all users as the testing was conducted at different times

under varying network traffic levels.

For stress testing, the desktop IP-PTT application was

tested under high network traffic to deal with a relatively

high number of users. With traffic on the network, real-time

VoIP communication tends to suffer due to latency (delay of

voice stream packets on the network). This was confirmed

by the breakdown of the voice streams and the delay in time

for voice packets to arrive. With the mobile phone scenario,

many WiFi networks on our campus can bear negative

effects on the PoC prototype due to interference. The

interference can cause lot of unnecessary background noise.

Nonetheless the peer-to-peer approach overcomes the

latency problems encountered in the PC application because

even in the presence of the noise, the voice still arrives on

time and clear. Software should conform to performance

otherwise it will be unacceptable even if it is validated. Fig.

9 shows how we used the Windows task manager to measure

performance during the PTT session on a PC.

Fig. 9. Windows task manager. This screenshot illustrates the use

of this tool during IP-PTT sessions to examine CPU usage, shown

on the left. Bandwidth consumption is shown on the right hand

side.

CPU usage during the session shown in Fig. 9 is 2%,

which confirms minimal use of system resources

consumption by the application prototype. Before the

application was run, we stopped every application on the PC

such that the CPU usage and bandwidth consumption was

0%. The left side of Fig. 9 shows the CPU usage of 2%. The

bandwidth consumption is depicted on the right hand side

and is 0.09% during the solitary session. This is due to the

half-duplex nature of the application. The bandwidth usage

on the remote side (receiver) is 0%, as is expected for half-

duplex communication.

The user’s perspective of the prototype's performance was

gathered with questionnaires. Fifty percent of the users view

the performance in terms of response in time as good and the

other half said it is acceptable. Fig. 10 depicts the response

of the users to this question:

Question: How would you rate the performance of the

system in terms of the response time?

Fig. 10. User's view of performance. This graph shows the user’s

perspective of the prototype's performance, as collect with a

questionnaire after hands-on use by the end-user.

III. DISCUSSION

Analysis of the results allows us to deduce that both

prototypes appear to meet the desired user needs in terms of

basic PTT functionality. However, following on the

incremental iterative nature of the software engineering life

cycle, there is a need for improvement in some aspects of the

prototypes. All participants completed their tasks at hand

successfully although a few were unsatisfied. The main

concern amongst the participants was the latency on the

desktop IP-PTT prototype and the interference on the mobile

PoC prototype. Overall, we found that users prefer PoC

since the interference tends to fade away within a period of

seconds. The mobility and portability of the dynamic PoC

also appears to play a role as far as preference is concerned.

It must be noted that the interference encountered during the

tests is actually very realistic since more and more WiFi

networks are being established.

From careful evaluation of the prototypes, and a literature

survey, we deduce that the client-server IP-PTT that was

employed on the PC desktop had a negative effect towards

the application under extreme load. The ideal

implementation of the prototype might be the use of the two

approaches combined together. We kept them separate to

evaluate the feasibility of half-duplex communication in both

instances. In essence, a client-server server approach is

usually employed in large communication networks, with

large traffic, in order to keep strict control and monitoring

over the usage. This approach can be more secure as a result

of robust authentication on the servers. Peer-to-peer, on the

other hand, is very inexpensive due to its instability

[technet.microsoft.com/en-us/library/cc751396.aspx]; it is

thus suitable for small networks. It was for this reason that

peer-to-peer was employed on the WiFi environment as a

WiFi network can be a small controllable network.

Interviews with users indicate that they are more

concerned about the cost of IP-PTT. Costs are based solely

on bandwidth consumption. The half-duplex technique

enables one-way bandwidth usage as compared to full-

duplex VoIP applications. Although the majority of the users

were satisfied with the efficiency of the application, about

half of the participants only rated the performance 'in respect

of time' as "good". The other half felt it was "acceptable".

IV. CONCLUSIONS AND FUTURE WORK

This paper discussed the implementation of IP-based

Push-to-talk prototypes on a PC and mobile phone using

Session Initiation Protocol. IP-PTT is a voice instant

messaging service that operates like a walkie-talkie and/or

CB radio system. PTT on a cellular phone is called PoC. IP-

PTT employs half-duplex communication that proved to be

very efficient as far as bandwidth consumption is concerned.

This paper roughly compared two architectural

approaches, client-server and peer-to-peer, on two different

platforms and network media: desktop PC on a LAN and

mobile phone on a WiFi network, respectively. We conclude

that the client-server approach was good for the PC on a

LAN since such a network could be very big. A wired

network is very stable and much more secure as compared to

a wireless network. On the other hand, it is very difficult to

apply the client-server approach to dynamic environments

like PoC. Considering the amount of time it would take to

handle the instability and interference of WiFi networks, we

decided to rather use a peer-to-peer approach for PoC using

WiFi. Both prototypes were tested with three task scenarios:

social, emergency and corporate. Based on results from user

questionnaires and interviews, we can conclude that IP-PTT

and PoC offer acceptable voice messaging possibilities.

The test results showed that the user oriented view

regarding the performance leaves a lot to be improved for

the next prototypes. Future work includes adding a video

capability, thus developing a Push-to-Video in accordance

with the NGN’s IMS multimedia convergence. Adding a

video will enhance the communication at large as well as

accommodating other social groups like the Deaf people. It

would also be ideal to consider an asynchronous

communication mode. This would allow users to still be able

to sent audio or video IM where real time is not possible.

ACKNOWLEDGEMENTS

The authors thank the National Research Foundation

(NRF) for the scholarship offered to the first author. We also

thank Telkom, Cisco and THRIP (Technology and Human

Resources for Industry Programme) for financial support via

the Telkom Centre of Excellence (CoE) programme. THRIP

funding is managed by the National Research Foundation

(NRF). Any opinion, findings and conclusions or

recommendations expressed in this material are those of the

author(s) and therefore the NRF does not accept any liability

in regard thereto.

REFERENCES

[1] C. Schmandt, J. Kim, K. Lee, G. Vallejo, and M.

Ackerman, “Mediated voice communication via mobile

IP,” Proceedings of the 15th annual ACM symposium

on User interface software and technology, 2002, pp.

141–150.

[2] E. O’Regan and D. Pesch, “Performance Estimation of a

SIP based Push-to-Talk Service for 3G Networks,”

Cork Institute of Technology, Ireland, Adaptive

Wireless Systems Group, 2004.

[3] L.Y. Wu, M.H. Tsai, Y.B. Lin, and J.S. Yang, “A

client-side design and implementation for push to talk

over cellular service,” Wireless Communications and

Mobile Computing, vol. 7, 2007, pp. 539–552.

[4] R. Thomas, “Parents Guide to MXit.” South Africa,

2006.

[5] R. Koivisto, “Towards the Next Wave of Mobile

Communications: Push-to-Talk over a Cellular: Still

Searching the Flow of Success” In Proceedings of the

Research Seminar on Telecommunications Business,

TML-C19, pp 45-96, 2005.

[6] Open Mobile Alliance, “Push to Talk over Cellular

Architecture,” OMA-AD-PoC_V1_0-20050428-C

Candidate Version 2.0, February 2008.

[7] G. Bertrand, “The IP Multimedia Subsystem in Next

Generation Networks,” Rapport technique, ENST

Bretagne, 2007.

[8] C. Menkens and N Kjellin, “IMS Social Network

Application with J2ME compatible Push-To-Talk

Service,” Next Generation Mobile Applications,

Services and Technologies, 2007. NGMAST'07. The

2007 International Conference on, 2007, pp. 70–75.

[9] J. Rosenberg, et al., “SIP: Session Initiation Protocol”

IETF RFC 3261, June 2007.

[10] H. Schulzrinne, S. Casner, R. Frederick, and V.

Jacobson, “RTP: A Transport Protocol for Real-Time

Applications” IETF RFC 3550, July 2007.

[11] R.S. Pressman, Software Engineering: A Practitioner's

Approach, 6
th

 ed. McGraw-Hill, 2004, pp 406-408.

[12] V. Ronnholm, “Push-to-Talk over Bluetooth,”
proceedings of the 39th Annual Hawaii International

Conference on System Sciences, vol. 9, 2006, pp232c.

[13] Forum Nokia, "SIP/VOIP Call Flaw Messages",

October 2008.

Hlabishi I. Kobo obtained a BSc Honours degree in Computer Science

from the University of the Western Cape in 2009. The first author is

presently studying towards an MSc degree with the Bridging Applications

and Networks Group (BANG) at the same institution. His main research

interest is now wireless mesh routing protocols on mobile phones.

William D. Tucker is a Senior Lecturer in Computer Science at UWC and

leads BANG research. He obtained a PhD from University of Cape Town

in 2009. His main research interest is applying Internet Protocol to the

ICT4D context.

Michael J. Norman is a Senior Lecturer in Computer Science at UWC.

His interests are in Software Engineering.

