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ABSTRACT

Planned efforts to probe the largest observable distance scales in future cosmological surveys are motivated by a desire to detect

relic correlations left over from inflation and the possibility of constraining novel gravitational phenomena beyond general

relativity (GR). On such large scales, the usual Newtonian approaches to modelling summary statistics like the power spectrum

and bispectrum are insufficient, and we must consider a fully relativistic and gauge-independent treatment of observables such

as galaxy number counts in order to avoid subtle biases, e.g. in the determination of the fNL parameter.In this work, we present

an initial application of an analysis pipeline capable of accurately modelling and recovering relativistic spectra and correlation

functions. As a proof of concept, we focus on the non-zero dipole of the redshift-space power spectrum that arises in the

cross-correlation of different mass bins of dark matter haloes, using strictly gauge-independent observable quantities evaluated

on the past light cone of a fully relativistic N-body simulation in a redshift bin 1.7 ≤ z ≤ 2.9. We pay particular attention to

the correct estimation of power spectrum multipoles, comparing different methods of accounting for complications such as the

survey geometry (window function) and evolution/bias effects on the past light cone, and discuss how our results compare with

previous attempts at extracting novel GR signatures from relativistic simulations.

Key words: methods: numerical – methods: statistical – software: simulations – cosmological parameters – large-scale structure

of Universe.

1 IN T RO D U C T I O N

The next generation of galaxy surveys – such as Euclid, VRO/LSST,

and SKA – will be both wide and deep, covering a broad range

of redshifts as well as large areas of the sky, therefore mapping

out an unprecedentedly large volume of space and time. On the

one hand, this will significantly increase the amount of information

available for existing types of cosmological analyses, reducing the

sample variance uncertainties on observables such as the BAO scale,

redshift-space distortions, and the lensing shear power spectrum.

On the other hand, the sheer size of these surveys will also allow

qualitatively different cosmological observations to be made. In

particular, they will be large enough to access modes on the order

of the matter-radiation equality scale keq (e.g. Philcox et al. 2020),

and possibly even up to the comoving horizon scale kH ∼ (aH ).

These represent the very largest observable scales in the Universe,

where novel observational features of inflationary and gravitational

physics arise that cannot be constrained on the smaller scales probed

by existing surveys (e.g. Liguori et al. 2010; Alonso & Ferreira 2015;

Alonso et al. 2015; Baker & Bull 2015; Camera et al. 2015; Fonseca

⋆ E-mail: caroline.guandalin@usp.br

et al. 2015; Raccanelli et al. 2016; Gomes et al. 2019; Weltman et al.

2020).

On such large scales, corrections to the standard flat-sky/distant-

observer approach to modelling effects such as redshift-space dis-

tortions emerge (cf. Kaiser 1984), leading to so-called relativistic

corrections or relativistic effects. They have been shown to be an

important source of systematic error on large scales, especially

for a potential detection of the scale-dependent bias in the galaxy

distribution that would be caused by primordial non-Gaussianity

(Camera et al. 2015; Raccanelli et al. 2016; Wang, Beutler & Bacon

2020). This manifests as an additional k−2 scaling in the bias of

dark matter tracers (Dalal et al. 2008), which comes from nonlinear

corrections to the primordial Bardeen potential due to primordial

non-Gaussianities of the local type (Komatsu & Spergel 2001).

Relativistic terms with similar k−2 scalings also become important on

comparable scales (e.g. see Alonso et al. 2015; Abramo & Bertacca

2017), and so an accurate accounting of them is crucial if we are to

recover an unbiased estimate of the non-Gaussianity parameter fNL

for example.

Relativistic effects are not only a complicating factor, but contain

novel information on the nature of gravity in their own right.

Within the context of GR, several unique non-Newtonian features

emerge due to such effects. For example, McDonald (2009) has

C© 2020 The Author(s)
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2548 C. Guandalin et al.

shown that relativistic effects induce odd multipoles to appear in

the cross power spectrum of dark matter tracers, a characteristic

with no Newtonian counterpart (Bonvin, Hui & Gaztañaga 2016;

Gaztañaga, Bonvin & Hui 2017; de Weerd et al. 2020). This is,

by itself, a new cosmological observable allowing us to probe

the equivalence principle at cosmological scales via the Euler

equation (Bonvin & Fleury 2018), as well as the gravitational

redshift effect (McDonald 2009; Bonvin, Hui & Gaztañaga 2014).

Moreover, by bearing a strong dependence on the Weyl potential,

this provides an alternative test for theories of gravity, while the

dependence on astrophysical parameters like the magnification and

evolution biases opens a new window to a better understanding

of the LSS. Other approaches to constraining deviations from

GR via the behaviour of the relativistic effects have also been

considered, e.g. Lombriser, Yoo & Koyama (2013) and Baker &

Bull (2015).

In this paper, we develop the basic building blocks of an analysis

pipeline that is capable of extracting the relativistic effect signatures

from large-scale structure data. As previously mentioned, standard

LSS analysis techniques often rely on Newtonian assumptions or

the distant-observer approximation, and so it is necessary to adapt

them in order to account for the relativistic effects. Relativistic

effects also introduce additional dependencies on the astrophysical

properties of the source galaxy population(s) that must be accounted

for, such as the magnification bias and evolution bias. Using a

mock dark matter halo catalogue extracted from the past light

cone of a fully relativistic N-body simulation generated by the

gevolution1 N-body code, we show how these complications can

be overcome in the case of relatively idealized catalogue data,

with a view to later extending our pipeline to more realistic

scenarios.

For the sake of simplicity, we focus only on the detection of

odd multipoles caused by relativistic corrections to the redshift-

space power spectrum. The relativistic effects that arise in the odd

multipoles have the advantage of having a leading-order scaling

that goes like H/k, making them easier to detect on scales k � H as

compared with theO(H2/k2) corrections that affect even multipoles.

The dipole is the most straightforward to model and detect, and has

the advantage of having previously been detected in the two-point

correlation function and power spectrum of haloes in the RayGal

simulation2 by Breton et al. (2018) and Beutler & Dio (2020),

respectively, at low redshift. This makes it a suitable target for

comparison, although we choose to study higher redshifts of around

z ∼ 2–3 in order to differentiate our paper from these previous

works.

This paper is organized as follows. In Section 2, we review the

theory of relativistic effects in the two-point statistics of biased

tracers. In Section 3, we describe the gevolution light-cone simulation

used in this analysis. In Section 4, we review the fast Fourier

transform (FFT) estimator for the power spectrum multipoles and

present our results in Section 5. Finally, we conclude in Section 6.

For the sake of completeness, we also include Appendix A, which

explains the details of the halo catalogues derived from the simulated

light cone, and Appendix B, where we review the standard method to

account for the window function and present some additional results

from our measurements.

1https://github.com/gevolution-code
2https://cosmo.obspm.fr/raygalgroupsims-relativistic-halo-catalogs/

2 R ELATIVISTIC EFFECTS IN THE POWER

SPECTRUM

Contrary to the simplistic view of N-body simulations, which give

us the three-dimensional positions of objects at a fixed time slice,

the true observed quantity in a galaxy survey is the number of dark

matter tracers (e.g. galaxies or haloes) N (z, n̂) in a pixel given by a

solid angle d� around a direction n̂ = (θ, ϕ), defined with respect

to the observer’s line of sight (LOS), and at a redshift bin [z, z + dz]

(Bonvin & Durrer 2011; Bonvin 2014). The number overdensity of

some tracer α can thus be defined as

δ(s)
α (s) ≡

Nα(z, n̂) − N̄α(z)

N̄α(z)
=

nα(z, n̂) − n̄α(z)

n̄(z)
+

δV (z, n̂)

V̄ (z)
,

(1)

where the equality is obtained by relating the number counts with the

number density as n(z, n̂) ≡ N (z, n̂)/V (z, n̂). In the above equation,

N̄α(z) is the selection function of the tracer α, obtained by angular

averaging over the tracer number count.

The quantities defined in equation (1) are in redshift space,

meaning that they are characterized by the observed (comoving)

coordinates s = (s, θ, ϕ), with the radial comoving coordinate s

being connected to the observed redshift by some cosmological

model.3 The standard treatment (Kaiser 1984), relating the number

of sources in a perfect Friedmann–Lemaı̂tre–Robertson–Walker

(FLRW) universe with the truly observed density field via the

conservation of number counts, gives rise to the so-called redshift-

space distortions. This allows us to relate the theoretical predictions

in a homogeneous universe with the observed quantities with the

addition of departures from the perfect FLRW metric.

In Kaiser (1984), corrections to the angular pair of coordinates (θ ,

ϕ) are not considered, and perturbations to the radial coordinate

s come solely from the peculiar velocities of the sources. Even

though it describes satisfactorily observations limited to subhorizon

scales, where the Newtonian treatment is well suited, this is not

a truly observed quantity, as it is gauge-dependent. Furthermore,

future galaxy surveys and cosmological observations that rely on the

largest (near-horizon) scales demand a proper treatment of the LSS

clustering. At smaller scales, the improved sensitivity will also hold

the potential for a detection of subleading corrections (e.g. see Saga

et al. 2020).

Relativistic corrections that appear by considering the covariant

definition of redshift have been widely developed in the past decade

and became a paradigm to study large cosmological scales. In

addition to solving well-known gauge issues manifested at these

scales, it accounts for a number of effects with no Newtonian

counterpart. For instance, gravitational redshift and lensing effects

are concisely included in equation (1), and we refer the reader to

equation (3.23) of Yoo (2014) and equation (16) of Bonvin (2014)

for its full expression.

By collecting the terms proportional to v · n we end up with

(Bonvin 2014; Clarkson et al. 2019)

δ(s)
α (r) = bαδ

(r)(r) −
1

H
∂r (v · n) + Aα(v · n), (2)

3The radial comoving coordinate in redshift space s, obtained from the

observed redshift, should not be confused with the magnification bias sα

of some tracer α, which will carry a Greek index throughout this work. We

also draw the reader’s attention to the radial comoving coordinate denoted

by r in real space, obtained from the unperturbed (Hubble flow) redshift of a

perfect FLRW universe.

MNRAS 501, 2547–2561 (2021)
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Observing relativistic features in LSS surveys 2549

where

Aα =
5sα − 2

Hr
+ be −

H′

H2
− 5sα (3)

is called the Doppler term, H−1∂r (v · n) is the standard Kaiser term,

H = aH is the comoving Hubble factor, sα ∝ ∂ ln rln (r2φα) is called

the magnification bias and depends on the flux threshold of the survey

through the selection function φα = φα(L),

be = −(1 + z)
∂ ln n̄

∂z
, (4)

is the evolution bias and bα is the linear bias. With the exception

of the true density perturbation δα , all other terms appear due to

departures from a perfect FLRW universe.

Within the linear theory, we can relate quantities in configuration

space with their Fourier counterpart to arrive at the main equation

δ(s)
α (k) = δ(r)(k)

[

bα + f μ2
k + if (Hk−1)Aαμk

]

, (5)

with μk ≡ (k̂ · r̂) to keep the explicit dependence with the LOS.

Assuming that all objects in the survey possess the same LOS, i.e.

k̂ · r̂ = μ is a constant (flat-sky approximation), the cross-spectrum

P
(s)
αβ (k) = 〈δα(k)δ∗

β (k)〉 of two tracers α and β is given by

P
(s)
αβ (k) = P (r)(k)

{

(bα + f μ2)(bβ + f μ2) + AαAβf 2μ2 H
2

k2

+if μ
[

(bβ + f μ2)Aα

−(bα + f μ2)Aβ

] H

k

}

. (6)

In this equation, α and β refers to distinct tracers, which could be

different types of galaxies or dark matter haloes of different masses,

f is the growth rate, parametrized by f(z) ∼ �m(z)γ , with γ being the

growth index, and P(r)(k) is the matter power spectrum in real space.

In this case, isotropy is broken by the choice of LOS and we can

expand P
(s)
αβ (k) = P

(s)
αβ (k, μ) in a Legendre series:

P (s)(k, μ) =

∞
∑

ℓ=0

P
(s)
ℓ (k)Lℓ(μ), (7)

where

P
(s)
ℓ (k) ≡ P (r)(k) cℓ. (8)

Neglecting the quadratic terms O(H/k)2, the coefficients of the

expansion are given by4

c0(f , b) = bαbβ + 1
3
f (bα + bβ ) + 1

5
f 2, (9)

c1(k, f , b, A) = 1
5
if H

k

[

Aα(3f + 5bβ ) − Aβ (3f + 5bα)
]

, (10)

c2(f , b) = 2
3
f (bα + bβ ) + 4

7
f 2, (11)

c3(k, f , A) = 2
5
if 2 H

k
(Aα − Aβ ), (12)

c4(f ) = 8
35

f 2. (13)

In the absence of these quadratic corrections, the monopole,

quadrupole, and hexadecapole are the same as in the Newtonian case.

Still, the imaginary term appearing from the relativistic corrections

4These second-order effects have a contribution smaller than 0.03 per cent at

the largest scales probed in this work. Therefore, they shall not be considered.

Figure 1. Theoretical prediction for the cross power spectrum dipole of

different tracers at redshift z = 1.9, with the difference in linear and evolution

bias shown in the legend. Solid lines represent the case where there is no

magnification bias sα = 0, whereas shaded regions represent the effect

of different magnification biases among the tracers. Dotted lines show the

limiting case where sα is smaller than sβ by 40 per cent, whilst the dashed

ones show the opposite case, with sα larger than sβ by a factor of 40 per cent.

in equation (2) gives rise to the dipole term manifested in the cross-

spectrum of LSS tracers:

P
αβ

1 (k) = i
f

5

H

k

[

Aα(3f + 5bβ ) − Aβ (3f + 5bα)
]

P (r)(k). (14)

While it scales as H/k for the cross-correlation of LSS tracers, a

fact that makes this signal a smoking gun for relativistic effects in

the galaxy clustering, it is identically zero for the autocorrelation.

We also call the reader’s attention to the fact that this dipole term

is antisymmetric, meaning that 〈δα(k)δ∗
β (k)〉 = −〈δβ (k)δ∗

α(k)〉. In

Figs 1 and 2, we illustrate the dipole term in both the Fourier and

configuration spaces, respectively, for three linear and evolution bias

differences (different colours) at a fixed redshift of z = 1.9.

In what follows we explore the detection of the signal given by

equation (14) in a relativistic simulation of a light cone, described

in Section 3. Since we will be dealing with dark matter haloes,

the magnification bias sα in the Doppler term vanishes, as there is

not flux limit in our samples. Therefore, in addition to the linear

bias of the haloes, the remaining parameter entering the theoretical

predictions is the evolution bias, equation (4). The procedure for

fitting be from the halo samples is described in Appendix A3, with

the results discussed in Section 4.

3 SI MULATI ON

In this work we make use of a large N-body simulation performed

with the relativistic code gevolution (Adamek et al. 2016a, b). The

MNRAS 501, 2547–2561 (2021)
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2550 C. Guandalin et al.

Figure 2. Same as Fig. 1, but for the cross-correlation function dipole of

different tracers at redshift z = 1.9. Differences in the linear and evolution

bias are shown in the legend. Solid lines represent the case where there is

no magnification bias sα = 0, whereas shaded regions represent the effect

of different magnification biases among the tracers. Dotted lines show the

limiting case where sα is smaller than sβ by 40 per cent, whilst the dashed

ones show the opposite case, with sα larger than sβ by a factor of 40 per cent.

simulation has a comoving volume of (2.4 Gpc h−1)3 with dark

matter particles of mass 2.64 × 109 (M⊙ h−1) and represents a typical


CDM cosmology: h = 0.67556, ωb = 0.022032, ωcdm = 0.12038,

TCMB = 2.7255 K, As = 2.215 × 10−9, ns = 0.9619, Nur = 3.046,

and Nncdm = 0. In order to avoid replications in the light cone, the

pencil beam was carefully oriented in the periodic domain. The initial

conditions for the simulation were set at a redshift of z = 127.

Unlike the standard approach to building light cones (Merson

et al. 2012; Smith et al. 2017; Breton et al. 2018), which consists of

generating many simulation snapshots with a sufficient small redshift

step between them to avoid time discretization effects in the final

light cone, the light-cone output from gevolution records particle

positions and velocities on the fly. During the simulation, particles

are identified that are within a proper comoving distance interval

from a pre-defined observer that would cause them to be placed in

the final catalogue. These particles are then shifted by a fractional

time-step and recorded on the null FLRW hypersurface given by the

past light cone of the observer. Hence, there are no time discretization

artefacts and no need to generate an enormous amount of snapshots

to build the light cone. In our case, no replications whatsoever were

performed in order to cover the whole light-cone volume, which has

the advantage of removing any concerns about spurious correlations

on large scales due to periodicity for example.

The gevolution code does not employ the adaptive mesh refinement

(AMR) method and thus has a low accuracy at small scales. However,

while AMR can improve the one-halo term by better resolving

halo substructures, it does not significantly impact the large scales

dominated by the two-halo term, which is the focus of this work. As

will be pointed out in Section 3.2, all subhaloes are discarded in our

analysis in any case.

3.1 Ray tracing

We apply a ray tracing algorithm to our simulation as a post-

processing tool. The algorithm was previously described in Lepori

et al. (2020), but we give a brief review of it here.

The purpose of the ray tracer is to add extra information on source

objects within the simulation to the catalogue, such as their angular

diameter distance (DA) relative to a specific observer, the respective

observed redshift (z), or the ellipticity (ǫ) which is closely related

to the weak-lensing shear (γ ). In contrast to the more common case

where ray tracing is applied to Newtonian N-body simulations, in

gevolution the metric perturbations and the source positions are

both provided in Poisson gauge, which makes the treatment of

gauge issues transparent. Our algorithm also does not rely on the

Born approximation to model the light path. Importantly, incorrectly

modelling the lensing probability distribution function can lead to

errors in estimating cosmological parameters, as shown in Adamek

et al. (2019).

The algorithm is similar to the one presented in Breton et al. (2018)

and works by integrating the geodesic equations backwards in time

from the observer to the source of interest on the observer’s past

light cone. A physical definition of source, such as a halo or a dark

matter particle, is required, as a four-velocity vector is needed to

define the source’s rest frame. This allows us to get the observed

redshift of the source in a gauge-independent way. For each of these

sources, we use the background FLRW model to give us the initial

direction vector (n) for each light ray towards a source. We then

integrate backwards in time with the fully perturbed metric until the

light ray reaches its closest approach to the event on the light cone.

At this point, we can now calculate a ‘deflection angle’ by which the

initial n must be corrected to achieve a closer approach to the source.

We repeat this process several times until suitable convergence is

achieved.

This process works well in the weak-lensing regime, as only a

single null ray exists between the observer and each source. In

the strong lensing regime, multiple images can be formed, which

complicates matters. The number of sources where this phenomenon

is observed is negligible however, and so we concentrate only on

weak lensing. Since strong lensing will only affect our results on

very small scales where an image could be duplicated, this choice

has a negligible impact on our analysis.

Ray tracing is the key step in properly incorporating relativistic

corrections in our analysis. For example, instead of using the redshift

output directly from the halo finder which would only include the

background expansion and the Doppler correction, we are able to

use the ‘observed’ redshift, which includes all relativistic effects. We

can also calculate the perturbed position of sources on the sky, which

is important for any n-point correlation calculations done using the

catalogue. The algorithm also output DA and both the real and the

imaginary parts of the shear component separately (γ1 + iγ2 ≃ − ǫ
4
),

although these are not needed in the current analysis.

3.2 Halo catalogue

From the real space particles, the halo catalogue was created with

the Rockstar halo finder (Behroozi, Wechsler & Wu 2012), using a

MNRAS 501, 2547–2561 (2021)
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Observing relativistic features in LSS surveys 2551

Table 1. Specifications of the halo samples, selected to match the number

density for each population, yielding n̄0 ∼ n̄1 ∼ n̄2. The mean redshift z̄ is

obtained from all the haloes within each redshift bin, as the effective redshift

of each halo sample differs from z̄ in a sub-per cent level (� 0.5 percent).

The biases have been computed from the monopole of the power spectrum

by fitting a linear polynomial to the ratio between the halo auto-spectra and

the real-space linear matter power spectrum (see Appendix A2), differing

from the Tinker bias by ∼ 5 percent. For the three redshift bins, the volumes

are such that the fundamental mode of observation is kF = 2π/V 1/3 ∼ 7 ×

10−3 (hMpc−1).

# Mean mass Bias n̄(z̄)

haloes [M⊙ h−1] (fit) [Mpc h−1]−3

z̄ = 1.89

All 480643 4.41 × 1012 2.927 7.053 × 10−4

H0 160081 1.86 × 1012 2.551 2.349 × 10−4

H1 160547 2.83 × 1012 2.758 2.356 × 10−4

H2 160015 8.54 × 1012 3.477 2.348 × 10−4

z̄ = 2.29

All 326899 3.85 × 1012 3.469 4.666 × 10−4

H0 109003 1.83 × 1012 3.020 1.556 × 10−4

H1 108809 2.66 × 1012 3.270 1.553 × 10−4

H2 109087 7.05 × 1012 4.154 1.557 × 10−4

z̄ = 2.69

All 205678 3.44 × 1012 4.214 2.947 × 10−4

H0 68501 1.80 × 1012 3.735 9.815 × 10−5

H1 68550 2.52 × 1012 4.006 9.822 × 10−5

H2 68627 5.98 × 1012 4.932 9.833 × 10−5

friends-of-friends (FOF) algorithm with linking length b = 0.28 in

order to detect over 107 haloes in the light cone.

After going through the ray-tracer algorithm, which is crucial to

connect the haloes and the observer, the perturbed three-dimensional

positions of haloes were obtained and the resulting file consists of

three mock surveys contained within the range 0.0 � z � 7.1, with

different survey areas. The survey that will be used in this work spans

the range of comoving look-back distance from 275 up to 4560 Mpc

h−1.

We limit ourselves to the high-redshift region between zmin = 1.7

and zmax = 2.9, with redshift bins of size �z = 0.4 that kept the

variation of the growth function within the 5 per cent limit.5 Each

redshift bin has an effective volume of ∼0.7 (Gpc h−1)3 given the

chosen cosmology and the sky fraction fsky ∼ 0.01. After this redshift

selection, we were left with 8.5 × 106 dark matter haloes.

The high-redshift binning was chosen to deliver a reasonable

volume necessary for the observation of the relativistic features

at large scales, giving an effective fundamental mode of kF =

2π/V 1/3 ∼ 7 × 10−3 (hMpc−1). In a future work we will present

the results of the same analysis, but in the full-sky case. The current

survey area of ∼400 deg2 is compatible with the current survey areas

available for a cross-correlation analysis (Zhao et al. 2020).

The final halo catalogue was then separated into three halo samples

per redshift bin, each of them with different masses such that, at each

redshift bin, the number of haloes was the same for each sample. The

main properties of these samples are detailed in Table 1. Because

more massive haloes are expected at lower redshifts, the effective

redshift z̄ of each halo sample varies slightly, but only by less

than 0.5 per cent; therefore, we considered the values shown in the

Table as the respective central redshift. The biases were computed

5This criterion was chosen to keep haloes of different evolutionary stages

somewhat separated.

by fitting the ratio between the real-space power spectrum of the

haloes and dark matter [see Appendix A for a throughout discussion

and comparison with the Tinker et al. (2010) fitting function]. The

halo population incorporating all haloes is referred to as Hall in what

follows.

4 POW ER SPECTRUM MULTI POLE

ESTI MATOR

To compute the power spectrum multipoles we make use of the

standard approach proposed by Yamamoto et al. (2006), Bianchi

et al. (2015), and Scoccimarro (2015) (for pioneering work see also

Yamamoto, Nishioka & Taruya 2000), which we dub YBS estimator.

It is built upon the practical algorithm developed by Feldman,

Kaiser & Peacock (1994) to optimally estimate the power spectrum

of galaxy surveys with a varying selection function. As mentioned in

Section 2, the selection function N̄ encodes the spatial modulations

of the mean number density of objects. For both spectroscopic and

photometric surveys, the selection function accounts for all non-

cosmological effects, being sensitive, for example, to the different

intrinsic brightness of galaxies.

The selection function gives an estimate of the probability that a

galaxy brighter than a certain threshold, at a distance s, is included

in the sample. Hence, it is intrinsically related to the notion of

luminosity function �(L) (Martı́nez & Saar 2001). In Wang et al.

(2020), a clear example of such fact is given, with the luminosity

function of eBOSS quasars (QSO) being used to fit the QSO number

density and derive the evolution and magnification biases.

To resume the construction of the estimator, NX(xijk) denotes

either the count-in-cells of the random, X = r, or of the data (halo)

catalogue, X = h, where xijk is the position of each cell in a three-

dimensional grid obtained by a mass assignment scheme, e.g. Nearest

Grid Point (NGP), Cloud In Cell (CIC), or Triangular Shaped Cloud

(TSC). In this analysis we consider the simplest NGP assignment.

We begin by defining the weighted galaxy fluctuation, or the

overdensity field,6 as

F (x) =
w(x)

N
[nh(x) − αnr (x)] , (15)

where nh(x) =
∑Nh

i=1 δD(x − xi) is the number density that will

be written as a grid, after a mass assignment scheme is chosen.

Therefore, in practice nh(x) = Nh(xijk) is the count-in-cells grid

and nr (x) is the corresponding quantity for the random catalogue,

which is obtained by randomly sampling α−1 times more objects

within the survey volume, with the same selection function as the

real data.

The results presented here do not employ a weighting scheme, i.e.

w(x) = 1, and we follow Jeong (2010) for the implementation of the

quadratic estimator. The normalization factor will be given by

N ≈
α2

ℓxℓyℓz

∑

xijk

N2
r (xijk), (16)

6It is more instructive to write F (x) = w(x)[n(x) − n̄(x)] =

w(x)n̄(x)δ(x) = W (x)δ(x), where we call W (x) the window function.

Then, in Fourier space F (k) is the convolution of the window with the

density contrast: F (k) = (2π )−3
∫

d3q W (k − q)δ(q), and one can show

that 〈F (k)F (−k)〉 = (2π )−3
∫

d3q |W (k − q)|2P (q) +
∫

d3x w2(x)n̄(x).

Therefore, in Feldman et al. (1994) it is considered the overdensity field

divided by the magnitude of the window function, W 2 ≡
∫

d3x W 2(x),

which we called N (Jeong 2010).
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2552 C. Guandalin et al.

Figure 3. The mirrored scheme at the right-hand side corresponds to the

Fourier transform of the left-hand configuration. The Fourier counterpart of

d and s are, respectively, q and k (Reimberg, Bernardeau & Pitrou 2016).

On the left side, the configuration for the local estimator P (k, d) is depicted.

The YBS estimator corresponds to integrating over all possible LOSs d and

averaging over k-bins. In this sketch, s = s2 − s1, with the observer located

at the lower vertex.

and the shot noise, only relevant for the monopole term, will be

Pshot ≈ ℓxℓyℓz

(

1 + α

α

)

∑

xijk
Nr (xijk)

∑

xijk
N2

r (xijk)
, (17)

where ℓi ≡ Li/ni is the size of each cell dimension in units of Mpc

h−1. In this work we choose ℓi = 10 Mpc h−1.

After the construction of these quantities, the power spectrum

multipoles can be obtained by the YBS estimator, which we now

briefly discuss. The whole idea of this method relies in generalizing

the power spectrum to local regions in space, where statistical

homogeneity may be assumed. These regions are defined by a single

middle LOS d = (s1 + s2)/2, as shown on the left of Fig. 3. Then,

the corresponding power spectrum at this region is

P (k1, k2) =

∫

d3s1

∫

d3s2 ξ (s1, s2)eik1·s1 e−ik2·s2 . (18)

Notice that

eik1·s1 e−ik2·s2 = eid·qe−ik·s, (19)

where the Fourier transform of the local configuration is shown on the

right of Fig. 3. With this change of coordinates, one can see that the

local power spectrum can be obtained by taking the Fourier transform

of the first component of the local correlation function ξ (s1, s2) =

ξ (s, d). Finally, the multipoles of the local power spectrum can be

obtained from the Legendre expansion

P (k, d) =
∑

ℓ

Pℓ(k, d)Lℓ(k̂ · d̂). (20)

Lastly, the inversion of this relation yields the power spectrum

multipoles:

P̂ℓ(k) =
〈2ℓ + 1

2N

∫

d3s1

∫

d3s2 F (s1)F (s2)

×e−ik·(s2−s1)Pℓ(k̂ · d̂) − Sℓ(k)
〉

, (21)

where the brackets correspond to an average over k-shells and Sℓ is

the shot-noise term, only relevant for the monopole.

In order to speed up the computation of the multipoles by means

of FFTs, the YBS estimator takes the end-point LOS s1. It is worth

mentioning that this LOS intrinsically generates odd multipoles that

may impact the signal we are trying to measure. Hence, this must be

accounted for in the window function, as discussed in Appendix B.

With the adoption of this LOS, the monopole can estimated as

P̂0(k) =
1

N
〈F0(k)F ∗

0 (k) − S0〉, (22)

where

F0(k) =

∫

d3x F (k)eik·x (23)

is the Fourier transform of the overdensity field with no weight,

F (x) = nh(x) − αnr (x), (24)

and the dipole is obtained by

P̂1(k) =
3

N
〈F0(k)F ∗

1 (k)〉, (25)

with

F1(k) =
∑

i=x,y,z

k̂if1,i(k), (26)

and

f1,i(k) =

∫

d3r r̂iF (r) eik·r . (27)

For higher order multipoles, we refer the interested reader to Bianchi

et al. (2015) and Beutler, Castorina & Zhang (2019) for the even and

odd ones, respectively.

Finally, to compute the cross-dipole, F0(k) and F1(k) are built

from the first and second tracers, respectively, and the normalization

becomes (Beutler & Dio 2020):

N ≈
α(1)α(2)

ℓxℓyℓz

∑

xijk

N (1)
r (xijk)N (2)

r (xijk). (28)

5 R ESULTS

For the objects under analysis (dark matter haloes), the concept

of luminosity function can replaced by the halo mass function7

dn̄/d ln M , which gives the probability of having a mean number

of haloes, within some comoving volume, with mass in the range

[ln Mi, ln Mi + dM]. Thereby, the selection function coincides with

the comoving mean number density of haloes within a certain mass

bin [Mi, Mi + 1], in complete analogy to the definition of φ(L) from a

luminosity function (e.g. see Martı́nez & Saar 2001):

n̄(z, �M) =

∫ Mi+1

Mi

d ln M
∂n̄

∂ ln M
. (29)

Still for the specific case of dark matter haloes, the magnification

bias is identically zero, s = 0, and the only term accounting for

the mass function variations is the evolution bias, which explores its

dependency with time: this is related to the fact that haloes can merge

to form more massive structures and, thereby, their number counts

are not conserved. The evolution biases bi
e(z) of each halo sample

i = {H0, H1, H2, Hall} considered in this work, within each redshift

bin, is shown in Fig. 4. The procedure to compute bi
e(z) is described

in Appendix A and it is based on the work of Beutler & Dio (2020).

7See Appendix A for a detailed discussion on the mass function of our

samples.
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Observing relativistic features in LSS surveys 2553

Figure 4. Evolution biases for the halo samples described in Table 1, at each redshift bin considered in the analysis. Notice that, even though the number density

is approximately the same for all the halo populations, the intrinsic evolution of each halo population with redshift gives rise to very different evolution biases.

The computation is described in Appendix A3, following Beutler & Dio (2020).

The values computed at the mean redshift of each z-bin, bi
e(z̄), are

shown in Table A2.

We work with 14 band powers (Fourier bins) linearly spaced

between kmin ≈ 0.006 h Mpc−1 and kmax ≈ 0.157 h Mpc−1, with

�k ≈ 0.01 h Mpc−1 ≈ 1.67 kF. As already mentioned in Section 4,

we work with three-dimensional grids containing nx = ny, nz <

nx cells of side ℓi = 10 Mpc h−1, with the number of cells ni

varying between the different redshift bins. This binning was chosen

to deliver a less noisy measurement at large scales.

Fig. 5 shows the monopoles estimated from the four halo samples

in the first redshift bin (z̄ ≈ 1.89). Apart from the amplitude of

the monopole, not much change occurs between different redshifts,

hence we only show the first z-bin here. As we discuss in Appendix B,

in particular as shown in Fig. B2, the window function had an

impact of the order of 5 per cent or less at the scales we considered

here. Because its impact is larger for k � 0.01 h Mpc−1, where

the measurement is completely dominated by cosmic variance, we

find it more instructive to compare the halo monopole with the one

estimated from the real-space power spectrum of cold dark matter

(CDM) particles multiplied by the proper coefficient of the Legendre

expansion, equation (9). This shows us that the theoretical connection

between the CDM particles in real space is consistent with the halo

measurements obtained from the redshift-space catalogue. This also

has the advantage of naturally incorporating any window function

effect one might be concerned with. For completeness, we also

compare the measurements with the same monopole coefficient,

but using the linear real-space power spectrum extracted from the

CLASS Boltzmann solver (Blas, Lesgourgues & Tram 2011). The

bias parameters used for CLASS are presented in Table 1 and it is used

throughout this work. To compute the monopole coefficient with the

real-space CDM power spectrum, we consider the bias parameters

shown in Table A1, fourth column (CDM), and refer the reader to

Appendix A2 for more details.

We estimate the error bars from the standard deviation of 100

lognormal mocks generated with the same characteristics of the

original data: box dimensions, evolution and linear biases, selection

function, and survey mask. For this last step, we first generated

the lognormal mocks for the whole box encompassing the different

redshift bins of the light cone, and then applied the proper mask to

select the specific angular region. However, because these error bars

only quantify the variance of the estimator, the particular survey

features do not matter much, and thus it should be possible to

compute the variance of mocks inside the box, with the only caveat of

following the mean number density of tracers to properly incorporate

Figure 5. Monopoles estimated from the four halo samples in the first

redshift bin: z̄ ≈ 1.89. Error bars are computed from the standard deviation of

100 lognormal mocks generated with the same box dimensions, evolution and

linear biases, selection function, and survey mask. Solid lines represent the

redshift-space halo power spectrum computed from the estimated real-space

CDM spectrum. The bottom panel shows kP0(k) for the least and most massive

halo samples (lower and upper curves, respectively) for better visibility of the

errors and the larger scales; it also shows the theoretical monopoles without

considering the window function computed (dash-dotted curves).

the shot noise. The impact of the window function in the standard

deviation of the lognormal samples generated minor changes at very

large scales, and we do not explore this further.

To what concerns the variance of our measurements, the window

function had a negligible impact. Nonetheless, to avoid any sort of

complications, we explore the asymmetry of the relativistic signal as

MNRAS 501, 2547–2561 (2021)
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2554 C. Guandalin et al.

Figure 6. Dipoles estimated from the four halo samples in the first redshift

bin: z̄ ≈ 1.89. Error bars are computed from the standard deviation of 100

lognormal mocks generated with the same box dimensions, evolution and

linear biases, selection function and survey mask. Solid lines represent the

theory, as P
αβ
1 − P

βα
1 is free from the window function contribution. We

show all possible combinations of haloes.

suggested in Beutler & Dio (2020): by computing �P1 = P
αβ

1 − P
βα

1

it is possible to isolate the relativistic contribution and get rid of the

impact of the window function, which is symmetric. As pointed

in Section 2, the Doppler term is antisymmetric, 〈δα(k)δ∗
β (k)〉 =

−〈δβ (k)δ∗
α(k)〉, and thus �P1 ∼ 2〈δα(k)δ∗

β (k)〉.

Consistently, the theoretical prediction for the last cross-

correlation H2 × Hall is positive, as �b = b2 − ball > 0. However, as

shown in Fig. 6, for the cross-dipole among haloes, and in Fig. 7, for

the cross-correlation between haloes and CDM particles (the latter in

redshift space as well), we conclude that no detection can be claimed

with this pencil-beam light cone. Very similar results were obtained

for the other two redshift samples z1 ≈ 2.29 and z2 ≈ 2.69.

Still, we point out the possibility of exploring optimal weighting

schemes to enhance the signal in the light of the work carried out by

Castorina et al. (2019). Lastly, the advantages of employing different

tracers, coupled with the low densities of the catalogues, as well as

the need for robust statistics, suggests the use of optimal weights for

a more efficient combination of tracers (Abramo, Secco & Loureiro

2015; Montero-Dorta et al. 2020).

6 C O N C L U S I O N S

We have performed a power spectrum multipole analysis on data

from a light cone generated from a fully relativistic N-body sim-

ulation. We focused on the dipole signal in the cross-correlation

between different dark matter halo subpopulations, which is a

purely relativistic (non-Newtonian) effect. The simulation was gen-

erated by the gevolution code, which employs a novel ray-tracing

method to connect the haloes with the observer, and which is

capable of incorporating all relevant general relativistic effects on

cosmologically-relevant distance scales. We showed in detail how

the survey window function and quantities such as the evolution

bias can be estimated on the past light cone, allowing a rigorous

comparison with gauge-invariant theoretical calculations at linear

order.

Similar studies of relativistic observables in simulations have been

made in the past. For example, Breton et al. (2018) and Beutler & Dio

(2020) used the full-sky RayGal simulation, which is limited to the

redshift range of 0.05 < z < 0.465, with an effective z̄ ∼ 0.341.

While the simulation that we based our study on in principle

covers the redshift range 0 ≤ z ≤ 7.1, our analysis focused on

a particular high redshift bin in the range 1.7 ≤ z ≤ 2.9, which

we further sliced into three different samples to keep the redshift

evolution well controlled, covering a sky fraction of only fsky = 0.01.

This is a similar sky area to the overlap region between different

LSS tracers (luminous red galaxies and emission line galaxies) in

the multi-tracer analysis of the final eBOSS data (see Table 2 of

Zhao et al. 2020), although these data are from lower redshift,

z ∼ 1.

While we were able to robustly test our analysis methods using

these simulated data, no conclusive detection of the dipole signature

was possible due to the limited volume of the redshift bin, a

challenge that is of paramount importance for current surveys too.

Beutler & Dio (2020) studied the possibility of subtracting various

contributions to the total signal in order to isolate the Doppler

contribution and remove sample variance. Since the Doppler term

is expected to increase in amplitude with redshift, one could also

consider developing an optimal weighting scheme to enhance the

signal and improve the prospects of detection (Castorina et al.

2019). We leave this, and other schemes (Abramo et al. 2015;

Abramo & Bertacca 2017; Montero-Dorta et al. 2020) to enhance

detectability of the signal, to be explored in future work, how-

ever.

We did not incorporate wide-angle effects in our modelling, as

they are not relevant for the solid angle and redshift range of our

analysis. Nonetheless, a careful account of these effects should also

be explored in the context of wider survey areas, particularly in the

case of future surveys such as Euclid, LSST, and SKA, which are

expected to cover an appreciable fraction of the sky.

Similarly, integrated effects (e.g. lensing), while fully included in

our mock data, were neglected in our analytical model, but are known

to impact large angular scales. Despite the Doppler term being the

largest contribution to the relativistic effects for our particular setup,

non-local terms should also be modelled and properly included for

analyses that go to larger scales.

In this paper, we have limited our analysis to a single high-redshift

bin with a relatively narrow survey area and have pursued only

a limited set of observables, i.e. the multipoles of the relativistic

MNRAS 501, 2547–2561 (2021)
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Observing relativistic features in LSS surveys 2555

Figure 7. Dipoles estimated from the four halo samples in the first redshift bin: z̄ ≈ 1.89. Error bars are computed from the standard deviation of 100 lognormal

mocks generated with the same box dimensions, evolution and linear biases, selection function and survey mask. Solid lines represent the theory, as P
αβ
1 − P

βα
1

is free from the window function contribution. We show all possible combinations of haloes with cold dark matter.

power spectrum. In future work, we will relax these limitations by

moving to larger survey volumes more representative of the next

generation of large-scale structure surveys, while also including

wide-angle and integrated effects, and extending our analysis to

two-point correlation functions and multipoles of the relativistic

bispectrum.

C A R B O N F O OTP R I N T

In this work, we reused existing data from a simulation that consumed

about 8000 kWh of electrical energy. This has an estimated impact

of 1600 kg CO2 when we use the conversion factor of 0.2 kg

CO2 kWh−1 suggested by Vuarnoz & Jusselme (2018, see table

2 therein, assuming Swiss mix). The additional energy used during

the numerical analysis of the data is insignificant in comparison.

This work also included a round trip São Paulo ↔ London economy

flight, emitting approximately 900 kg CO2.8

8ICAO Carbon Emissions Calculator, 25 August (2020).
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APPENDI X A : H ALO PRO PERTI ES

A1 Halo mass function

For completeness, we computed the mass function of our full halo

sample between z = 0.05 and z = 0.465 (effective redshift z̄ = 0.34)

for comparison with the full-sky RayGal simulation9 employed in

the analysis of Breton et al. (2018). The halo mass function describes

the probability of having a comoving number density of haloes at

redshift z in the range [ln M, ln M + dln M]:

∂n̄(M, z)

∂ ln M
=

ρ̄m,0

M
f (σ )

∂ ln σ−1

∂ ln M
, (A1)

with ρ̄m,0 the comoving background matter density today, f(σ ) the

multiplicity function, and σ the overdensity variance smoothed in

a sphere of radius R. The multiplicity function can be computed

analytically from the spherical collapse model (Press & Schechter

1974) or the ellipsoidal collapse (Sheth & Tormen 1999), or from

numerical fits (Tinker et al. 2008).

The RayGal simulation consists of a set of high-resolution New-

tonian N-body simulations, whose haloes have been ray traced to the

redshift-space position, rendering them with almost all properties of

our haloes. The RayGal light cone was built from 300 snapshots to

avoid time discretization effects.

Our analysis was based on halo masses M200b ≡ M defined within

the density thresholds of � = 200, whose correspondence with

the parameters fit of the Tinker mass function (Tinker et al. 2008;

solid lines in Fig. A1) is straightforward. In Corasaniti et al. (2018),

RayGal halo mass functions were computed from the snapshots and

were based on the Sheth–Tormen (Sheth & Tormen 1999) fit, with

the halo identified with the spherical overdensity (SO) method, and

thus the haloes are more closely connected to the ellipsoidal collapse

employed in the Sheth–Tormen fit (Desjacques, Jeong & Schmidt

2018).

9The RayGal simulation is contained within 0.05 < z < 0.465. Their effective

redshift is the same as the low redshift considered in this section, for

comparison.
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Table A1. Linear biases for the halo samples considered in this work,

estimated with different methods. The Tinker bias is computed from the

fit of Tinker et al. (2010), equation (A3). The biases in the next two columns

were obtained via the polynomial fit of equation (A4), with the linear power

spectrum from CLASS (PS) or with the power spectrum estimated from

the real-space cold dark matter particles (CDM), with the former estimate

differing from the Tinker bias by ∼ 3–5 per cent. The final column shows the

bias parameters estimated from the correlation function, differing from the

Tinker bias by ∼ 6 per cent. Larger discrepancies for the CDM bias estimates

with respect to the others will be due to fluctuations coming from the estimator.

Mass Bias Bias Bias Bias

[M⊙ h−1] (Tinker) (PS) (CDM) (CF)

z̄ = 1.89

All 4.4 × 1012 2.881 2.927 3.076 2.809

H0 1.9 × 1012 2.273 2.551 2.683 2.437

H1 2.8 × 1012 2.540 2.758 2.897 2.652

H2 8.5 × 1012 3.539 3.477 3.651 3.349

z̄ = 2.29

All 3.9 × 1012 3.473 3.469 3.749 3.196

H0 1.8 × 1012 2.803 3.020 3.280 2.772

H1 2.7 × 1012 3.114 3.270 3.546 2.993

H2 7.1 × 1013 4.212 4.154 4.449 3.827

z̄ = 2.69

All 3.4 × 1012 4.140 4.214 4.455 3.959

H0 1.8 × 1012 3.414 3.735 3.950 3.613

H1 2.5 × 1012 3.765 4.006 4.237 3.891

H2 5.9 × 1013 4.955 4.932 5.211 4.468

However, for the RayGal light cone, haloes were identified via

an FOF algorithm, just like in our catalogue. In Smith et al. (2017),

differences with numerical fits seem at the low-mass end are also

present, and they conclude that such discrepancies are associated

with the comparison between different halo finder methods (SO and

FOF). They computed the mass function using the SO correspondent,

and just as in our case, found the same behaviour at low masses. In

the catalogue employed in our analysis, ∼1.1 × 106 haloes with

Mvir ∈ [0.518, 4.862] × 1012 (M⊙ h−1) were discarded for having

their respective M200b null. As pointed out in Smith et al. (2017),

small overdensities in large FOF groups might be identified as part

of the larger group, leading to a lack of such structures.

Such discrepancies are important if one wishes to paint galaxies

to the haloes via, e.g. a halo occupation distribution. For our current

purposes, the lack of a proper function to describe the light cone halo

mass function impacted only our ability to predict the linear halo

bias (see Section A2), and thus did not pose an issue for the analysis.

A2 Halo bias

As mentioned in the previous section, the halo mass function

describes the fraction of matter inside dark matter haloes. So in

order to obtain the correct halo statistics, we must account for their

position in space. The halo bias, which is defined by the ratio of

the halo power spectrum, Phh(k), to the linear dark matter power

spectrum, Plin(k) (Tinker et al. 2010),

b2(k) =
Phh(k)

Plin(k)
, (A2)

is best understood within the context of the peak-background split

(PBS), where the long-wavelength modes enhance the probability

of forming haloes by decreasing the threshold δc(z = 0) = 1.686

for overdensities located at the peak of large-scale (background)

fluctuations. It can be either derived from analytical mass functions,

Table A2. Parameters entering equations (A7) and (A8) to derive the

evolution bias of the halo samples.

a b c be(z̄)

z̄ = 1.89

All 20.105 −6.863 2.929 2.781

H0 5.521 −1.668 3.310 2.035

H1 6.337 −2.093 3.027 2.542

H2 8.247 −3.102 2.658 3.761

z̄ = 2.29

All 14.990 −4.488 3.340 3.132

H0 4.153 −1.128 3.680 2.367

H1 4.740 −1.385 3.422 2.905

H2 6.098 −1.974 3.088 4.120

z̄ = 2.69

All 12.763 −3.636 3.510 4.500

H0 3.728 −1.017 3.664 3.788

H1 4.000 −1.118 3.578 4.153

H2 5.035 −1.501 3.355 5.551

Figure A1. Comparison between the halo mass function of the catalogue

employed in this analysis (stars), with the one from the full-sky RayGal

simulation (dots) from Breton et al. (2018), with both catalogues in real

space. Solid curves correspond to the Tinker mass function fit (Tinker et al.

2008), while the bottom panel shows the relative difference between the fit

prediction and the mass function computed from the simulations. Vertical

dashed line corresponds to the limit of gevolution haloes with at least 600

particles. The cosmological parameters in the RayGal simulation that differ

from ours are h = 0.72, As = 2.431 × 10−9, �m = 0.257, Tcmb = 2.726.

We stress that the RayGal mass function was multiplied by a 0.1 factor for

a cleaner visualization, as the values were very similar. Differences between

the Tinker and Sheth–Tormen (Sheth & Tormen 1999) mass functions were

minor, so we only present the former.

giving the Press–Schechter and Sheth–Tormen halo biases, or from

equation (A2) via numerical simulations. From Tinker et al. (2010),

the bias is given by

b(ν) = 1 − A
νa

νa + δa
c

+ Bνb + Cνc, (A3)
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Figure A2. The comoving number density of haloes, normalized by the total amount N0 of objects inside each mass bin. Solid lines represent the linear fit

of equation (A7), whereas dashed lines represent the true n̄(z) of the simulation, computed by dividing each redshift slice into 100 bins to capture the redshift

evolution. The smooth curves are the result of a cubic spline interpolation, for visual reasons.

Figure A3. The comoving number density n̄(z) of cold dark matter (CDM) particles. Dashed lines represent the linear fit of equation (A7). As in Fig. A2, the

true n̄(z) extracted from the simulation (solid curve) was computed using 100 bins inside each redshift slice considered for analysis, with the smoothness being

a result of a cubic spline interpolation.

where ν = δc/σ and A, B, C, a, b, and c are parameters fitted from

simulations, depending on the matter perturbations at virialization,

which is chosen to be � = 200. This phenomenological fit proved to

be unsatisfactory for our halo samples, for the reasons described in

Section A1.

We proceeded then with the definition of equation (A2) and

employed a polynomial fit

b2(k) = b2
1 + b2

2k, (A4)

considering the linear term as the fit for the linear halo biases,

neglecting the scale dependence emerging from nonlinear effects in

the power spectrum. Notice that the estimated spectra Phh employed

in this fit are for the haloes in real space. The results are shown in

Table A1 for each halo sample, where we use different methods to

obtain the matter power. In one case (PS) we used the theoretical

power spectrum obtained from the CLASS Boltzmann solver (Blas

et al. 2011) as the denominator in equation (A2). In a second case

(CDM), we computed the biases using the real-space matter power

spectrum computed from the cold dark matter particle ensemble

instead of CLASS. As we can see, it differs by ∼ 9 per cent from

the Tinker value, which we believe comes from fluctuations of

the estimator itself. Despite that, we use this value to consistently

compare the halo monopole obtained from the Legendre expansion

with the real-space CDM spectrum in Fig. 5.

In order to verify the consistency of the method and the possible

impacts of the window function (for the CLASS case) and estimator

(for the CDM) in the bias estimation, we also tested the approach of

Breton et al. (2018): here the linear bias was computed by fitting a

constant function to the ratio

b =

√

ξ ℓ=0
hh

ξ0

, (A5)

where ξ 0 is the monopole of the matter autocorrelation function,

computed from

ξ0(x) =
1

2π2

∫

dk k2j0(kx)P (r)(k), (A6)

and ξ ℓ=0
hh is monopole of the halo–halo autocorrelation, computed

from the real-space catalogues with CUTE
10 (Alonso 2012). The

real-space linear matter power spectrum11 was obtained from CLASS

with the input parameters of the simulation.

This method is not perfect though: we observed a shift in the

BAO peak scale for the halo samples if compared to the theoretical

prediction. Also, we limited ourselves to the range 28 < rfit < 68 in

units of Mpc h−1. Although time consuming, this method is naturally

safe from the mode coupling induced by the window function. The

results from this fit are shown in Table A1. Using the fits from

equation (A4) or (A5) did not lead to significant differences to the

overall results, with both methods being equally tantamount.

10https://github.com/damonge/CUTE/
11Differences of using the nonlinear matter power spectrum were below

the per cent level.
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A3 Evolution bias

The evolution bias of LSS tracers quantifies the intrinsic variation in

the number of sources in the Universe, and thus gives information

about the time evolution of tracers. It is defined in equation (4), and

depends on the comoving number density of sources in real space

n̄.12 In the case of dark matter haloes, coming from a simulation,

this parameter is completely faithful to the intrinsic cosmological

variations of the mean number density of haloes, as the underlying

dark matter distribution is known and the comoving number density

of haloes is complete (i.e. all haloes that were supposed to be found

are included in the catalogue).

In Fig. A2, we show the comoving number density of real-space

haloes, inside each redshift bin considered in the main analysis,

normalized by the total number of haloes for each mass bin defined

for n̄0 ≈ n̄1 ≈ n̄2. As one can see, there is a large variation explained

by the fact that more massive haloes are more common at lower

redshifts, which can be explicitly seem by the slope of the curves.

This intrinsic variation is captured by the evolution bias parameter

be, and is a major parameter entering the relativistic corrections.

Analogously, we also show in Fig. A3 the comoving number

density of the cold dark matter (CDM) particles, in real space, used

to build the halo catalogue. This was used to derive, in the same way

as done for the haloes, the evolution biases for the particles within

each redshift slice. We obtained bCDM
e = {0.041,−0.109, −0.014} as

best fit, respectively for the three redshift bins z̄ = {1.89, 2.29, 2.69}.

This is consistent with what we expect for the CDM particles

because the comoving number density is constant, the true evolution

bias vanishes. However, large-scale density gradients due to matter

perturbations will lead to a non-zero best fit within any finite volume.

Following Beutler & Dio (2020), we fit a linear function to the

(unnormalized) comoving number density,

n̄(z) = a + bz, (A7)

which leads to the analytical expression for be,

be(z) =
c + 1

c − z
− 1, (A8)

where c ≡ a/(− b).

Notice that, even though the comoving mean number density is the

same for all the three samples H0, H1, and H2, the different evolution

with redshift between the different halo populations, defined by

different halo masses, leads to distinct evolution biases, as can be

seen in Fig. 4.

A P P E N D I X B: W I N D OW FU N C T I O N

In this appendix we describe how the window function is obtained. It

is employed to compute the observed power spectra multipoles from

the theoretical predictions, for comparative purposes, and imparts

substantial effects on large scales and on the odd multipole moments.

Therefore, its inclusion is mandatory.

We begin by recalling that the observed density field δ̂ is given

by

δ̂(x) = W (x)δ(x), (B1)

where δ(x) is the true underlying density field and W (x) = w(x)n̄(x)

accounts for the survey geometry and local weighting w scheme

12The evolution bias can also be defined in terms of the physical number

density. In this case, one must account for the fact that, instead of be = 0 for

cold dark matter particles, be = 3.

(Feldman et al. 1994). Therefore, the observed correlation function

is given by

ξ̂ (s1, s2) = W (s1)W (s2)ξ (s1, s2). (B2)

Notice that we can write s2 = s1 + s, where s is the pair separation,

so that the correlation function may also be written as ξ (s1, s) (see

e.g. Fig. 3).

In Fourier space we obtain the well-known convolution result for

the overdensity field,

δ̂(k) =

∫

d3k′

(2π )3
W (k − k′)δ(k′), (B3)

yielding the three-dimensional observed power spectrum:

P̂ (k) =

∫

d3q

(2π )3
|W (k − q)|2P (q),

=

∫

d3q

(2π )3
|W (q)|2P (k − q), (B4)

where we made use of the fact that δ and W are real quantities.

One possible way to compare theory and estimates is to deconvolve

the survey window from P̂ ; however, since convolution in Fourier

space destroys information, the deconvolution of the window is an

attempt to recover this intrinsic information loss in the signal analysis.

The standard procedure (Beutler et al. 2016; Wilson et al. 2016)

consists, instead, in computing the multipoles of |W (q)|2 to convolve

the theoretical power spectrum to obtain P̂ , where

|W (q)|2 =

∫

d3s e−iq·sW 2(s), (B5)

and

W 2(s) ≡

∫

d3s1 W (s1)W (s1 + s). (B6)

We shall write W 2(s) ≡ Q(s) and |W (k)|2 = Q(k). Notice that

this depends on the local LOS, which is taken to be s1 (end-point

LOS) in the case of the YBS multipoles estimator. Hence, the

multipoles of the ‘window function’, with respect to a LOS d̂ = ŝ1,

are given by

Qℓ(s) =
2ℓ + 1

4π

∫

d3d

∫

d�s Q(s, d)Pℓ(ŝ · d̂) (B7)

in configuration space, and

Qℓ(k) =
2ℓ + 1

4π

∫

d3d

∫

d�k Q(k, d)Pℓ(k̂ · d̂) (B8)

in Fourier space. The integrals on d�s and d�k run over the

angles between, respectively, ŝ and k̂ with the LOS d̂:
∫

d� =
∫ π

0
dθ sin θ

∫ 2π

0
dϕ. After the integration over all angles, Qℓ(s) can

be obtained by the final integration over all possible LOS. Because

our ‘survey’ geometry is well-behaved,13 consisting of a simple

angular selection delimited by the light cone opening angle (which

sets the upper limit in the θ integral), Qℓ(s) can be obtained semi-

analytically by considering the haloes radial selection function

13For surveys whose angular selection is too complicated, precluding an

analytical derivation of the window function, one can compute it from FFTs

of a random catalogue, as we discuss further, or from a random–random pair

count (Beutler et al. 2016; Wilson et al. 2016); this latter option, however,

can be too time consuming for surveys that require a large number of random

objects. To circumvent this issue, Breton & de la Torre (2020) proposed

a similar approach to semi-analytically compute the pair counts with high

precision and without much computational effort.
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Figure B1. Multipoles of the window function computed semi-analytically

from the radial and angular distribution of the samples. The top panel shows

the window for the catalogues of the halo population H0 at the redshift

slices considered for analysis (different colours), with different line styles

representing different multipoles: dots depict the even, while vertical bars the

odd ones. Differences between the tracers as a result of different selection

functions are negligible, and thus we only show the auto-correlation of the

H0; however, the cross-correlation among tracers has a larger impact for the

odd multipole moments, as shown in the bottom panel for a fixed redshift

(z̄ = 1.89).

(shown in Fig. A2), and performing a plain angular integration, with

the radial integral limited to the redshift range of the sample through

the proper inclusion of Heaviside step functions.

With the theoretical window function, obtained from its definition

in equation (B7) and shown in Fig. B1, differences between halo

populations as a result of different selection functions were below

the 2 per cent level for the autocorrelation case, with the same

behaviour being observed for the windows estimated from the

random catalogues. In contrast, differences between redshift bins are

more relevant, as can be seen in the upper panel (different colours) of

Fig. B1, and must be fully included in any analysis, whereas different

selection functions impact the odd multipoles of the window function

(Fig. B1, bottom panel).

If we plug in the expressions for Q(k, d) and Q(s, d), just as

in the local power spectrum case, we see that to estimate the

multipoles Qℓ(k) and Qℓ(s) we just apply the usual power spectrum

and correlation function estimators. Since the explicit convolution

of equation (B4) is computationally expensive, and so is the com-

putation of Qℓ(s) directly from the random pair correlation, as the

survey window function (random catalogue) contains 108 particles

to completely fill the survey region, one possibility is to compute

the power spectrum multipoles of the random catalogues. With this

strategy, Qℓ(k) is quickly obtained by means of FFTs, which are

then taken to configuration space (Beutler et al. 2019) for the proper

convolution.

Figure B2. Relative difference between the convolved P̂0 and the linear

power spectrum monopole obtained from the Newtonian redshift-space

prediction (as described in equations 7, 8 and 9). The convolved theory was

obtained via equation (B11), for the cases where there is no leakage of the

quadrupole and hexadecapole to the monopole (blue-dashed curve), where

we only account for the quadrupole contribution to the monopole (black-

dashed curve), that is, considering the first two terms in the right-hand side of

equation (B9), and given the full expression (red-solid curve). Shaded regions

corresponds to differences of 0.05 (light grey) and 0.025 (darker grey). The

inclusion of the quadrupole becomes relevant for scales k � 10−1.6 = 0.025

h Mpc−1, while the hexadecapole contribution is negligible.

We compared this approach with the theoretical window and found

disagreements for large scales due to possible instabilities in the

Hankel transform, and the limited k range and fluctuations from the

FFT estimator that made the window function very noisy for large

s. For this reason, we opted to analyse the impact of the window by

using the semi-analytical result.

From the straightforward product of equation (B2), the Legendre

expansion of (B2) results in (Beutler et al. 2016, 2019; Wilson et al.

2016; Beutler & Dio 2020):

ξ̂0(s) = ξ0(s)Q0(s) +
1

5
ξ2(s)Q2 +

1

9
ξ4(s)Q4(s) + . . . , (B9)

and

ξ̂1(s) = ξ0(s)Q1(s) + ξ2(s)

[

2

5
Q1(s) +

9

35
Q3(s)

]

+
4

21
ξ4(s)Q3(s) + . . . , (B10)

and from an inverse Hankel (1D Fourier) transform of these equations

we finally obtain the convolved power spectrum multipoles of

equation (B4). For the monopole we have

P̂0(k) = 4π

∫

s2 ds jℓ(ks) ξ̂0(s). (B11)

In Fig. B2 we show the relative difference between what is obtained

from equation (B11) and the linear power spectrum monopole.

The latter is computed from the Legendre expansion, with the

Newtonian monopole coefficient c0 shown in equation (9) and the

linear real-space power spectrum extracted from CLASS. The former

is computed in three different ways. First, we only include the

first term in equation (B9), which corresponds to the case where

there is no coupling between higher order multipoles with ℓ = 0.

Then we account for the leakage of the quadrupole (second term in

equation B9), and of the hexadecapole (full equation B9). As we can

see, the inclusion of the quadrupole becomes relevant for scales k �

0.025 h Mpc−1, while the hexadecapole contribution is negligible.
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For our range of scales, the differences between the convolved and

the redshift-space theory (unconvolved) is of the order of 5 per cent.

Thus, we do not see a large impact in face of our error bars (see

Fig. 5). We stress that this behaviour is consistent with the BOSS

DR12 anisotropic analysis (Beutler et al. 2016).

Finally, following Beutler et al. (2019) and Beutler & Dio (2020),

the convolved dipole is given by

P̂1(k) = −3i

∫

s2 ds j1(ks)ξ̂1(s) − iQ1(k)

∫

s2 ds ξ̂0(s). (B12)

This represents the leakage of even multipoles to the dipole, and

must be accounted for if one wishes to analyse the pure signal of the

cross-dipole P
αβ

1 (k).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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