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Zooplankton play an essential role as secondary producers 
in marine pelagic food webs, through biogeochemical cycling 
and energy transfer to higher trophic levels (Richardson 
2008; Turner 2015), and as a pool of recruits for many 
crustacean, fish and mollusc species (Brierley 2017). 
Zooplankton communities typically exhibit rapid responses 
to environmental change, through changes in their 
abundance and distribution, and hence species composition 
(Richardson 2008), making them suitable as indicators of 
ecosystem health and biodiversity over both short and longer 
time-scales (Verheye et al. 1992, 1998, 2016; Verheye 2000; 
Huggett et al. 2009; Hutchings et al. 2012; Jarre et al. 2015). 

Using morphological keys to identify zooplankton 
specimens is time-consuming because of their small size, 
large numbers, high diversity and community complexity 
(Leray and Knowlton 2015). Meroplanktonic larvae change 
rapidly throughout their growth from early to late larval 
development stages (Leis 2015), taxonomic keys are 
lacking for many species, and closely related species can 
exhibit cryptic morphology (Berry 1974; Matsuda et al. 

2019). The morphological identification of zooplankton to 
species level requires extensive training to master the 
taxonomy of most zooplankton groups (Questel et al. 
2021). Species-level resolution of samples will enable 
more-detailed biodiversity assessments and reveal ‘hidden 
biodiversity’ (Lindeque et al. 2013; Questel et al. 2021), 
enhance community-level analyses, and provide deeper 
insight into the life history and ecology of individual species 
(Ko et al. 2013). 

DNA barcoding and online reference databases such as 
the Barcode of Life Data Systems (BOLD Systems, www.
boldsystems.org) and GenBank (www.ncbi.nlm.nih.gov/
genbank) have revolutionised species identification and 
discovery over the past two decades (Hebert et al. 2003; 
Bucklin et al. 2011; Laakmann et al. 2020). Although 
multiple genes can be used for barcoding (Questel et al. 
2021), a standardised ~658 base pair fragment of the COI 
gene is commonly used to distinguish between different 
species of most animal groups (Hebert et al. 2004; Ward 
et al. 2005; Hajibabaei et al. 2006). DNA barcodes can be 
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used to distinguish between visually similar species, are 
independent of life stage, and reduce researcher bias by 
using a standard online reference system accessible to all 
researchers (Goetze 2010).

Metabarcoding is a special case of DNA barcoding 
applied to taxonomically complex samples that contain 
more than one organism or species (Dormontt et al. 2018). 
Metabarcoding uses the same reference databases as 
DNA barcoding, but allows for identification of multiple 
taxa simultaneously by using high-throughput sequencing 
methods (Taberlet et al. 2012; Cristescu 2014). The 
advance of next-generation sequencing (NGS) platforms 
(reviewed by Shokralla et al. 2012) allows for sequencing 
of large amounts of DNA fragments in a single run, with the 
prospect of rapidly determining the species composition 
of virtually any sample. Metabarcoding has successfully 
been applied to assess the biodiversity of zooplankton 
assemblages in several ocean regions and habitats (Casas 
et al. 2017; Djurhuus et al. 2018; Carroll et al. 2019; Hirai 
et al. 2020; Questel et al. 2021) but has not yet been 
applied in the SE Atlantic and SW Indian oceans.

Bucklin et al. (2011) estimated that there are more than 
230 000 species encompassing 31 marine metazoan phyla 
globally, and perhaps more than a million species yet to be 
discovered. Globally, the percentage of barcoded species 
has increased from <10% in 2011 to approximately 23% 
in 2019 (www.barcodinglife.org). Of an estimated 12  000 
marine faunal species in South Africa, 13% have publicly 
available DNA barcodes (www.barcodinglife.org). Region-
specific DNA barcode reference databases have been 
shown to improve taxonomic resolution and the detection 
rates of species during metabarcoding (Govender et al. 
2019; Questel et al. 2021), particularly where endemism 
is high, such as in South Africa where ⁓36% of marine 
species are endemic (Griffiths et al. 2010; Griffiths and 
Robinson 2016). Compilation of a region-specific reference 
database for southern African zooplankton is therefore 
advised; however, it has been hampered by the limited 
funding available for biodiversity surveys and too few 
trained taxonomists (Bezeng and van der Bank 2019). 

We investigated the availability of DNA reference barcode 
sequences for marine zooplankton expected to occur in the 
coastal waters of South Africa as an initial step in developing 
a regional metabarcoding protocol. Priority faunal groups for 
assessment were: (i) taxa that commonly occur in samples 
collected from plankton nets towed between the surface and 
10 m deep; (ii) crustacean, fish and mollusc taxa of value 
to fisheries in the region (mainly broadcast spawners with 
drifting larvae); and (iii) taxa with potential use as indicators 
of environmental change, including invasive species. Based 
on cross-referencing known species with those for which 
reference barcodes exist on accessible databases, we 
compared regional versus global barcode availability, 
with recommendations to develop reference databases 
to levels compatible with metabarcoding protocols. We 
undertook a metabarcoding analysis of plankton samples, 
collected with tow nets off the east coast of South Africa, 
to assess its potential as a high-resolution and accurate 
method to identify zooplankton species from mixed 
samples, and we compared the results with samples 
processed using traditional morphological identification. 

Materials and methods

Review of available barcode records
Barcode records of marine taxa expected to occur in 
the zooplankton of coastal southern Africa were mined 
from BOLD, in January 2019, using the BOLD R-package 
(Chamberlain 2018). The ‘bold_specimens’ function 
in R was used to collate records for specified taxa by 
geolocation using the parameters ‘taxon’ and ‘geo’. Lists 
of the global and southern African estimated known 
species per taxon were obtained from the South African 
Animal Checklist compiled by the South African National 
Biodiversity Institute (https://www.sanbi.org) and from 
Griffiths et al. (2010). Three categories of barcoding status 
were considered: (i) species for which no DNA barcode 
record could be found on any reference database; (ii) 
species with a barcode originating from samples collected 
in South Africa; and (iii) species with a barcode based on 
samples collected elsewhere. DNA barcoding records 
of specimens collected in regional waters are important, 
even when species are widely distributed or cosmopolitan, 
because geographic genetic variation can lead to 
intraspecific variability and possible misidentifications 
(Francis et al. 2010; Singh et al. 2017, 2018). Information 
on habitat, commercial importance, biogeography and 
depth range was obtained from FishBase (www.fishbase.
org) to examine trends in barcoding frequency of different 
groups of fish species with meroplanktonic larvae.

Metabarcoding of zooplankton samples 
For a comparison of zooplankton species composition 
obtained from metabarcoding with that obtained through 
identification using traditional microscopy and taxonomic 
keys, plankton nets with a 500-µm mesh were towed at 
night in surface waters (1–5 m deep, 5 min per tow, speed 
2–3 knots) over the continental shelf of KwaZulu-Natal 
Province on the east coast of South Africa. Zooplankton were 
preserved in 96% ethanol (EtOH) and stored at −20 °C. 

Thirteen samples were selected for traditional 
microscopic identification to determine species composition, 
relative abundance per taxon and frequencies of 
occurrence. Morphologically similar specimens were 
pooled, identified to the lowest possible taxonomic level, 
counted and photographed before storage in 8-ml pill 
vials containing 96% EtOH. Photographs were taken 
using a ZEISS AxioCam ERc5s camera connected to a 
ZEISS dissecting microscope. Relative abundance and 
frequencies of occurrence at class level were determined 
across all samples analysed.

Twelve samples from the same area were selected for 
metabarcoding. To avoid contamination, DNA extractions 
were performed in an area separated from where PCR 
reactions were performed; surfaces were sterilised with 4% 
NaOH for 10 min, followed by washing with distilled water 
and ethanol; and surfaces were exposed to ultraviolet light 
for 10 min before and after molecular work. A total of 6 ml 
of zooplankton per sample was centrifuged at 3000 rpm for 
60 s and the supernatant removed, with 40 mg of tissue 
from each sample used for DNA extraction using the Qiagen 
DNeasy Blood and Tissue kit (Qiagen). A blank DNA 
extraction was performed to assess levels of contamination. 

http://www.barcodinglife.org
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The DNA from each sample was pooled in equimolar 
concentrations to obtain an overview of taxa expected 
in the region. PCR reactions were performed in triplicate 
using the mICOIintF (Leray et al. 2013) and HCO2198 
(Folmer et al. 1994) primers and a reaction volume of 25 µl 
containing 0.02 U µl−1 of Q5 High-Fidelity DNA Polymerase 
(New England BioLabs, Inc.), 1X Q5 reaction buffer, 1X Q5 
high GC enhancer, 200 µM of dNTPs, 0.5 µM each of the 
forward and reverse primers, and 5–10 ng of template DNA, 
then made up to 25 µl with nuclease free water. Negative 
and positive controls were included in the PCR runs. The 
thermal-cycling profile consisted of initial denaturation at 
98 °C for 30 s, and 25 cycles of denaturation at 98 °C for 
10 s, annealing at 46 °C for 30 s, extension at 72 °C for 
30 s, and a final extension step at 72 °C for 4 min. PCR 
products were cleaned using the Agencourt Ampure XP 
beads (Beckman Coulter Life Sciences Inc.) following 
the manufacturer’s protocols. Library preparation using 
the Nextera Index Kit (V3, Illumina Inc.) and subsequent 
PCR-clean-up as well as NGS using the Illumina MiSeq 
paired-end 300-bp platform was performed by the KwaZulu-
Natal Research Innovation and Sequencing Platform 
(KRISP). To test the viability of the sampling unit (i.e. a 
plankton tow), the above process was repeated for DNA 
extracted from a single tow-net sample.

Pre-processing of sequencing reads was carried out 
using Qiime2 2019.4 (Bolyen et al. 2019) on the Centre for 
High Performance Computing cluster (www.chpc.ac.za). 
The dada2 algorithm (Callahan et al. 2016) implemented 
in Qiime2 was used to perform quality checks, chimera 
removal, filtering, trimming of primers, truncation of 
forward and reverse reads, and merging of the paired-end 
reads into amplified sequence variants (ASVs). A FASTA 
formatted file of the ASVs was used to query the BOLD 
database (www.barcodinglife.org) and GenBank using 
the BLAST algorithm (Basic Local Alignment Search Tool, 
https://blast.ncbi.nlm.nih.gov) to assign and cross-reference 
taxonomic identification. We also used the MIDORI COI 
classifier in Qiime2 to classify species (Leray et al. 2018). 
We used a threshold of 95% similarity to delimit species. 
Sequences that were not from zooplanktonic organisms and 
with ASV numbers of <5 were removed prior to evaluating 
species detection success rates. 

Results

Progress with zooplankton barcoding records 
Mining of zooplankton DNA records on BOLD revealed 
proportionally fewer representative barcode records per 
taxon from South Africa compared to those available 
globally (Figure 1; Supplementary Table S1). Ray-finned 
fish Actinopterygii were the most comprehensively sampled 
aquatic group globally (64% of 33 000 species from marine 
and freshwater species barcoded) and in South Africa (48% 
of 2 200 species barcoded). Overall, 20 000 fish species 
comprising >280  000 specimens have DNA barcodes 
available on the global Fish Barcode of Life platform 
(FISH-BOL, http://www.fishbol.org). Steinke et al. (2016) 
generated DNA barcodes for 3 125 adult fish specimens, 
comprising 43% of known species from southern Africa and 
including 189 new barcode records. Out of DNA barcodes 

of 2 526 immature specimens (eggs, larvae and juveniles), 
89% could be successfully assigned to 450 species, 
confirming the value of barcodes in identifying cryptic egg or 
larval stages to species level. 

Of 41 000 crustacean species known globally, 18% had 
publicly available DNA barcode records. Proportionally, 
water fleas Cladocera (90% of 658 species), krill 
Euphausidae (70% of 90 species), copepods (70% of 3 220 
species), amphipods (26% of 7 000 species) and decapods 
(24% of 18 000 species) were well represented, but <2% of 
13  000 ostracod species had barcodes. Barcode records 
were available for 6% of 1 744 known crustacean species 
in South Africa. Excluding Leptostraca (50% of 4 species), 
only Mysida (21% of 58 species) and Decapoda (10% of 
750 species) were well represented. No South African 
barcode records could be found on BOLD for Cladocera, 
hooded shrimp Cumacea, Isopoda, mantis shrimp 
Stomatopoda, fish lice Arguloidea, seed shrimp Ostracoda 
or sea spiders Pycnogonida, although records may be 
available on other databases such as GenBank. 

Molluscs comprise 85  000 extant species (Rosenberg 
2014), mainly in marine habitats. Of ~60  000 gastropod 
species globally, 20% had representative barcodes, 
compared with 6% of >2  250 species known from South 
Africa. Of an estimated 9  200 bivalve species globally, 
24% had barcodes, compared with 2% of 650 species 
known from South Africa. Of 850 cephalopod species 
globally, 69% had barcodes on BOLD, compared with 
2% of 195 species from South Africa; 39% of 650 chitons 
Polyplacophora worldwide had barcodes, compared with 
28% of 29 species in South Africa.

Cnidarians are a highly diverse group with some 
11  000 known species, including corals Anthozoa and 
jellyfish Cubozoa, Hydrozoa, Scyphozoa and Staurozoa 
(Branch et al. 2010). Of 7 500 species of Anthozoa known 
globally, 21% had barcodes, compared with 1.7% of 174 
species in South Africa. Globally, 13% of 3  500 hydroids 
and hydra-like animals Hydrozoa, 63% of 175 true jellyfish 
Scyphozoa, and 31% of 36 box jellyfish Cubozoa had 
barcodes, compared with 10% of jellyfish and 0.8% of 
hydrozoans from South Africa. 

Echinoderms (starfish Asteroidea; feather-stars 
Crinoidea; sea urchins Echinoidea; sea cucumbers 
Holothuroidea; and brittle stars Ophiuroidea) have pelagic 
larvae which are difficult to identify morphologically (Knolt 
et al. 2003). Approximately 32% of echinoderms had 
barcodes on BOLD, compared with <1% of the 410 known 
species in South Africa. 

The Porifera are ideal for DNA barcoding because they 
have few diagnostic characters for taxonomic identification 
and a slow evolutionary rate (Vargas et al. 2012). The 
Sponge Barcoding Project (www.spongebarcoding.org) 
generated DNA barcodes for 13% of some 6 000 sponge 
species globally, compared with 3% of 346 known species 
from South Africa. 

Effects of habitat, depth, distance from shore, and 
commercial importance on barcoding success 
Barcoding has been most successfully applied to 
reef-associated fish species (49.6% of all South African 
marine fish barcodes), followed by nearshore demersal fish 

https://blast.ncbi.nlm.nih.gov/
http://www.fishbol.org
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species (21%) and lesser proportions of bathydemersal, 
benthopelagic, bathypelagic, pelagic-neritic and pelagic-
oceanic species (Figure 2). Reef-associated and nearshore 
demersal species are more accessible to recreational and 
small-scale commercial fishers, from which samples for 
barcoding can easily be obtained. Access to specimens in 
the other habitat categories is limited because of depth or 
distance from shore, which reduces sampling opportunities. 

Increasing difficulty in obtaining specimens from deeper 
waters also explains the depth trend, in which most barcoded 
fish originated from shallow waters (37% in the 1–50 m 
depth range), decreasing to 14–17% with increasing depth in 
the 51–500 m depth range, 8% in the range 501–1 000 m, 
and 4% of species occurring deeper than 1  000 m. Fish 
occurring at depths of >500 m are generally inaccessible 
to researchers without access to large research ships, or 
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sampling of bycatches sourced from commercial deep-water 
trawlers. Tropical species made up 51% of barcode records, 
followed by subtropical species (31%), deep-water species 
(15%), and temperate-water species (2%). 

Commercially important fish species were the 
best-represented group in barcode records from South 
Africa (73% of all marine fish records), whereas the 
remaining 27% were listed as having no commercial, 
recreational or subsistence importance (www.fishbase.org). 
Large-bodied decapods (lobsters, prawns, crabs) have high 
unit value on seafood markets and are popular species 

in recreational fisheries (Branch et al. 2010; DAFF 2016). 
A total of 10 out of 17 lobsters (59%) with commercial or 
recreational importance had representative DNA barcodes 
from South Africa, and one species had no DNA barcode 
at all (Table 1). Two of 8 prawn species (25%) and 5 of 8 
commercially fished crabs (63%) had barcode records 
from South Africa. These proportions were much higher 
than for all decapods from South Africa combined—10% 
of fished and unfished species. Except for blood-spotted 
abalone Haliotis spadicae, all gastropods and bivalves 
with commercial interest in South Africa had representative 

Figure 2: DNA barcode representation of South African marine fish taxa categorised according to habitat (demersal, benthopelagic, 
bathydemersal, pelagic-neritic, pelagic-oceanic, bathypelagic or reef-associated), biogeographic region (tropical, subtropical, deepwater) and 
maximum depth range (1–50 m, 51–100 m, 101–200 m, 201–500 m, 501–1 000 m or >1 000 m). NAN indicates unknown depth



Singh, Groeneveld, Huggett, Naidoo, Cedras and Willows-Munro6

DNA barcode records from South Africa, although three of 
them were not publicly available at the time of writing (Table 1). 
Global DNA barcode records were available for 4 of 6 
commercially important cephalopods (67%); 1 cephalopod 
had a representative DNA barcode from South Africa, and 
2 species had no DNA barcode record at all on BOLD.

Invasive species
The geographical spread of invasive marine invertebrates 
can be traced visually, but their larval phases disperse in 
the zooplankton, where metabarcoding is a powerful tool 
of discovery. We listed the DNA barcode availability of 76 
alien invasive species (introduced or cryptogenic) expected 

Type of fishery Importance in catches Species Family Barcode record
Commercial trap
 

Target Jasus lalandii Palinuridae Yes
Palinurus delagoae Yes
Palinurus gilchristi   Yes

Bycatch Scyllarides elisabethae Scyllaridae Yes
*Octopus magnificus Cephalopoda No

Rare Linuparus somniosus Palinuridae No
Palinustus unicornutus No
*Palinustus mossambicus No
Puerulus angulatus No
Projasus parkeri   No

Commercial trawl
 

Target Metanephrops mozambicus Nephropidae Yes
Fenneropenaeus indicus Penaeidae No
Metapenaeus monoceros No
Haliporoides triarthrus Solenoceridae No
Chaceon macphersoni Geryonidae [Yes]

Bycatch Ibacus novemdentatus Scyllaridae Yes
Nephropsis stewarti Nephropidae Yes
Penaeus monodon Penaeidae Yes
Penaeus japonicus No
Penaeus semisulcatus No
Aristaeomorpha foliacea Aristeidae No
Aristeus antennatus No
Chaceon maritae Geryonidae No
Sepia officianalis Cephalopoda No
*Veladona togata No
Uroteuthis duvaucelii   No

Commercial diving or 
jig fishing

Target Haliotis midae Gastropoda Yes
Loligo reynaudii Cephalopoda No

Recreational and artisanal
 

Target Panulirus homarus Palinuridae Yes
Scylla serrata Portunidae Yes
Portunus pelagicus No
Portunus sanguinolentus Yes
*Callianassa kraussi Callianassidae No
Upogebia africana Upogebiidae Yes
Ovalipes trimaculatus Ovalipidae Yes
Perna perna Bivalvia Yes
Striostrea margaritacea Yes
Saccostrea cuccullata Yes
Mytilus galloprovincialis Yes
Choromytilus meridionalis [Yes]
Donax serra [Yes]
Cymbula oculus Gastropoda Yes
*Haliotis spadicae No
Turbo sarmaticus Yes
Octopus vulgaris Cephalopoda Yes

Bycatch Turbo coronatus Gastropoda [Yes]
Rare Panulirus versicolor Palinuridae Yes

Panulirus longipes Yes
Panilurus ornatus No
Panilurus penicillatus No
Fissurella natalensis Gastropoda Yes

Table 1: Availability of barcodes for crustacean and mollusc species important to commercial, recreational and/or artisanal 
fisheries in South Africa. Species marked with an asterisk (*) have no known barcode globally. Importance in catches is denoted as 
target species, bycatch, or rarely caught. Some species are caught both by commercial and recreational fisheries but are listed 
only once (after Branch et al. 2010; DAFF 2016). Square brackets denote records not yet made public at the time of writing



African Journal of Marine Science 2021, 43(2): xxx–xxx 7

Phylum Species Global record South African record
Porifera Suberites ficus Yes No
Cnidaria Metridium senile Yes No

Sagartia ornata Yes No
Pachycordyle navis No No
Coryne eximia Yes Yes
Odessia maeotica No No
Pennaria disticha Yes No
Ectopleura larynx Yes No
Ectopleura crocea Yes No
Laomedea calceolifera Yes No
Gonothyraea loveni Yes No
Obelia bidentata Yes No
Obelia dichotoma Yes No
Obelia geniculata Yes No

Annelida Boccardia proboscidea Yes No
Alitta succinea Yes No
Polydora hoplura Yes No
Dodecaceria fewkesi Yes No
Ficopomatus enigmaticus Yes [Yes]
Polydora cf. websteri Yes No
Neodexiospira brasiliensis [Yes] No
Janua pagenstecheri No No
Simplaria pseudomilitaris No No

Crustacea Balanus glandula Yes Yes
Austrominius modestus Yes No
Amphibalanus venustus No No
Acartia spinicauda Yes No
Dynamene bidentata Yes No
Sphaeroma serratum Yes No
Sphaeroma walkeri No No
Paracerceis sculpta Yes No
Limnoria quadripunctata Yes No
Limnoria tripunctata No No
Chelura terebrans [Yes] No
Ischyrocerus anguipes Yes No
Ericthonius brasiliensis Yes No
Ericthonius difformis Yes No
Monocorophium acherusicum Yes No
Jassa marmorata Yes No
Jassa morinoi Yes No
Jassa slatteryi Yes No
Orchestia gammarellus Yes No
Platorchestia platensis Yes Yes
Cerapus tubularis [Yes] No
Carcinus maenas Yes No
Xantho incisus Yes No
Ammothella appendiculata Yes No

Mollusca Littorina saxatilis Yes [Yes]
Indothais blanfordi Yes No
Semiricinula tissoti Yes No
Tarebia granifera Yes [Yes]
Catriona columbiana No No
Mytilus galloprovincialis Yes [Yes]
Crassostrea gigas Yes [Yes]
Perna viridis Yes [Yes]
Semimytilus algosus Yes [Yes]
Teredo navalis Yes No
Lyrodus pedicellatus Yes No

Brachiopoda Discinisca tenuis No No

Table 2: List of known invasive species expected to be in the zooplankton in South Africa according 
to Mead et al. (2011) and Robinson et al. (2016), and availability of DNA barcode records. Square 
brackets denote records not yet made public at the time of writing
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to occur in the zooplankton in South African marine and 
estuarine environments (Mead et al. 2011; Robinson 
et al. 2016) (Table 2). Ten species in the global record 
did not have DNA barcode records, and 4 species had 
DNA barcode records which were not yet public. Fourteen 
species had DNA barcode records originating from South 
Africa (13%), of which 7 species were not publicly available. 
Bezeng and van der Bank (2019) compiled a DNA barcode 
reference database for southern African crustaceans, which 
also included alien invasive species (25 specimens of 
5 unique species, to date).

Metabarcoding of zooplankton samples 
Sorting of plankton tow-net samples based on microscopic 
examination of morphological characteristics showed 
that copepods were the most abundant, followed by 
malacostracans (decapods, amphipods, isopods, mysids, 
cumaceans) and gastropods (Figure 3a). These three 
groups, together with ray-finned fish larvae (Actinopterygii) 
and chaetognath arrow worms (Sagittoidea) were recovered 
in all 13 samples analysed, whereas barnacles (Cirripedia), 
Cephalopoda, Brachiopoda and the Cladocera were 
rarer and found in less than five of the samples analysed 
microscopically (Figure 3b).

Metabarcoding of a pooled sample found 270 ASVs, of 
which 123 (45.6%) could be assigned to species level using 
the BOLD identification engine and a threshold of 95% 
similarity, compared with 122 species (45.2%) using GenBank, 
and 114 species (42.2%) using the MIDORI classifier. Taxa 
with most ASVs were Malacostraca, Copepoda, Hydrozoa, 
Gastropoda and Actinopterygii, with fewer species in other 
groups (Figure 4a). The highest number of ASVs belonged 
to the Malacostraca (80 ASVs) (Figure 4a), of which >20% 
could be assigned to species level, followed by the Copepoda 
(72 ASVs), of which >50% could be assigned to species level. 
Out of a total of 162 ASVs recovered from metabarcoding of a 
single tow-net sample, BOLD assigned 77 (47.5%) to species 
level, GenBank assigned 69 (42.6%), and MIDORI assigned 
64 (39.5%). Groups recovered from the single tow-net sample 

were similar to those in the pooled sample, with minor 
exceptions. 

Discussion

Recent advances in metabarcoding have revolutionised 
zooplankton biodiversity research worldwide by facilitating 
rapid, accurate and high-resolution analysis of taxonomically 
complex samples (Laakmann et al. 2020; Questel et al. 
2021). Metabarcoding technology enables many new 
research opportunities and applications, from assessments 
of the ‘hidden biodiversity’ in marine pelagic ecosystems 
(Lindeque et al. 2013; Leray and Knowlton 2016) to 
ecological studies of zooplankton assemblages (Critescu 
2014) and long-term biomonitoring and environmental status 
assessments of pelagic ecosystems (Aylagas et al. 2014; 
Govender 2021). Metabarcoding of zooplankton is new in 
South Africa and our study documents the initial steps in its 
application, including potential pitfalls and prospects (see 
Bucklin et al. 2016). 

DNA barcodes of most South African marine species 
were mined from GenBank in our study, suggesting that 
the barcodes were originally sourced from research that 
did not entail classical DNA barcoding studies. Metadata 
such as location or country of collection, collectors or 
collecting institute were not always provided on records. A 
crucial shortcoming of data exchange between BOLD and 
GenBank is that BOLD only imports COI sequence records 
from GenBank that have a ‘country’ feature (da Silva and 
Willows-Munro 2016). Contributions of South African DNA 
barcode records to BOLD would most likely scale up if 
these metadata were included in GenBank submissions. 
Robust sequence-data annotation standardised across 
the different databases is therefore required for accurate 
representation of records, or DNA barcoding data could be 
submitted directly to BOLD instead of added to GenBank. 

The numbers/proportions of barcoded species per taxon 
shown in this study were approximations only, because 
they relied on estimates of individual studies, undertaken at 

Phylum Species Global record South African record
Bryozoa Watersipora subtorquata Yes Yes

Bugula neritina Yes Yes
Bugula flabellata Yes Yes
Bugula dentata Yes No
Conopeum seurati [Yes] No
Cryptosula pallasiana Yes No

Echinodermata Ophiactis savignyi Yes No
Chordata Clavelina lepadiformis Yes No

Diplosoma listerianum Yes No
Ciona intestinalis Yes No
Ascidia sydneiensis Yes No
Ascidiella aspersa Yes No
Botryllus schlosseri Yes No
Cnemidocarpa humilis No No
Styela plicata Yes No
Microcosmus squamiger Yes No
Cyprinus carpio Yes Yes

Table 2: (cont.)
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different times and places, and would have been influenced 
by taxonomic revisions or differences in the systematic 
classification used. Furthermore, records were extracted 
from online databases in January 2019, and given the rapid 
growth of DNA barcoding records, the numbers of barcoded 
species increase continuously. Nevertheless, our study was 
intended as a relative benchmark only, to indicate gaps in 
barcode reference databases. Even so, the study took place 
at an important juncture—the crossover from microscopy to 
genes in marine biodiversity studies (Laakmann et al. 2020) 
and at the onset of metabarcoding initiatives in South Africa.

Analysis of DNA barcoding records from South Africa 
highlighted two clear trends: in nearly all taxonomic groups 
there are proportionally fewer records of known species 

than are available on global datasets; and, there is a 
preponderance of barcodes for meroplanktonic taxa with 
large benthic or pelagic adult stages, especially those with 
commercial or recreational value. These trends partially 
reflect local research opportunities and the logistics of 
sampling, namely physical accessibility (by depth, habitat 
or distance from shore) and the availability of specialist 
sampling equipment (which is costly, especially for offshore 
sampling), as well as taxonomic expertise (scarce in most 
taxa, especially in groups without commercial value). 
For example, ray-finned fishes were numerically and 
proportionally the best-represented taxon from South 
Africa and on par with global barcoding efforts. Fishes 
in South Africa have high diversity and rates of endemism 
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Figure 3: (a) Relative abundance (number of individuals from each class found in a sample) and (b) relative frequency (per sample 
occurrence of an organism from each class) of zooplankton taxa, ordered by class, from 13 zooplankton community samples collected over 
the continental shelf of KwaZulu-Natal, South Africa
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(36%: Griffiths and Robinson 2016), many species have 
commercial and recreational value, and they are easy 
to sample as adults—hence, they have been popular 
candidates in DNA barcoding studies (Steinke et al. 2016). 
For the same reasons, most commercially important 
decapods had barcodes, but those without commercial 
importance were poorly represented locally when compared 
with globally. Barcode records of other meroplanktonic 
and nearly all holoplanktonic taxa, which make up the bulk 
of oceanic diversity, lagged well behind global barcoding 
efforts. Overall, the zooplankton barcode record from South 
Africa supports the concerns of Blaxter (2003) that reference 
databases are biased towards large, easy to find and 
identify, commercially important taxa, which comprise only a 
small proportion of marine biodiversity. 

Zooplankton are integral in marine food webs because 
they function as both consumers and producers (i.e. food) 
for other organisms (Marine Zooplankton Colloquium 
2001). Many species are short-lived and their physiological 
processes and population dynamics are highly temperature-
dependent, making them good indicators of environmental 
change (Hays et al. 2005; Richardson 2008; Greene and 
Pershing 2012). The sparse barcode reference databases 
for smaller holoplanktonic taxa are therefore an impediment 
to the development of community-based indices of 
change in marine biodiversity, based on metabarcoding. 
Key holoplanktonic groups (copepods, euphausiids and 
amphipods, among others) (see Supplementary Table S1) 
all lack comprehensive DNA barcodes from South Africa. 
Similar to the findings of Fisher et al. (2010), our study 
indicates a mismatch between present barcode reference 
databases and future metabarcoding objectives, which 
can be overcome by fast-tracking integrative molecular/
morphology studies to increase the numbers of taxonomic 
records in key holoplanktonic taxa. 

Establishing integrative taxonomic approaches for 
zooplankton research in South Africa is a key factor in 
accurately distinguishing between similar-looking species 
in mixed samples (Sabatini et al. 2007; Bradford-Grieve 
et al. 2017; Höring et al. 2017), especially for abundant 
taxa with high ecological importance such as copepods 
and euphausiids (krill), which can periodically dominate 
zooplankton biomass (Bucklin et al. 2007). The importance 
of foundational DNA barcoding projects in South Africa, in 
which reference specimens are retained and photographed, 
with barcodes submitted to BOLD, is recognised by the 
Foundational Biodiversity Information Programme (FBIP, 
https://fbip.co.za) funded by the South African Department 
of Science and Technology and managed by the National 
Research Foundation (NRF) and the South African National 
Biodiversity Institute (SANBI).

Metabarcoding of plankton tow-net samples collected on 
the east coast of South Africa showed that approximately 
45% of the ASVs encountered could be assigned to 
species level using COI, irrespective of reference database 
searched (i.e. BOLD, GenBank or MIDORI COI classifier). 
Metabarcoding could identify 123 species in a pooled sample 
(using the BOLD identification engine and a threshold of 
95% similarity) and 77 species in a single tow-net sample. 
Using a single plankton tow as a sample may therefore 
underestimate zooplankton diversity, because of spatial 

patchiness of zooplankton assemblages (Omori and 
Hamner 1982). Morphological analysis of samples could 
not achieve comparable resolution at species level, but with 
some exceptions it recovered classes of organisms similar 
to those identified through metabarcoding. Differences in 
the results obtained were that morphological identification 
picked up three groups (Brachiopoda, Ophiuridae and 
Cirripedia) not identified by metabarcoding, whereas 
metabarcoding detected Echinoidea and Enteropneusta, 
which were not identified by morphological analysis. 
Importantly, species identification of zooplankton using 
morphological characteristics is a highly specialised task, 
and taxonomic identification keys are incomplete for 
larval stages of many taxa. Matching the composition of 
zooplankton samples obtained from metabarcoding with 
those obtained from traditional microscopy is therefore 
unreliable at species level but improves at class level.

Conclusions

The DNA barcode data analysed in this study highlighted 
that barcode reference databases for marine zooplankton 
are incomplete and that holoplankton are underrepresented 
in barcode databases. The need for integrative molecular/
morphological studies to increase and validate barcode 
reference databases of key zooplankton classes is recognised 
and will improve the resolution and representivity of 
metabarcoding outputs. Metabarcoding of marine zooplankton 
in South Africa has now been successfully applied as a 
pilot project, and the methodology is poised to: (i) shift 
research emphasis from individual species to assemblages 
(see Laakmann et al. 2020); (ii) facilitate high-resolution 
monitoring of zooplankton biodiversity in pelagic ecosystems; 
and (iii) accelerate the discovery of new species.
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