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Background

• Candida species are known to form highly structured biofilms surrounded by extracellular polymeric substances

(EPS), providing microbial communities with metabolic cooperation and protection from the external environment

and antimicrobial drugs1.

• Drug-resistant, non-albicans species have emerged and are on the increase due to severe patient

immunosuppression or the indiscriminate use of broad-spectrum antimicrobials, leading to increased patient

morbidity and mortality2.

• We have previously reported differences in the distribution and antimicrobial profiles of HIV-associated Candida

in two African regions3, with C. albicans, C. dubliniensis and C. glabrata being present in both populations and C.

tropicalis, C. krusei and C. parapsilosis only found in one region.

• The real-time biofilm formation of Candida species consortia has not been previously described, which would

establish whether specific species may enhance or inhibit the rate of biofilm formation.



Methods

• The real-time biofilm formation was assessed using an

xCELLigence real time cell analyser (RTCA), by growing

the organisms in YPD broth on 16-well E-plates with

embedded gold microelectrodes and measuring the cell

adhesion / extracellular polymeric substances (EPS)

formation with impedance readings set to take place at

15-minute intervals. The real-time cell index (CI) values

for the full duration of the experiments were then plotted

in individual graphs.

Figure 1. Experimental procedure of individual (100µl) and mixed (50µl +

50µl) Candida suspensions on a gold microelectrode-embedded E-plate 16.

CA: Candida albicans; CD: Candida dubliniensis; CG: Candida glabrata;

CK: Candida krusei; CP: Candida parapsilosis; CT: Candida tropicalis.

• The type strains used in this study included Candida albicans (ATCC 90028), Candida dubliniensis (NCPF 3949a),

Candida glabrata (ATCC 26512), Candida tropicalis (ATCC 950), Candida krusei (ATCC 2159) and Candida

parapsilosis (ATCC 22019). Individual Candida species were tested, as well as combinations of common and less

commonly isolated species.



Methods

• Bulk biofilm morphology was observed by growing the

organisms in RPMI-1640 medium on 12-well cell culture plates

for 24 h and 48 h, followed by staining with calcofluor white

stain and 10% KOH solution and observing at 40X under UV

light using an epi-fluorescence inverted microscope.

• Crystal violet (CV) staining was carried out by growing the

organisms in RPMI-1640 medium on 96-well microtiter plates

for 66 h and staining with 0.4% aqueous CV solution, followed

by de-staining in 95% ethanol and measuring the absorbance at

OD595 using a plate reader.

Figure 2. Forty-eight hour bulk biofilm formation seen at

the bottom of 12-well cell culture plates, after cells were

washed and before CFW/KOH staining and FM observation.

Figure 3. Crystal violet staining assay.



Results

Figure 4. Cell index variations of (i) C. albicans (light green), (ii) C. dubliniensis (dark green) and (iii) C. glabrata (purple) with (a) C. tropicalis (blue), (b) C. 

krusei (light grey) and (c) C. parapsilosis (coral) biofilm formation, with the mixed adhesion shown in red.
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Results

Figure 5. Fluorescence microscopy of early (24 h) and mature (48 h) biofilms of C. albicans (a and b), C. dubliniensis (c and d), C. glabrata (e and f), C. krusei (g and h), C. parapsilosis (i and

j) and C. tropicalis (k and l). An increase in biofilm mass is shown as confluent growth in the well surface and increased fluorescence, and was most noticeable in C. albicans, C. dubliniensis, C.

glabrata and C. tropicalis. Candida parapsilosis failed to demonstrate a noticeable increase in biofilm mass between 24 and 48 h when grown on its own. Filamentous structures were observed

in C. albicans, C. parapsilosis and C. tropicalis biofilms (orange arrows). A transparent mass surrounding large clusters of cells was also observed, an indication of EPS formation.

Monospecies bulk biofilm morphology



Results

Figure 6. Fluorescence microscopy of early (24 h) and mature (48 h) mixed biofilms of C. albicans/C. krusei (a and b); C. albicans/C. parapsilosis (c and d); C. albicans/C.

tropicalis (e and f); C. dubliniensis/C. krusei (g and h); C. dubliniensis/C. parapsilosis (i and j); C. dubliniensis/C. tropicalis (k and l); C. glabrata/C. krusei (m and n); C.

glabrata/C. parapsilosis (o and p); C. glabrata/C. tropicalis (q and r). Increased cell density was most noticeable in the interactions of C. albicans with C. tropicalis and C.

parapsilosis, C. dubliniensis interactions with C. parapsilosis and C. tropicalis and C. glabrata interactions with C. parapsilosis and C. tropicalis. Extensive filamentous

structures were present when C. albicans and C. glabrata were grown in combination with either C. tropicalis or C. parapsilosis (orange arrows).

Mixed species bulk biofilm morphology



Results

• When looking at the bulk biofilm production of individual species, C. albicans formed the greatest amount of biofilm,

followed by C. tropicalis and the other species (C. albicans > C. tropicalis > C. krusei > C. parapsilosis > C.

dubliniensis > C. glabrata).

• The biofilm production of combined species was the highest for C. albicans/C. tropicalis followed by the mixed biofilm

combinations of these and other species (Ca/Ct > Cg/Ct > Cd/Ct > Ca/Cp > Ca/Ck > Cg/Ck > Cd/Ck > Cd/Cp >

Cg/Cp).

Bulk biofilm quantification



Conclusions

• When using both the conventional CV staining method and the novel xCELLigence system, C. albicans demonstrated the highest absorbance/impedance

values when compared to the other species studied, supporting previous studies which have described it as the most notorious biofilm former of all

pathogenic yeasts 1,4.

• Most xCELLigence mixed growth curves appeared to follow similar (albeit increased) adhesion, maturation and detachment phase curves, an

interpretation of biofilm formation first described by Gutiérrez et al 5 . The xCELLigence system also showed that the combined growth of C. glabrata and

C. krusei resulted in increased adhesion (increase in CI values) and biofilm maturation (peak CI value) over 30 h, with the detachment phase (declining

slope after peak CI value) also starting much later.

• The extensive filamentation seen in C. albicans biofilm formations with C. tropicalis and C. parapsilosis6,7 and the increasingly azole-resistant C.

glabrata8 is worthy of note, since the switch to pseudohyphal and hyphal morphologies has been associated with increased invasion, penetration and

growth in between host epithelial cells9, endothelial cell damage10 and destruction of immune cells following phagocytosis11.

• Although C. parapsilosis did not form biofilms when grown on its own using the xCELLigence system, it resulted in increased CI values over time when

combined with C. dubliniensis and C. glabrata. These results could be explained by the fact that the xCELLigence system takes into consideration various

factors such as the adhesion and EPS formation (as opposed to only the bulk biofilm formation measured by CV staining). This system also monitors

changes in cell number and size and provides continuous and automated data analysis, thereby having an advantage over traditional biofilm staining and

quantification assays12.

• The results of this study suggest that the biofilm formation of C. tropicalis, C. krusei and C. parapsilosis is influenced by the presence of C. albicans, C.

dubliniensis and C. glabrata, all of which have different antifungal susceptibility profiles. This is important for the consideration and application of

antifungal drugs for the treatment of resistant Candida biofilms.
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