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Abstract: In the present in-silico study, various computational techniques were applied to determine
potent compounds against TRAP1 kinase. The pharmacophore hypothesis DHHRR_1 consists of
important features required for activity. The 3D QSAR study showed a statistically significant model
with R2 = 0.96 and Q2 = 0.57. Leave one out (LOO) cross-validation (R2 CV = 0.58) was used to
validate the QSAR model. The molecular docking study showed maximum XP docking scores
(−11.265, −10.532, −10.422, −10.827, −10.753 kcal/mol) for potent pyrazole analogs (42, 46, 49, 56,
43), respectively, with significant interactions with amino acid residues (ASP 594, CYS 532, PHE 583,
SER 536) against TRAP1 kinase receptors (PDB ID: 5Y3N). Furthermore, the docking results were
validated using the 100 ns MD simulations performed for the selected five docked complexes. The
selected inhibitors showed relatively higher binding affinities than the TRAP1 inhibitor molecules
present in the literature. The ZINC database was used for a virtual screening study that screened
ZINC05297837, ZINC05434822, and ZINC72286418, which showed similar binding interactions to
those shown by potent ligands. Absorption, distribution, metabolism, and excretion (ADME) analysis
showed noticeable results. The results of the study may be helpful for the further development of
potent TRAP1 inhibitors

Keywords: TRAP1; 3D-QSAR pharmacophore modeling; TRAP1 kinase; virtual screening; molecular
dynamics simulations

1. Introduction

TRAP1 (tumor necrosis factor (TNF) receptor-associated protein 1) is a 90 kDa protein
that encodes the mitochondrial chaperone protein Heat Shock Protein (Hsp90) and is
closely related to tumorigenesis promotion in a variety of cancers [1,2]. TRAP1 helps
maintain mitochondrial integrity, thus smoothing the progression of cell death against
cellular stresses, which is obtained by reduced ROS production and reprogramming cellular
metabolism. These two factors (maintaining mitochondrial integrity and reduced ROS
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production) allow cancer cells to adapt better to harsh tumor microenvironments [3–5].
Furthermore, TRAP1 inactivation encourages cancer cells to undergo substantial apoptosis,
in-vitro and in-vivo; hence, numerous targeting mitochondrial TRAP1 inhibitors have been
developed [6].

There are several inhibitors of TRAP1, including tanespimycin (1) Figure 1 (17-AAG,
CP127374, NSC-330507, KOS 953), a potential inhibitor with a maximal half inhibitory
concentration (IC50) value of 5 nM, which has 100 times better activity in Hsp90-derived
cells than in normal cells. However, it further induces necrosis, apoptosis, autophagy, and
mitophagy. Gamitrinibs (2) is another drug that has shown potent activity against TRAP1
in prostate cancer patients [7,8].

Figure 1. The 2D representation of 1 Tanespimycin and 2 Gamitrinibs.

TRAP1 is an imperative bioenergetic regulator because it can inhibit cytochrome oxi-
dase and succinate dehydrogenase (SDH) [9]. TRAP1 also provides resistance to oxidative
stress and counterbalances the permeability of mitochondrial transition and consequent
cell death.

Various studies have shown the importance of TRAP1 in stress conditions, as it protects
cells against ROS-induced apoptosis and senescence. Furthermore, TRAP1 mRNA and
protein are highly expressed in cancer cell lines and tumors. Therefore, the present study
focused on developing inhibitors targeting TRAP1 due to its role in cancer—computational
studies designed these inhibitors before synthesizing compounds to minimize the time for
new drug discovery.

In the present work, a computational study was performed for 34 different pyrazole
analogs, as reported in the literature. Pharmacophore mapping was used to identify
the important features of biological activity. The 3-D QSAR study by an atom-based
model provided good statistical values with significant Q2 and R2 values. The generated
pharmacophore features have been taken for virtual screening from the ZINC database.

Virtual screening studies provided information about the potential effects of var-
ious ZINC compounds against TRAP1, comparable to the dataset. Finally, molecular
docking studies investigated the important molecular interactions with the TRAP1 active
site for the different surrounding amino acids in combination with Molecular Dynamics
(MD) simulations. This study provided the information to support the development of
potent inhibitors.

2. Materials and Methods
2.1. Data Collection

A dataset of 34 different pyrazolo[3,4-d]pyrimidine analogs was used to study the
experimentation of TRAP1 inhibitory activities for synthesized molecules [10]. Chem-Draw
Professional 16.0 software was used to sketch all the dataset structures saved in “.mol”
format. The maximal half inhibitory concentration (IC50) in µM was converted to pIC50
(negative log of the IC50) for QSAR analysis. The common core of pyrazole analogs (1) and
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their different substituted groups are shown in Table 1. For the 3D-QSAR analysis, the
entire dataset was divided into two sets (i.e., training and test sets) in 7:3 ratios to predict
the pIC50 values. In addition, 5 partial least-squares (PLS) factor testing was carried out to
derive the phase hypothesis. Ligand development was performed with the LigPrep module
using Maestro v12.1, which helped generate input structures for pharmacophore Alignment
and Scoring Engine (PHASE) and Grid-Based Ligand Docking from Energetics (Glide)
modules. Different optimizations of output structures provided the various requirements
of the simulation programs. Clean-up wizards can efficiently convert 2D structures into
3D structures and process one ligand per second, which helped in the docking study and
pharmacophore development by using unique algorithms [11–13]. Different molecules
processed through energy minimization and aligned on a common scaffold are described
in Figure 2.

Table 1. Different substituents of a common core with biological activities in IC50 and pIC50

values [10].

R1 Compounds R IC50 (µM) pIC50

1 4 0.50 6.30

2 9 19.00 4.72

3 10 7.00 5.15

4 11 15.00 4.82

5 12 20.00 4.70

6 13 20.00 4.70

7 15 20.00 4.70

8 22 6.50 5.19

9 23 5.00 5.30

10 24 20.00 4.70

11 25 4.00 5.40

12 26 20.00 4.70

13 27 3.50 5.46

14 30 20.00 4.70
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Table 1. Cont.

15 32 15.00 4.82

16 33 20.00 4.70

17 34 4.00 5.40

18 35 10.00 5.00

19 36 8.00 5.10

20 39 3.00 5.52

21 41 1.23 5.91

22 42 0.44 6.36

23 43 2.43 5.61

24 44 1.80 5.74

25 45 1.69 5.77

26 46 0.47 6.33

27 47 1.98 5.70

28 48 0.37 6.43

29 49 0.89 6.05

30 50 0.94 6.03

31 51 0.79 6.10

32 52 0.45 6.35

33 56 2.70 5.57

34 59 1.00 6.00
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Figure 2. Alignment of common pharmacophoric features.

2.2. Study of Pharmacophore Development

The pharmacophore mapping study examined the common unique chemical fea-
tures based on the structural specifications necessary to determine the biological activity.
Schrödinger Maestro v12.1 PHASE module software was used for the pharmacophore
mapping study [14]. Among the various hypotheses, DHHRR_1 was selected as it had the
best pharmacophore characteristics.

In the current study, three common chemical features of the module were used, which
included a hydrophobic group (H), ring aromaticity (R), and a hydrogen bond donor (D). A
distance calculation tool was used to find the positions of these mentioned features, which
are an innate part of the module providing the inter-feature distance map (Figure 2). The
nitrogen atom of the pyrimidine ring acts as a donor atom, while the two Rs (as a benzene
ring) are attached directly to the pyrazole ring. In addition, the nitrogen group displayed
two hydrophobic interactions of H [15–17].

2.3. Pharmacophore Hypothesis Generation

The relation between the chemical features and structural similarities of the 34 men-
tioned compounds provided the opportunity to generate 20 possible hypotheses that can
explain the binding ability of active molecules with receptors, having a box size of 1 Å and a
2 Å minimum inter-site distance. Thus, up to five features were set, which helped generate
the maximum variants supporting establishing a common pharmacophore hypothesis [18].
The different parameters for the pharmacophore hypotheses include the following:

(1) Phase hypothesis score: rank-orders a new scoring function hypothesis, which
helps provide knowledge of performance in virtual screening and the quality of ligand
alignment and provides easy recognition of multiple binding modes by training against di-
verse known activities through the perception of a common pharmacophore; (2) Site score:
helps provide the intimacy of superimposition of site points to the pharmacophore of the
structure; (3) Survival score acts as blending terms for the number of matches, providing
the relation between the relative energy and activity of the reference ligand; (4) Selectivity
score: provides the negative logarithm of part of the molecules in the index and helps
with matching the hypothesis; (5) Average outranking: actively adjusted rank minus
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one—outranking decoys are calculated for every docked active and averaged; (6) Receiver
operating characteristic (ROC): aids in data analysis as an indicator of model performance,
providing the differentiation of active sites from inactive compounds; (7) Vector score:
average cosine of the angles between the analogous pairs of vector features (donors, accep-
tors, and aromatic rings) in different associated structures; (8) Active matched: provides
knowledge of the number of active ligands matching the given hypothesis [19–22]. The
best common pharmacophoric hypothesis is illustrated in Figure 3.

Figure 3. The best common pharmacophoric hypothesis.

2.4. Model Development by Three-Dimensional QSAR Study
2.4.1. Atom-Based QSAR

The atom-based QSAR method describes the molecule as spheres where different van
der Waals radii overlap. The generated 3D-QSAR model is validated by the prediction of
the activity by the test set ligands. The 3D-QSAR models were developed in Schrödinger
Maestro v12.1 from a set of aligned ligands. Firstly, the energy minimized compounds
with their activity have been imported into the phasing tool. The imported compounds
have been divided into training and test sets based on a random selection where 70% of
compounds were taken in the training set and 30% in the test set. Here we set criteria
like grid spacing 1 Å, PLS factor of five, and the number of ligands to leave out 1. The
elimination of variables has been performed by using a value less than two [23,24]. Then the
models were evaluated in the value of R2, R2 CV, F, P, Q2, and so forth. Table 2 summarizes
the different parameters of the QSAR model, which are as follows: Factors: number of
various factors for partial least-squares regression model; SD: standard regression deviation;
R2: value for regression; R2 CV: cross-validated R2 value calculated through the predictions
acquired by a leave-N-out approach; F: variance ratio (larger F values represent higher
statistically significant regressions); P: significance level of variance ratio (smaller values
represent a greater degree of confidence); RMSE: root-mean-square error of the test set;
Q2: for the predicted activities of the test set; Pearson’s r: for the predicted activities of the
test set. The atom-type fraction segment displays the fraction due to each atom type in the
QSAR model for each number of PLS factors used in the model. Confirmation of the least
diversity in the biological activities between molecules of the training set through a scatter
plot was obtained by plotting the actual activity against the predicted activity [25,26].
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2.4.2. Generation of Contour Maps

The contour maps helped predict the favorable or unfavorable interactions of aligned
molecules with the receptor for biological activity and corresponded to the spatial ar-
rangement of aligned molecules. For example, in the field-based model, regions with
favorable steric fields are represented by green contours, and yellow contours represent
unfavorable ones.

Moreover, the blue and red contours highlight positions where electropositive and
electronegative groups would be positively connected, respectively. Thus, it is clear that
biological activity will be more significant when there is more steric bulk near the green,
less steric bulk near yellow, more positive charge near blue, and more negative charge near
red. For the hydrogen bond donor contour map, a donor bulk near purple is favorable, but
a donor bulk near cyan is unfavorable for more excellent biological activity. An acceptor
bulk near red is desired for the hydrogen bond acceptor contour map, and an acceptor bulk
near magenta is undesirable for improved biological activity [27]. In the atom-based model,
blue cubes represent an increase in activity, and red-colored cubes represent a decrease in
activity by a particular group. The contour maps can be described as follows:

The atom-based 3D-QSAR model visual representation: (a) electron-withdrawing;
(b) hydrogen bond donor; (c) hydrophobic; and (d) positive ionic, where the positive
coefficient (increase in activity) is represented as blue-colored cubes, while the negative
coefficient (decrease inactivity) is represented as red-colored cubes.

Field contour maps: (a) electrostatic fields: blue as favored electropositive and red as
disfavored electronegative; (b) hydrogen bond acceptor field: red as favored and magenta
as disfavored; (c) hydrogen bond donor field: purple as favored and cyan as disfavored;
(d) steric field: green as favored and yellow as unfavored.

2.4.3. D-QSAR Model Evaluation

The 3D-QSAR model evaluation was carried out by considering key statistical param-
eters such as the squared cross-validation coefficient (Q2), the squared non-cross-validation
coefficient (R2), predictive R2, and the standard error of estimate (SEE). The developed
model was tested for internal quality based on the Q2 value, with an acceptance criterion
of >0.5 being statistically significant for the model. The R2 provides the relative measure of
the fit using a regression equation, with a value near 1.0 illustrating the best regression fit.
Finally, the standard error of estimate conveys information about the variation of residuals
or the regression line [28,29].

2.5. Virtual Screening Studies in the ZINC Database

The virtual screening study using the zinc database (https://zinc.docking.org/)
was performed using pharmacophore hypothesis DHHRR_1 and the most active Com-
pound 48 (Supplementary Materials Table S1). In the present study, we used the whole
ZINC database in which only 7543 molecules were screened after applying the Lipin-
ski rule of five. The ZINC database was used with drugs-like filters to download 7543
molecules. These molecules were screened by applying filters such as molecular weight,
rotatable bond, RMSD values. The screened compounds of the ZINC database were further
screened by virtual screening workflow. The workflow included filters like the Lipinski
rule of five, which further screened the compounds before docking analysis. The final
4500 screened compounds were taken for HTVS docking analysis. Of the compounds from
the top docking scores (kcal/mol), 50% were taken for SP docking analysis. The top 20%
of compounds from SP were taken for XP docking analysis. The final top four hits are
presented in the paper.

Target prediction was further performed using Swiss Target Prediction, a freely ac-
cessible tool for receptor databases (Supplementary Materials Table S2), through which
the target exploration becomes more convenient and useful. Swiss Target Prediction was
used to predict various protein targets, among which TRAP1 was the topmost suitable
target for the different molecules considered. Thus, the screening of molecules was further

https://zinc.docking.org/
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performed through molecular docking with standard and extra precision modes against
TRAP1 using the Glide module of Schrödinger [30].

2.6. Docking Study

Molecular docking studies on pyrazole analogs with TRAP1were carried out us-
ing Glide module software (Schrödinger Maestro v12.1). The Protein Data Bank (PDB
ID:5Y3N) [31] was used for determining the protein structure, which was further processed
through “protein preparation wizard” (Maestro wizard v12.1). Both the generating states
and the refinement step were helpful in the automatic addition of atoms along with some
important bonds at missing sites of protein molecules. The refinement step is crucial, as it
is involved in optimizing H-bonded groups, dehydration, and restrained minimization
by using default force field OPLS_ 3e. The processing of the receptor grid followed the
completion of the optimization process to calculate the binding pocket of the receptors.
The receptor grid had X, Y, and Z coordinates with 13.32, 56.37, and 0.13. These coordinates
indicate the enclosing box where ligands molecules bind.

Various docked ligand conformations were observed in the docking results, showing
their binding energy scores. Ranking based on scores provides a high rank for lesser scoring
conformation [32].

2.7. Molecular Dynamics Simulations

The docked conformations with the highest binding affinities were subjected to MD
simulations using GROMACS (version—2018-2) package [33]. The topology of the TRAP1
protein was generated using the GROMOS96 53a6 force field [34,35], and the parameteriza-
tion of docked inhibitors was performed using the PRODRG server [36]. The correction of
the partial charges of docked inhibitors was performed based on DFT theories present in
the GAUSSIAN software suite, which uses the B3LYP 6-31G (d, p) basis set and CHELPG
program [37]. After the topology generation, the system was solvated using the SPC/E
water model [38] and then neutralized by adding an appropriate number of counter NA
and CL ions. After this step, the energy minimization was performed using combined
steepest descent, and conjugate gradient algorithms, with a convergence criterion, was
set to around 0.005 kcal/mol. Afterward, the minimized systems were equilibrated by
combining NVT (constant volume) and NPT (constant pressure) ensemble conditions, each
for a period of 100 ps. The temperature of 300 K was maintained for the system using the
Berendsen weak coupling method, and the pressure of 1 bar was maintained utilizing the
Parrinello–Rahman barostat in the equilibration stage. The LINCS algorithm was used in
the final production stages to generate structural conformational for a 100 ns timescale.
The outputs were generated in the form of trajectories, which were analyzed to understand
the behavior of each complex in the explicit water environment. The changes in the TRAP1-
inhibitor distance, Hydrogen Bonds (H-bonds), Root Mean Square Deviations (RMSD),
and Radius of Gyration (Rg) of the complex systems were analyzed. Furthermore, the
Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) protocols implemented
in the g_mmpbsa package [39] were used to calculate the attributes associated with binding
free energy between TRAP1 and respective inhibitor molecules.

2.8. Absorption, Distribution, Metabolism, and Excretion (ADME) Property Predictions

ADME properties were determined using Swiss ADME and Schrödinger ADME
online tools, which helped select ligands with drug-like properties. Lipinski (Pfizer) filter:
implemented as MW ≤ 500, MLOGP ≤ 4.15, N or O ≤ 10, NH or OH ≤ 5 [40,41]. Ghose
filter: implemented as 160 ≤ MW ≤ 480, −0.4 ≤ WLOGP ≤ 5.6, 40 ≤ MR ≤ 130, 20 ≤ atoms
≤ 70 [39,42]. Lead likeness: implemented as 250 ≤ MW ≤ 350, XLOGP ≤ 3.5, number of
rotatable bonds≤ 7; Synthetic accessibility: from 1 (very easy) to 10 (very difficult) [43].
Default settings were employed for these calculations.
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2.9. Enumeration Study

The R group enumeration module of Schrödinger was implemented for R-group-based
enumeration of the pyrazolo scaffold. Drug-Like filters such as REOS and PAIN’s series
were used for separating compounds with reactive functional groups. The obtained drug-
like compounds were further processed for ligand preparation and the minimum energy
with the help of the OPLS3e force field. Additionally, the docking of the final screened
compounds was performed in the TRAP1 crystal structure in the ligand-binding cavity
through the Glide SP protocol, resulting in docking poses. From these different docking
poses, the 50 best poses were selected from other enumerations for further XP docking
protocol analysis, providing the XP descriptors; this helped to describe the contributions of
each atom in terms of penalties and rewards docking energy.

Enrichment calculations were performed for 1000 decoy compounds (from the DUD.E
database) and 30 compounds (XP best poses) with the help of Schrödinger software, while
docking was performed using the XP protocol. The obtained results helped to predict the
validation of the docking protocol, with a Receiver Operating Characteristic (ROC) curve
of R2 = 0.92.

3. Results and Discussion
3.1. Selection of Best Pharmacophore Hypothesis

All the selected compounds (compounds 1–34) from the database were screened to
obtain five probable standard pharmacophore features from the list of variants (i.e., two
aromatic rings, two hydrophobic interactions, and one hydrogen bond donor). The men-
tioned features were presumed to have an essential role in the inhibitory ability of different
compounds towards the target. Among the 20 hypotheses generated by the PHASE module,
the DHHRR_1 hypothesis was considered the best by way of a scoring function mentioned
in Table 2.

Table 2. Different pharmacophore hypotheses generated by using the compounds and their activity.

Hypo ID Survival Site Vector Volume Select Matches Inactive Adjusted BEDROC Ref. Lig

DHHRR_1 5.94 0.93 1.00 0.91 2.15 9.00 2.66 3.28 1.00 mol_32

DHHRR_2 5.94 0.93 1.00 0.91 2.15 9.00 2.62 3.33 1.00 mol_32

DHHRR_3 5.94 0.93 1.00 0.91 2.15 9.00 2.68 3.26 1.00 mol_32

DHHRR_4 5.94 0.92 1.00 0.91 2.15 9.00 2.70 3.24 1.00 mol_32

DHHRR_5 5.94 0.93 1.00 0.91 2.15 9.00 2.63 3.30 1.00 mol_32

DHHRR_6 5.94 0.93 1.00 0.91 2.15 9.00 2.70 3.24 1.00 mol_32

DHHRR_7 5.93 0.92 1.00 0.91 2.15 9.00 2.75 3.19 1.00 mol_32

DHHRR_8 5.93 0.92 1.00 0.91 2.15 9.00 2.65 3.29 1.00 mol_32

DHHRR_9 5.93 0.93 1.00 0.91 2.14 9.00 2.64 3.29 1.00 mol_32

DHHRR_10 5.93 0.93 1.00 0.91 2.14 9.00 2.67 3.26 1.00 mol_32

DHRR_1 5.40 0.99 1.00 0.94 1.52 9.00 2.90 2.50 1.00 mol_26

DHRR_2 5.40 0.99 1.00 0.94 1.52 9.00 2.90 2.50 1.00 mol_26
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Table 2. Cont.

Hypo ID Survival Site Vector Volume Select Matches Inactive Adjusted BEDROC Ref. Lig

DHRR_3 5.39 0.99 1.00 0.94 1.51 9.00 2.89 2.50 1.00 mol_26

DHRR_4 5.39 0.99 1.00 0.94 1.51 9.00 2.91 2.48 1.00 mol_26

DHRR_5 5.39 0.99 1.00 0.94 1.51 9.00 2.90 2.49 1.00 mol_26

DHRR_6 5.39 0.99 1.00 0.94 1.51 9.00 2.89 2.50 1.00 mol_26

DHRR_7 5.39 0.99 1.00 0.94 1.51 9.00 2.91 2.48 1.00 mol_26

DHRR_8 5.39 0.99 1.00 0.94 1.50 9.00 2.90 2.48 1.00 mol_26

DHRR_9 5.39 0.99 1.00 0.94 1.50 9.00 2.90 2.48 1.00 mol_31

DHRR_10 5.38 0.99 1.00 0.94 1.50 9.00 2.91 2.47 1.00 mol_31

3.2. Pharmacophore Model Evaluation

The pharmacophore model’s quality was calculated using two evaluation tools: the
percent screen plot and the ROC plot. Percent screen plot represents the percentage of
actives recovered and the percentage of ligands screened for the hypothesis. The ROC plot
is between the true-positive rate (sensitivity) and the specificity (specificity) for various
cutoff points. A test is considered to have perfect discrimination when there is no overlap
in two distributions. The test has an ROC curve representing 100% specificity and 100%
sensitivity passing through the left upper corner. The closer the position of the curves in
the left upper corner, the higher the overall accuracy of the method. Both the percent screen
plot and the ROC plot were found to be in the extreme left corner, suggesting the better
accuracy of the generated hypotheses by the PHASE module, as shown in Figure 4A,B.

Figure 4. Cont.
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Figure 4. (A) Percent screen plot; (B) ROC plot.

3.3. Selection of Atom-Based QSARmodel

The QSAR results show the important statistics of the fit for both test and training sets.
In Table 3, each row shows the hypothesis results. Lines within each row show regression
models that have a specific value for least-squares factors, and PLS performed compound
clustering with a factor of five. Different statistical parameters (SD, R2, P, F, Q2, RMSE, and
Pearson’s R) in the QSAR model were considered for reliable predictions and evaluation of
the QSAR model. The value of R2 is required, and a high R2 is essential for a model, but
it alone does not provide the sufficient condition for ideal QSAR model prediction. Thus,
predictive ability Q2 values have to be chosen to obtain the best QSAR model prediction.
Based on these parameters, five different models were developed by modules and are
shown in Table 3. Among the five models, the fifth model was significant due to higher
values of 0.57, 0.96, and 0.58 for Q2, R2, and R2 CV values. Though higher values for SD
(0.46) and RMSE (0.64) were recorded, shallow values of 0.08, 0.34, and 0.08 for Q2, R2, and
R2 CV, respectively, diminished the probability of the first model. The required statistics
for the atom-type fraction are reported in Table 4.
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Table 3. Statistical data of atom-based QSAR model.

# Factors SD R2 R2 CV R2 Scramble Stability F RMSE Q2 Pearson’s r

1.00 0.46 0.34 0.08 0.31 0.93 11.80 0.64 0.08 0.47

2.00 0.33 0.68 0.22 0.51 0.73 23.90 0.52 0.29 0.59

3.00 0.23 0.85 0.41 0.69 0.68 38.70 0.47 0.42 0.67

4.00 0.16 0.93 0.57 0.76 0.71 70.50 0.41 0.56 0.76

5.00 0.13 0.96 0.58 0.81 0.70 82.50 0.40 0.57 0.79

Table 4. 3D-QSAR statistics for the atom-type fraction.

# Factors H-Bond Donor Hydrophobic/Nonpolar Electron-Withdrawing Other

1 0.011 0.577 0.391 0.021

2 0.007 0.741 0.225 0.027

3 0.035 0.703 0.216 0.046

4 0.043 0.738 0.198 0.021

5 0.045 0.755 0.192 0.008

Similarly, Table 5 presents the predicted pIC50, actual pIC50, and the residual models’
residual values. In addition, the atom-type fraction map provides information on the frac-
tions of each atom of the training set affecting the activity and is shown in Figure 5. Finally,
the uniform distribution of the training set obtained using a scatter plot of the displayed
module passing through the origin (0, 0) as a straight line is shown in Figure 6. Again, R2

with an increased value with minimum Root Mean Square Error showed improved results
with the removal of outliers.

Figure 5. Atom-based 3D-QSAR model visual representation: (A) electron-withdrawing, (B) hydro-
gen bond donor, (C) hydrophobic, (D) positive ionic, where blue-colored cubes represent positive
coefficients or an increase in activity, and red-colored cubes represent negative coefficients or decrease
in the activity.
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Figure 6. Comparison between actual vs. predicted pIC50 values of (A). test and (B). a training set molecules, consecutively.
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Table 5. Predicted pIC50 and residual values of generated models.

No r Name
Actual pIC50

(X)

Atom-Based

Predicted pIC50

(

Molecules 2021, 26, x FOR PEER REVIEW 15 of 27 
 

 

Table 5. Predicted pIC50 and residual values of generated models. 

No r Name Actual pIC50 

(X) 

Atom-Based 
Predicted pIC50 

(Ϋ) 
Residuals 

(Ϋ−X) 
1 4 6.3 6.00 −0.30 
2 9 4.72 4.65 −0.07 
3 10 5.15 5.76 0.61 
4 11 4.82 4.85 0.03 
5 12 4.7 4.66 −0.04 
6 13 4.7 4.69 −0.01 
7 15 4.7 4.68 −0.02 
8 22 5.19 5.20 0.01 
9 23 5.3 5.30 0.00 

10 24 4.7 4.85 0.15 
11 25 5.4 5.29 −0.11 
12 26 4.7 4.67 −0.03 
13 27 5.46 5.60 0.14 
14 30 4.7 4.92 0.22 
15 32 4.82 4.88 0.06 
16 33 4.7 4.63 −0.07 
17 34 5.4 5.46 0.06 
18 35 5 4.89 −0.11 
19 36 5.1 5.14 0.04 
20 39 5.52 5.57 0.05 
21 41 5.91 5.98 0.07 
22 42 6.36 6.39 0.03 
23 43 5.61 5.73 0.12 
24 44 5.74 5.85 0.11 
25 45 5.77 5.75 −0.02 
26 46 6.33 6.11 −0.22 
27 47 5.7 5.86 0.16 
28 48 6.43 5.85 −0.58 
29 49 6.05 6.02 −0.03 
30 50 6.03 5.80 −0.23 
31 51 6.1 6.11 0.01 
32 52 6.35 6.20 −0.15 
33 56 5.57 5.63 0.06 
34 59 6 6.17 0.17 

3.4. Contour Map Analysis 
Contour maps help to predict the biological activity and its correlation with various 

substituents on the core moiety (Figure 5) and help determine the effect of adding substit-
uents to biological activity. An increase in biological activity is represented by a blue color, 
while a red color represents a decrease in biological activity in the occlusion map. Among 
the 34 compounds, the most active compound was selected based on the high survival 
value of DHHRR_1 of atom-based 3D-QSAR contour maps. An increase in activity is due 
to substitution of an electron-withdrawing group on the phenyl ring attached to pyra-
zolo[3,4-d]pyrimidine, suggesting that substitution of various groups such as -CN, -NO2, 
CF3, -NR3, -COR–X, and so forth, on the phenyl ring leads to augmented activity. Further, 
enhanced anticancer activity could be obtained by adding a hydrogen bond donor group 

)
Residuals

(

Molecules 2021, 26, x FOR PEER REVIEW 15 of 27 
 

 

Table 5. Predicted pIC50 and residual values of generated models. 

No r Name Actual pIC50 

(X) 

Atom-Based 
Predicted pIC50 

(Ϋ) 
Residuals 

(Ϋ−X) 
1 4 6.3 6.00 −0.30 
2 9 4.72 4.65 −0.07 
3 10 5.15 5.76 0.61 
4 11 4.82 4.85 0.03 
5 12 4.7 4.66 −0.04 
6 13 4.7 4.69 −0.01 
7 15 4.7 4.68 −0.02 
8 22 5.19 5.20 0.01 
9 23 5.3 5.30 0.00 

10 24 4.7 4.85 0.15 
11 25 5.4 5.29 −0.11 
12 26 4.7 4.67 −0.03 
13 27 5.46 5.60 0.14 
14 30 4.7 4.92 0.22 
15 32 4.82 4.88 0.06 
16 33 4.7 4.63 −0.07 
17 34 5.4 5.46 0.06 
18 35 5 4.89 −0.11 
19 36 5.1 5.14 0.04 
20 39 5.52 5.57 0.05 
21 41 5.91 5.98 0.07 
22 42 6.36 6.39 0.03 
23 43 5.61 5.73 0.12 
24 44 5.74 5.85 0.11 
25 45 5.77 5.75 −0.02 
26 46 6.33 6.11 −0.22 
27 47 5.7 5.86 0.16 
28 48 6.43 5.85 −0.58 
29 49 6.05 6.02 −0.03 
30 50 6.03 5.80 −0.23 
31 51 6.1 6.11 0.01 
32 52 6.35 6.20 −0.15 
33 56 5.57 5.63 0.06 
34 59 6 6.17 0.17 

3.4. Contour Map Analysis 
Contour maps help to predict the biological activity and its correlation with various 

substituents on the core moiety (Figure 5) and help determine the effect of adding substit-
uents to biological activity. An increase in biological activity is represented by a blue color, 
while a red color represents a decrease in biological activity in the occlusion map. Among 
the 34 compounds, the most active compound was selected based on the high survival 
value of DHHRR_1 of atom-based 3D-QSAR contour maps. An increase in activity is due 
to substitution of an electron-withdrawing group on the phenyl ring attached to pyra-
zolo[3,4-d]pyrimidine, suggesting that substitution of various groups such as -CN, -NO2, 
CF3, -NR3, -COR–X, and so forth, on the phenyl ring leads to augmented activity. Further, 
enhanced anticancer activity could be obtained by adding a hydrogen bond donor group 

−X)

1 4 6.3 6.00 −0.30

2 9 4.72 4.65 −0.07

3 10 5.15 5.76 0.61

4 11 4.82 4.85 0.03

5 12 4.7 4.66 −0.04

6 13 4.7 4.69 −0.01

7 15 4.7 4.68 −0.02

8 22 5.19 5.20 0.01

9 23 5.3 5.30 0.00

10 24 4.7 4.85 0.15

11 25 5.4 5.29 −0.11

12 26 4.7 4.67 −0.03

13 27 5.46 5.60 0.14

14 30 4.7 4.92 0.22

15 32 4.82 4.88 0.06

16 33 4.7 4.63 −0.07

17 34 5.4 5.46 0.06

18 35 5 4.89 −0.11

19 36 5.1 5.14 0.04

20 39 5.52 5.57 0.05

21 41 5.91 5.98 0.07

22 42 6.36 6.39 0.03

23 43 5.61 5.73 0.12

24 44 5.74 5.85 0.11

25 45 5.77 5.75 −0.02

26 46 6.33 6.11 −0.22

27 47 5.7 5.86 0.16

28 48 6.43 5.85 −0.58

29 49 6.05 6.02 −0.03

30 50 6.03 5.80 −0.23

31 51 6.1 6.11 0.01

32 52 6.35 6.20 −0.15

33 56 5.57 5.63 0.06

34 59 6 6.17 0.17

3.4. Contour Map Analysis

Contour maps help to predict the biological activity and its correlation with various
substituents on the core moiety (Figure 5) and help determine the effect of adding sub-
stituents to biological activity. An increase in biological activity is represented by a blue
color, while a red color represents a decrease in biological activity in the occlusion map.
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Among the 34 compounds, the most active compound was selected based on the high
survival value of DHHRR_1 of atom-based 3D-QSAR contour maps. An increase in activity
is due to substitution of an electron-withdrawing group on the phenyl ring attached to
pyrazolo[3,4-d]pyrimidine, suggesting that substitution of various groups such as -CN,
-NO2, CF3, -NR3, -COR–X, and so forth, on the phenyl ring leads to augmented activity.
Further, enhanced anticancer activity could be obtained by adding a hydrogen bond donor
group at the pyrazolo[3,4-d]pyrimidine ring. Moreover, the hydrophobic group covers up
the more significant part of the ring and is accountable for mixed activity.

3.5. Results of Molecular Docking

A molecular docking study was performed to examine the possible interactions
between protein and ligand molecules using the Schrödinger Glide module. The inhibition
of enzyme activity depends on the possible interactions of inhibitors with various amino
acid residues of the targeted protein of interest. Therefore, docking was performed for all
compound’s analogs to study the binding cavity of TRAP1 (PDB ID: 5Y3N), the results of
which are shown in Figures 7 and 8. Purple-colored arrows and Π indicate the H-bonds–Π
stacking interactions are characterized by purple-green-colored arrows. The possible bond
interactions of compound 42 with amino acid residues PHE 201, GLY162, ASN119, ASP158,
PHE205, and TRP231 were observed in this study. Similarly, the derivative compound
49 (XP docking scores value of −11.353 kcal/mol) was found to have possible critical
interactions with PHE201, ASN119, ASP158, and PHE205 (Supplementary file S3). Further,
the binding interactions of compound 43 were observed with PHE201, ASP158, GLY162,
and PHE205, while in compound 56, interactions with PHE201, GLY202, and ASP158 amino
acids were detected. These interactions are essential for TRAP1 inhibitory activity.

Figure 7. Cont.
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Figure 7. A 3D and a 2D diagram show binding interactions of compounds 42 and 49 with TRAP1
(PDB ID: 5Y3N).

Figure 8. Cont.
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Figure 8. A 3D diagram showing binding interactions of compounds 43 and 56 with TRAP1
(PDB ID: 5Y3N).

3.6. Results of Virtual Screening

The virtual screening study was performed utilizing pharmacophore hypothesis
DHHRR_1 utilizing the ZINC database, resulting in the screening of 2832 compounds with
the help of Lipinski’s rule of five. These screened compounds were further used in the
high-throughput virtual screening (HTVS) docking methodology. The best 20% of the com-
pounds from HTVS were subjected to SP docking. Similarly, the top 20% of the screened
compounds from SP docking were further subjected to XP docking (Supplementary file S4).
In total, 16 compounds were screened through SP docking, in which the top hits, namely,
ZINC05434822, ZINC72286418, ZINC05297837, and ZINC59358929, were found to have
docking scores of −11.97, −10.73, −9.98, and −9.88 kcal/mol, respectively. These com-
pounds were taken into consideration for further study as the final ZINC compounds.
These compounds were evaluated in terms of binding interaction energy by MMGBSA.
Among these four compounds, ZINC05297837 showed interaction with amino acid residues
PHE205, TRP231, and ASN171 via the phenyl ring (Figure 9). In contrast, ZINC05434822
showed interaction with PHE201 and ILE161 in the same cavity as the crystal ligand shows
(Figure 9). The compound ZINC59358929 showed binding interactions with ASN119,
PHE201, PHE205, and TRP231, which is considered significant for showing activity, while
the compound ZINC72286418 showed substantial interactions with ILE161, PHE201, and
PHE205 (Figure 10).
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Figure 9. TRAP1(PDB ID:5Y3N) with ZINC05297837 and ZINC05434822 compounds showing
binding interactions with amino acids.
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Figure 10. TRAP1(PDB ID:5Y3N) with compounds ZINC59358929 and ZINC72286418, showing
binding interactions with amino acids.
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The binding pocket residues were similar to those obtained from the binding of active
compounds 42, 46, 48, 49, and 56 and the crystal ligand. The docking simulation study was
further validated by checking the RMSD value, less than 2 Å.

3.7. MMGBSA-Based Rescoring

The MMGBSA-based rescoring method was used for the calculation of binding free en-
ergy for ligands and ZINC hit compounds ZINC05434822, ZINC72286418, ZINC05297837,
and ZINC59358929 (complex with PDB ID:5Y3N), which provide very high binding free
energy, as ∆G bind = −58.2, −42.07, −59.752, and −48.2 kcal/mol, respectively (Table 6,
Supplementary Materials Table S5).

Table 6. Docking scores of active compounds and ZINC screened compounds with their MMGBSA scores.

Compound Name

PDB ID:5Y3N

Docking Score
(Extra-Precision (XP))

kcal/mol

Docking Score (Standard
Docking Precision (SP))

kcal/mol

MMGBSA ∆G Bind
(XP Complex)

kcal/mol

48 −10.824 −9.998 78.07

42 −11.265 −11.265 −57.88

46 −10.532 −10.782 −56.71

49 −10.422 −11.353 −68.2

56 −10.827 −11.641 −82.07

43 −10.753 −11.508 −56.71

ZINC05434822 −11.63 −11.641 −68.2

ZINC72286418 −10.86 −10.59 −82.07

ZINC05297837 −10.42 −6.25 −59.752

ZINC59358929 −10.102 −9.68 −78.2

3.8. Analyses of the Conformations Obtained through MD Simulations

The validation of the outcomes generated from the molecular docking and the changes
in their structural attributes associated with each docked system were explored using the
principles of MD simulations for the time scale of 100 ns. The nature of the bonding between
the TRAP1 and the studied inhibitors was primarily assessed in terms of the calculated
distances and hydrogen bonds (Figure 11A,B and Figure 12A,B). All the docked inhibitors
showed a relatively similar closeness as observed from the calculated distances fluctuating
between 0.15–0.25 nm. Furthermore, the docked complexes TRAP1-ZINC05434822 showed
up to six H-bonds while in TRAP1-42, TRAP1-43, and TRAP1-49 systems, docked molecules
form at least five H-bonds as compared to the rest of the complexes, which contain around
four H-bonds. These observations indicate that the former systems showed the presence of
a relatively higher bonding pattern.
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Figure 11. The graphical representation of MD simulation-based generated parameters with (A) shows the calculated
distance changes between the docked TRAP1 and inhibitors. (B) Illustrating the variation observed in the hydrogen
bonding during the 100 ns time scale. (C) Highlighting the changes in the RMSD values observed during MD simulations.
(D) Projecting the variations in the structural compactness of the docked systems in terms of the radius of gyrations.
(Black: TRAP1-42, Red: TRAP1-43, Green: TRAP1-46, Blue: TRAP1-49, Yellow: TRAP1-56).

Figure 12. The diagrammatic representation of parameters generated after 100 ns MD simulations with (A) Illustrating
the changes observed in the calculated distance between the docked TRAP1 and inhibitors. (B) Showing the variation
observed in the hydrogen bonding patterns. (C) Projecting the changes in the RMSD values for different studies docked
systems. (D) Highlighting the variations in the extent of a radius of gyrations. (Black: TRAP1-ZINC05297837, Red:
TRAP1-ZINC05434822, Green: TRAP1-ZINC59358929, Blue: TRAP1-ZINC72286418).
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Furthermore, the structural compactness and stability of the docked systems were
analyzed in terms of the calculated RMSD and Rg values (Figure 11C,D and Figure 12C,D).
The RMSD values highlighted the presence of relatively higher structural stability in
the TRAP1-43 and TRAP1-ZINC05297837 systems in which equilibration was obtained
somewhat earlier, and values were observed around 0.4 nm. Similarly, a slightly higher
degree of compactness was observed in the TRAP1-43 and TRAP1-ZINC05434822 systems,
inferred from the calculated Rg values fluctuating around 2.8 nm compared to the rest of the
studied systems. These observations showed in the TRAP1-43 and TRAP1-ZINC05297837
and TRAP1-ZINC05434822 systems that the inhibitor binding to the protein leads to higher
structural stability.

Moreover, the MMPBSA based calculations showed that relatively comparable binding
affinity was observed in TRAP1-43 and TRAP1-46 systems as well as in TRAP1_ZINC05297837
and TRAP1_ZINC05434822 as indicated from the calculated binding energy than the rest
of the studied systems (Table 7). The listed parameters were compared with the known
inhibitor” NVP-AUY922”, whose information was collected from the literature [41]. These
observations showed that, in the TRAP1_ZINC59358929 system, the inhibitor bounded to
the studied protein with relatively higher affinity than the other systems.

Table 7. The list of attributes associated with the free energy of binding between the TRAP1 and studied inhibitors.

S. No Docked Complex
MM-PBSA Based Calculated Energies (kJ/mol)

∆E (vdW) ∆E (Elec) ∆G (SASA) ∆G (Binding)

1 NVP-AUY922 −133.245 −20.399 −17.746 −276.797

2 TRAP1_42 −174.918 −6.766 −16.056 −213.795

3 TRAP1_43 −190.049 −22.551 −15.727 −244.055

4 TRAP1_46 −201.654 −12.756 −16.761 −247.931

5 TRAP1_49 −178.876 −16.962 −15.849 −227.536

6 TRAP1_56 −184.313 −16.979 −16.403 −234.098

7 TRAP1_ZINC05297837 −268.296 −2.926 −19.745 −310.711

8 TRAP1_ZINC05434822 −277.273 −13.936 −18.528 −328.265

9 TRAP1_ZINC59358929 −303.182 −43.700 −22.525 −391.933

10 TRAP1_ZINC72286418 −219.998 −12.829 −17.952 −268.731

3.9. Prediction of ADME Properties

The ADME properties were determined using Schrödinger ADME and Swiss ADME
tools to obtain the best scoring of the dataset and ZINC compounds, as shown in Tables 8
and 9. All compounds showed significant ADME properties, such as number of hydrogen
bond donors (0–3), number of hydrogen bond acceptors (7), number of rotatable bonds
(4–9), the molecular weight of <500, and molar refractivity of about 125, which are consid-
erable (Supplementary files S6 and S7). The lipophilicity profile of the selected compounds
represents the lipophilic character and high GI absorption. Still, none of the studied com-
pounds were found to possess the ability to cross the blood–brain barrier, representing the
lack of toxicity of the selected compounds. Compound ZINC72286418 was found to be
soluble, as determined by the solubility profile of the ZINC-derived compounds, while
others were moderately soluble in water. The synthetic convenience of all the compounds
was in a good range (Supplementary files S5–S8).
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Table 8. ADME predictions of ZINC database and other active compounds. Predicted 1: Octanol/water partition coefficient;
2: Caco-2 cell permeability (nm/s); 3: Brain/blood partition coefficient; 4: Apparent MDCK cell permeability (nm/s);
5: Human serum albumin binding]; 6: Number of metabolic reactions; 7: Percent human oral absorption.

S. No. Compound
Name

QP log
Po/w QPP Caco QP logBB QPPMDCK # Metab QP

logKhsa

Percent
Human Oral
Absorption

1 48 3.156 920.499 −0.145 4124.662 1 0.106 100

2 42 2.644 1011.799 −0.193 2743.625 1 −0.039 96.212

3 46 2.972 1006.302 −0.295 2031.339 2 0.025 100

4 49 2.892 1037.573 −0.101 3427.589 1 0.027 100

5 56 2.686 1271.458 −0.292 1230.569 3 0.1 100

6 43 2.354 1053.419 −0.305 1260.235 2 −0.053 94.825

7 ZINC05434822 4.687 1015.224 −0.589 833.988 3 0.728 100

8 ZINC72286418 2.653 431.141 −0.802 581.552 3 0.1 89.635

9 ZINC05297837 2.728 258.436 −1.334 303.018 2 0.003 86.094

Table 9. Physicochemical property prediction of ZINC database and other active compounds.

S. No. Name Mol. Wt.
(g/mol) No. Rot. Bonds No. H-Bond

Acceptors
No. H-Bond

Donors Molar Refractivity

1 48 356.58 2 4 1 78.14

2 42 429.6 2 5 1 89.27

3 46 325.7 3 6 1 76.89

4 49 313.67 2 6 1 70.36

5 56 376.21 2 5 1 89.17

6 43 317.73 2 5 1 81.52

7 ZINC05434822 363.43 5 4 1 102.8

8 ZINC72286418 334.29 5 5 2 80.71

9 ZINC05297837 469.29 5 5 3 118.83

4. Optimization of Novel Ligands

The optimization and development of novel TRAP1 inhibitors can be performed by
using 3D-QSAR and molecular docking studies. Here, the results obtained by the 3D-QSAR
analysis have been graphically represented as the structure–activity relationships (SARs)
of the pyrazolo[3,4-d]pyrimidine core with different possible substituents (Figure 13).

Figure 13. Ligand core with key features obtained by 3D-QSAR study for the development of novel
molecules.
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5. Analysis of R Group Enumeration

Based on the optimized structure, several derivatives were enumerated through an
R group enumeration study using Schrödinger software. The compound structures are
described in Table 10, along with their XP docking scores. These compounds are novel
derivatives of pyrazolo[3,4-d]pyrimidine, which has good docking scores.

Table 10. R group determination by enumeration study using the Schrödinger software.

Comp.
Name Structure XP GS Score

(PDB ID:5Y3N) R1 s m Smiles R2 s m
Smiles R3 s m Smiles

1 O=C(C)Nc(n1)nc([NH+](C)C)c(c12)cnn2Cc(c(c3)C(=O)N)cc(c34)OCO4 −13.286 [*][NH+](C)C [*]NC(=O)C [*]C(=O)N

2 n1c([NH3+])nc(O)c(c12)cnn2Cc(c(c3)C(=O)N)cc(c34)OCO4 −13.286 [*]O [*][NH3+] [*]C(=O)N

3 C1C[NH2+]CCC1c(nc(n2)C(=O)N)c(c23)cnn3Cc(c(c4)C(=O)N)cc(c45)OCO5 −12.873 [*]C1CC[NH2+]CC1 [*]C(=O)N [*]C(=O)N

4 NC(=O)c(n1)nc(O)c(c12)cnn2Cc(cc(c34)OCO4)c(c3)C(=O)Nc5ccccc5 −12.73 [*]O [*]C(=O)N [*]C(=O)Nc1ccccc1

5 NC(=O)c(n1)nc(O)c(c12)cnn2Cc(cc(c34)OCO4)c(c3)-c5[nH]ccn5 −12.674 [*]O [*]C(=O)N [*]c1ncc[nH]1

6 NC(=O)c(n1)nc(O)c(c12)cnn2Cc(cc(c34)OCO4)c(c3)-c5[nH]cnc5 −12.622 [*]O [*]C(=O)N [*]c1cnc[nH]1

7 CNC(=O)Nc(n1)nc(O)c(c12)cnn2Cc(cc(c34)OCO4)c(c3)NC(=O)Nc5ccccc5 −12.608 [*]O [*]NC(=O)NC [*]NC(=O)Nc1ccccc1

8 n1c([NH3+])nc(O)c(c12)cnn2Cc(c(c3)C(=O)N(C)C)cc(c34)OCO4 −2.955 from water 1 15173 15183

9 c1nccn1-c(n2)nc(O)c(c23)cnn3Cc(cc(c45)OCO5)c(c4)C(=O)Nc6ccccc6 −12.559 [*]O [*]n1ccnc1 [*]C(=O)Nc1ccccc1

10 n1c([NH3+])nc([NH2+]C)c(c12)cnn2Cc(cc(c34)OCO4)c(c3)C(=O)Nc5ccccc5 −12.555 [*][NH2+]C [*][NH3+] [*]C(=O)Nc1ccccc1

6. Conclusions

In the present study, pharmacophore hypothesis development, QSAR, virtual screen-
ing and an enumeration study were performed to determine potential inhibitors against
TRAP1. The best hypothesis generated was DHHRR_1, which was used for a virtual
screening study employing the ZINC database. After many trials, the 3D QSAR study
determined the best statistical values by changing the training and test set molecules. The
resultant contour maps determined electrostatic, hydrogen bond acceptor, hydrogen bond
donor, and positive ionic participation inactivity. The docking study of potent pyrazole
analogues (42, 46, 49, 56, 43) showed the highest XP docking scores (−11.265, −10.532,
−10.422, −10.827, −10.753 kcal/mol). The docking study showed that interaction with
amino acids, such as PHE 583, CYS 532, SER 536, ASP 594, is important for activity.

Moreover, the MD simulations provided detailed structural insight and validated that
the listed compounds were inhibiting the TRAP1 protein with relatively higher affinity.
The ADME properties showed the important physicochemical properties of the molecules.
The virtual screening study performed using the zinc database produced compounds
ZINC05434822, ZINC72286418, and ZINC05297837, which showed essential binding in-
teractions with receptor TRAP1 (PDB ID: 5Y3N). Correlating the docking results with
the 3DQSAR analysis can provide more potential compounds as TRAP1 inhibitors. The
enumeration of different positions of pyrazole analogs producing compounds with the
best docking scores may be used for synthesis in research laboratories.

Supplementary Materials: The glade files and docking files for the compounds are available in
Supplementary Materials.
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