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Abstract. Tower-mounted camera-based wildfire detection systems provide an effec-
tive means of early forest fire detection. Historically, tower sites have been identified
by foresters and locals with intimate knowledge of the terrain and without the aid of

computational optimisation tools. When moving into vast new territories and without
the aid of local knowledge, this process becomes cumbersome and daunting. In such
instances, the optimisation of final site layouts may be streamlined if a suitable strat-

egy is employed to limit the candidate sites to landforms which offer superior system
visibility. A framework for the exploitation of landforms for these purposes is pro-
posed. The landform classifications at 165 existing tower sites from wildfire detection

systems in South Africa, Canada and the USA are analysed using the geomorphon
technique, and it is noted that towers are located at or near certain landform types.
A metaheuristic and integer linear programming approach is then employed to search
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for optimal tower sites in a large area currently monitored by the ForestWatch wild-

fire detection system, and these sites are then classified according to landforms. The
results support the observations made for the existing towers in terms of noteworthy
landforms, and the optimisation process is repeated by limiting the candidate sites to

selected landforms. This leads to solutions with improved system coverage, achieved
within reduced computation times. The presented framework may be replicated for
use in similar applications, such as site-selection for military equipment, cellular
transmitters, and weather radar.

Keywords: Fire detection, Maximal cover, Landforms, Facility location, NSGA-II, Integer linear pro-

gramming

1. Introduction

Camera-based wildfire detection system (CWDSs) are comprised of a number of spe-
cialised tower-mounted cameras that monitor the surrounding environment with the
aim of providing early wildfire detection [1, 2]. Historically, the candidate and final sites
at which to place the towers are identified by foresters and locals with intimate knowl-
edge of the terrain and without significant use of computational tools. Compared to
single-site optimisation, where the aim is to find a single optimal site according to indi-
vidual camera visibility, system-site optimisation is a complex and delicate process
because the overall detection potential depends on the combined visibility cover of mul-
tiple cameras in the system. When configuring a CWDS, the number of candidate sites
at which to place the towers may far outnumber the camera towers available for place-
ment and it is therefore necessary to carefully select a smaller number of final sites from
the larger set of candidates. When local knowledge or expertise may not be avail-
able—such as when moving into vast and unfamiliar territories—the process becomes
even more challenging. A system-site selection framework that alleviates this burden
has been developed in collaboration with the South African ForestWatch CWDS, with
operations in South Africa, Australia, Spain, Canada and the USA [2]. The principal
site requirements of this framework are (a) to minimise the need for user input to select
candidate sites, (b) to identify sites that are superior candidates for system-site optimi-
sation, as opposed to single-site optimisation, and (c) to facilitate the monitoring of
large territories and therefore the ability to consider a large number of candidate sites.

The process of configuring a CWDS layout is a complex combinatorial optimi-
sation problem, increasing in complexity with an increase in the size of the terrain
to monitor and the number of towers to place. Reducing the size of the set of fea-
sible candidate sites—called the placement zone (PZ)—reduces the complexity of
the framework’s search for the final tower site locations. At the same time, the
search efficiency and solution quality may be improved if the PZ is limited to sites
that are superior candidates in terms of their potential contribution to overall sys-
tem detection performance. The process of identifying the candidate sites from
which recent CWDS site-selection methods determine final layouts has, however,
not received significant attention. This is surprising, given that the quality of the
final site layouts can only be as good as the quality of the sites which are consid-
ered for selection (garbage in, garbage out).
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The objective in CWDS site selection is visibility-based optimisation and the
role that landforms (e.g. peaks, ridges, valleys, slopes) play in the identification of
candidate sites is well-documented [3–7]. Ridges and peaks are consistently consid-
ered to offer superior observer visibility compared to sites classified otherwise and
reducing the PZ to these landforms is therefore expected to result in improved
detection capability of the CWDSs obtained by the solution framework. Existing
CWDS site-selection methods that do consider landforms are either manual and
subjective, without the use of landform classification methods, and applied to
unrealistically small hypothetical study areas [8, 9], or otherwise meant for single-
site optimisation [9, 10]. These approaches are therefore not considered suit-
able for use with the site-selection framework followed in this paper, which is
designed for system-site optimisation in significantly larger territories—the study

area considered in this paper covers approximately 1505 km2, compared to those

smaller than 15 km2 in the literature [8, 9].
The purpose of this paper is to examine landform exploitation for system-site

optimisation, specifically in large territories, and the main contributions are sum-
marised below.

� Landforms are determined and analysed at 165 actual ForestWatch tower sites
from systems in South Africa, Canada and the USA. To the authors’ knowl-
edge, such a practical classification exercise of existing visibility-based facilities
has not been performed in the literature, and reveals interesting facts about the
preferences of decision makers and the compromises they consider when deter-
mining tower sites.

� Landform characteristics which are common between the existing sites and sites
determined by optimisation (before landform consideration) are identified—the
first comparison of its kind in the literature. The results are exploited in order
to reduce the size of the PZ to selected landforms.

� It is demonstrated that landform exploitation can be effectively used to enhance
location optimisation, particularly when the problem instance is outside the
bounds of tractability for global optimisation. The technique and framework
developed here may be similarly beneficial to other site-selection problems, e.g.
cellular transmitters [11–13], weather radar [14, 15], and military equipment
such as signal jammers [16], and radars and weapons [17, 18].

The remainder of the paper is organised as follows. In Sect. 2, background infor-
mation is provided on terrain modelling, landform analysis, and the processes and
considerations related to tower site selection. Section 3 describes the data and
methods applied in this paper, including the study areas, visibility analyses, land-
form classification, and methods of evaluating and optimising CWDS layouts. Sec-
tion 4 demonstrates the results of the classification of existing and optimisation-
determined tower site classifications, in addition to the results of tower sites
obtained after landform exploitation. In Sect. 5, the results are analysed and limi-
tations and potential improvements are discussed. The paper closes with a brief
conclusion in Sect. 6.
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2. Background

2.1. Modelling the Physical Environment

Modelling the earth’s surface elevation and related geographical/environmental
information can be achieved by employing uniformly spaced, satellite-measured
points across the terrain surface—called raster data—and is a standard approach
used in the literature for solving facility location problems [7, 19–21]. A strength
of the raster data structure is its structural simplicity, ease of implementation, and
additionally, the landform classification approach employed in this paper is raster-
based. A raster data representation of a hypothetical terrain is provided in Fig. 1,
where the dots on the terrain surface represent the uniformly spaced satellite-sam-
pled elevation data from which the surface is generated. The non-contiguous blue
area is an example of terrain identified as suitable for the placement of towers,
typically limited to criteria such as allowable geographical and administrative/mu-
nicipal boundaries and suitable terrain characteristics (e.g. slope)—candidate site
selection criteria and processes are described in more detail in Sect. 2.3. The green
area is an example area of interest which, in the context of this paper, is typically
land belonging to forestry clients. The sites that may be considered for facility
placement (the blue dots in the figure) collectively form the PZ.

Shuttle radar topography mission (SRTM) elevation data were used in this
paper (obtained from https://dwtkns.com/srtm30m/). SRTM data constitutes satel-
lite-sampled points obtained during an 11-day shuttle mission in February 2000,
and was a collaborative effort between agencies from the USA, Germany, and
Italy [22]. In general, the distance between neighbouring sample points is approxi-
mately 30 m at the highest resolution, and this resolution was used for all analyses
in this paper.

Figure 1. Uniformly spaced sample points of the earth’s surface
constitute raster data [2] [Image used with copyright permission]. An
example of a PZ and client area in raster form is illustrated on the
surface.
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2.2. Landform Classification

The concept of classifying digitised terrain data (such as the raster surface in
Fig. 1) according to spatial patterns goes at least as far back as 1967 [23]. Actual
attempts to identify landforms such as pits, peaks, ridges and ravines were per-
formed as early as 1975 [24, 25].1 Such morphographical representations of the
terrain reveals more detailed characteristics of its appearance and shape than a
standard elevation model [26]. A significant portion of landform extraction
research is focused towards hydrological applications [26–29]—in fact, many clas-
sification approaches make use of hydrological analysis techniques in the process
of identifying landforms. Schillaci et al. [26] identify numerous examples of such
applications, including drainage pattern extraction and river morphology [25, 30–
32] and watershed delineation [33, 34]. Other examples identified by Schillaci et al.
that are not specifically related to hydrological applications include surface rough-
ness assessment [35], the monitoring of slope movements [36], and predicting the
spatial distribution of gully erosion and soil texture [37].

Various classification approaches were recently investigated and compared by
Romero and Clarke [38] for open-source and commercial software, and Schillaci
et al. [26] provide additional comparisons of classification methods and software.
The methods that they investigated require separate workflows in order to identify
different landform types, and generally require workflows comprising multiple
steps for each. One example of such multiple workflows, and specifically related to
our purposes, is the process that Eugenio et al. [10] followed to identify ridges for
watchtower placement. Their interesting approach is based on hydrological analy-
ses that are not specifically intended for the purpose of identifying peaks or rid-
ges. Essentially, the digital terrain model is inverted, after which a watershed
analysis is performed. A watershed analysis determines where water on terrain will
flow and accumulate—when inverted, the original ridges and peaks become river
courses and pits, where the water will flow and accumulate.

An alternative landform classification technique is the implementation of pre-
defined terrain patterns that may be matched to continuous land surfaces accord-
ing to similarities in their geometry [28, 39]. The ten most significant landform
classes—termed geomorphons—were identified by Stepinski and Jasiewicz [39] as
flats, peaks, ridges, shoulders, spurs, slopes, pits, valleys, footslopes and hollows,
as illustrated in Fig. 2. Their classes were based upon fifteen such pre-defined
landform classes first presented and investigated by Schmidt and Hewitt [28],
which were based upon the pioneering work of Dikau [40] and Wood [41] in
developing geomorphon-based classification processes. The geomorphon classifica-
tion approach has been successfully used in a variety of recent problems, ranging
from the characterisation of submarine bedforms [43], topographic modelling for
landscape architecture [44], geographical suitability calculations for agent-based
simulation [45], and landslide susceptibility mapping [46].

To identify geomorphons, the entire terrain surface (all raster points) is tra-
versed by a moving search region which matches the geometry of the raster points

1 See the publication of Johnston and Rosenfeld from 1975 [24] for a fascinating map representing
landforms by alphanumerical characters.
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surrounding the centre-point to the pre-defined landform patterns in eight princi-
pal directions (N, NE, E, SE, S, SW,W, NW). A ternary operator which employs
the three possible elevation differences (�1 for lower, 0 for same height, and +1
for higher) is used to identify specific topographic patterns which are associated
with the pre-defined landforms in Fig. 2. For example, a ridge is identified when
the ternary pattern [0, �1, �1, �1, 0, �1, �1, �1] is observed around the centre-
point, when starting from any one of the eight surrounding points and completing
a circular visit cycle to the neighbouring points. To provide an illustration of the
final result of a geomorphon classification process performed on a digital terrain
model, the terrain elevation of the south-eastern part of the study area used in
this paper—introduced in more detail later—is displayed in Fig. 3a and its corre-
sponding geomorphon classification is provided in Fig. 3b. The classified areas

Figure 2. Ten terrain landform classifications of [42] [Image used
with permission]. The colours of the patterns alongside each class
indicate the differences in elevation with respect to the centre
point—green indicates same height, red indicates higher, blue
indicates lower (Color figure online).

Figure 3. Example of geomorphon classification results. (a) Terrain
elevation of the south-eastern part of the study area used in this
paper, and (b) its corresponding geomorphon classifications
(determined using 30-m resolution SRTM data).
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are, in fact, the individual raster points’ geomorphon classifications (not individu-
ally visible due to the scale and the large number of raster points).

The strategy of selecting candidate sites based upon landform classes should be
approached carefully. The various classification techniques applied to the same
area can return different landform classifications for individual sites, and results
returned by a specific technique may also vary with different parameter settings
[38, 42, 47]. One example of an important parameter in geomorphon classification
is the lookup distance, which is the distance between the centre-point being classi-
fied and the surrounding points that are compared to the pre-defined landform
patterns—effectively the scale over which landforms are identified [42]. Small
lookup distances return landforms identified from a local perspective, while larger
values identify landforms from a higher and wider perspective [29].
Suitable lookup distance values vary according to factors such as the resolution of
the terrain model, the roughness of the terrain, and the intended purpose of the
resulting landform data [42].

Regardless of which technique is employed, its effectiveness for a specific appli-
cation requires preliminary investigation on a case-by-case basis before preferred
landforms can be identified. The purpose of this paper is not to investigate which
landform classification technique is ‘‘better,’’ but to demonstrate that any land-
form classification technique can lead to improved optimisation results if the pre-
liminary analyses are adequately performed. Furthermore, the work in this paper
is presented in a manner that may be replicated regardless of the landform classifi-
cation technique employed. The geomorphon process was therefore selected for
implementation in this paper—largely due to its simplicity and availability in
open-source software. Compared to other landform classification approaches, a
major advantage of the geomorphon approach is that a single execution of the
process is required to classify all raster points on the terrain surface and therefore
requires a single workflow only [42].

2.3. Candidate Site Selection

As previously discussed in the introduction, one candidate site selection approach
which may be followed is manual selection. In this approach, the terrain’s topo-
graphical representation (such as the one in Fig. 1) is visually inspected and raster
points which are considered to exhibit superior visibility of the area of interest are
selected as candidate sites. This approach was used by Bao et al. [8] for the pur-
pose of maximising wildfire detection. They selected 30 candidate tower sites loca-
ted at what they (subjectively) considered to be peaks and ridges in an area

spanning approximately 10 km2 in China. From this set of candidate sites, pro-
posed layouts comprising sites selected from the candidates were determined using
combinatorial optimisation approaches (examples of such approaches are pro-
vided later). Manual candidate site identification is only practical in such unrealis-
tically small study areas and is not considered desirable for the intended research
of this paper, in which expansive terrains with numerous mountains, hills and rid-
ges need to be examined to identify candidate sites. Zhang et al. [9] followed a
more computational approach, also for wildfire detection, by first determining the
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visibility of all raster points in their study area of slightly larger than 10 km2, and
choosing 34 sites with superior visibility from these as their candidate sites. This
process is more computational and user-friendly than a strict manual approach
but is, at its core, focussed towards single-site visibility—which does not consider
the performance of the sites when combined with others and is not ideal when the
ultimate goal is the maximisation of system visibility. This approach is therefore
also not considered suitable for system-site optimisation pursued in this paper.

Eugenio et al. [10] followed an approach that employs a geographical informa-
tion system (GIS) to determine a large number of candidate sites for manned

watchtowers in a large area covering 46,000 km2. The PZ was first limited to land
within feasible geographical and administrative/municipal boundaries and within
suitable distances from roads (for installation and maintenance accessibility), and
then reduced to terrain classified as ridges. This method is more suited to imple-
mentation with larger areas—and therefore with the framework this paper is
based on—since raster points spread across large expanses of terrain can easily
and speedily be classified according to practical criteria such as road distance and
landform types using a GIS. Their final sites were then selected using an altitude-
based elimination approach, discussed in more detail along with other final site-se-
lection approaches in Sect. 2.5. The landform classification approach that they fol-
lowed (previously detailed in Sect. 2.2) is unconventional and not specifically
designed for the identification of ridges, and ridges were selected as preferred
landforms without any supporting analysis. Heyns et al. [2] followed a similar
candidate site selection process using a GIS. Their PZ was first identified as a
number of forestry client areas in their study area in Nelspruit, South Africa, fur-
ther reduced according to two geospatial criteria. First, terrain with a degree of
slope under 12� (or 20%) was selected, which ensures that tower installation may
be performed without the need for excessive terrain alteration, in addition to ease
of access on foot in the installation area. Second, a distance of 100 m or less to
roads was deemed necessary for transportation (e.g. construction and mainte-
nance) and general access purposes. The resulting PZ—the raster points exhibiting
feasible slope and road accessibility within the client areas—is shown in Fig. 4.

A GIS-based candidate site selection approach such as those above is followed
in this paper—these approaches typically result in a large number of candidate
sites. For example, the approach of Heyns et al. [2] did not employ landform clas-
sification to further reduce the size of their PZ and over 700,000 candidate sites
are included in Fig. 4. Given the hilly and mountainous nature of this study area,
the PZ could be reduced to a considerably smaller number of sites if it is limited
to certain landforms only. However, this requires a well-motivated landform clas-
sification and exploitation methodology—which remains a strategy to be formally
investigated and is the purpose of this paper.

2.4. Smoke Detection

While detecting surface flames is one purpose of ForestWatch CWDSs, their focus
is on detecting smoke patterns—using a proprietary pattern-recognition algorithm
which is based upon South African Antarctic research into the automated detec-
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tion of aurora [48]. The lower above the terrain surface a smoke plume may be
detected, the sooner suppressing action may be taken after the onset of the fire.
Terrain and vegetation are, however, more likely to obstruct a camera’s visibility
of smoke when it is near the terrain surface or when the fire is in a valley or
behind a hill. The overall detection potential of a CWDS therefore also depends
on its ability to detect smoke at higher levels above the terrain surface (after clear-
ing obstructions). This is a unique approach to fire detection and similar surveil-
lance system applications, where the standard approach is to evaluate visibility
with respect to the terrain surface only [7–9, 19, 49]. Furthermore, CWDSs are
configured in such a manner that they achieve satisfactory visibility cover over
buffer zones added to the smoke layers, for the purpose of detecting fires outside
the client area and which may rapidly spread onto client property.

Two smoke detection heights were employed by Heyns et al. [2], each with a
different buffer zone size. The same approach is followed in this paper, albeit
using different smoke layer heights and buffer zone sizes. A low smoke layer is
used for near-immediate detection and rapid client response, and has a smaller
buffer zone for detecting fires near the client boundaries which pose an immediate
threat of crossing over into client territory. This concept is illustrated in Fig. 5a,
where a small buffer is added around a hypothetical client area, after which a low
smoke layer with this added buffer is simulated at a low height above the terrain
surface—following the contours of the terrain as a layer of smoke would. A
higher smoke layer serves the purpose of detecting smoke not detected at the
lower layer due to visibility obstructions, and which has risen further to be (po-
tentially) visible, as illustrated in Fig. 5b. Also shown in Fig. 5b is how the higher

Figure 4. The feasible PZ within the Nelspruit client area in South
Africa, where both slope and road access are feasible [2] [Image used
with copyright permission]. Landforms were not considered in the
determination of this PZ.

Exploitation of Landforms for Wildfire Detection 2277



smoke layer is associated with an extended buffer zone which allows for the moni-
toring of fires further outside the client area—these fires need to be monitored,
but do not necessarily require immediate response from ForestWatch clients if
their property is not under threat. Each of these smoke layers is called a
cover zone (CZ), since CWDSs are configured with the aim of maximising their
visibility cover with respect to these layers.

2.5. Optimisation of Final CWDS Site Selection

Following the identification of numerous candidate sites in the PZ, determining
the precise sites where CWDS towers are to be located is required in order to
maximise detection of the CZs. In the related literature (in which only one CZ is
considered) one possible approach is incremental site selection, which was investi-
gated by Zhang et al. [9]. This approach places the first tower at the single site
which is determined to have the best visibility with respect to the area that
requires coverage, the area requiring coverage is updated in light of this tower’s
coverage, and the process is repeated by adding the tower with the best coverage
of the remaining coverage area until all tower positions have been selected. This
sequential, greedy single-site optimisation approach is suitable if the intention is to
increment system cover by adding towers one at a time, over an extended period
of time, but is not suitable for the simultaneous optimisation and placement of
numerous towers operating together as a single system. Following their GIS-based

Figure 5. Buffer zones are added around the client area to monitor
threatening external fires, and the combined client and buffer
terrains are raised in order to simulate smoke layers at different
heights above the terrain surface. (a) A small buffer with a low height
is used to determine a CWDS’s near-immediate detection capability,
and (b) a larger buffer with a higher height is used to evaluate
secondary detection potential.
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approach and limiting candidate sites to ridges, Eugenio et al. [10] selected their
final sites by dividing their study area into smaller, square sub-regions, and choos-
ing the site with the highest altitude in each sub-region as a tower site. Such an
approach is also not recommended because it is intended for single-site optimisa-
tion, does not consider a selected site’s actual visibility coverage, and is based on
the assumption that superior altitude is associated with superior visibility. It has
been shown that superior altitude does not necessarily ensure good visibility and a
site’s relationship to its surrounding environment is crucial [3, 6, 7, 50].

CWDS layout solution approaches which have been used successfully in related
research and which are suitable for the problem considered in this paper include
integer linear programming (ILP) [8] and heuristics [2, 8]—both approaches are
employed in this paper. These methods maximise system visibility with considera-
tion given to the combined coverages of all the towers in the system.

More than one covering objective—one per CZ—is considered in this paper,
and a multi-objective (MO) system-site optimisation approach is therefore fol-
lowed. Such an approach returns solutions that provide decision-makers with mul-
tiple CWDS layouts that exhibit superior trade-offs in the coverages achieved by a
system with respect to more than one CZ. An additional and significant benefit to
this approach is that each of these proposed layouts offers a unique site configura-
tion—decision-makers may prefer the site locations of some layouts more than
those in others, and having multiple layouts allows them to take other issues into
consideration as well. In order to achieve such diversity in CWDS coverage and
site layouts, a set of solutions that is commonly known in the MO optimisation
literature as the Pareto front is desired [51], as displayed by the black markers in
Fig. 6. Each of the solutions in the figure represents a candidate CWDS layout,

Figure 6. A Pareto front in objective function space, which is sought
for decision-making purposes.
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and its location on the graph reflects its coverage achieved with respect to the CZs
(typically presented as a percentage of the CZs that are covered). The solutions on
the Pareto front outperform (dominate) all the other possible solutions which may
exist (such as the grey solutions in the figure) in terms of their trade-offs in cover
achieved with respect to the CZs [51].

ILP solvers (such as CPLEX and Gurobi) offer one solution method that may
be followed in order to determine solutions on the Pareto front and take as input
mathematical formulations of objective functions (here, the maximisation of CZ
detection) and constraints. These solvers are particularly well-suited to determin-
ing the end-points on the Pareto front, which are indicated as CZ1 optimal and
CZ2 optimal in Fig. 6—each performing well with respect to one objective, but
not with respect to the other. This is because maximising the cover achieved with
respect to a single CZ is less complex than determining those solutions that are
found between these two optimal solutions, which require the consideration of
more than one CZ in the optimisation process. Solutions between the single-CZ
ones are obtained using the popular weighted-sum approach [52–54], in which
weights are assigned to each CZ to reflect their relative importance with respect to
each other [55]. In the mathematical formulation of the weighted-sum objective,
the multiple covering objectives are weighted together into a single objective func-
tion, and by varying the CZ weights in multiple runs the solutions along the front
may be ‘‘traced out.’’

ILP solvers are, however, limited by the complexity of the problems which they can
solve—in this research the complexity is related to the number of candidate sites and
the size of the CZs. Because our framework is aimed at solving large, practical prob-
lems, the PZs and CZs considered here are significantly larger than what is generally
encountered in facility location problems [7, 8, 17, 56]. The use of an ILP is therefore,
in general, not possible for the size of the problem in this paper. To overcome this
computational limitation, heuristics are often employed in order to approximate the
set of solutions on the Pareto front when approaches such as ILP are not possible [51,
57, 58]. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is one heuris-
tic that may be employed and has been used extensively in the literature for solving
MO optimisation problems, including applications that consider covering objectives
[18, 20, 56, 59].

Heyns et al. [2] used the NSGA-II in a two-stage optimisation approach. First,
the NSGA-II was used to determine numerous CWDS layouts which outper-
formed the existing CWDS in their study area in terms of coverage achieved with
respect to two CZs. This was an indication that the layouts returned by the
heuristic included multiple strong sites. These strong sites were then pooled toge-
ther into a new PZ, resulting in a smaller sub-set of candidate sites from the origi-
nal PZ. In the second stage, the NSGA-II was employed once more, using the
smaller PZ, and solutions with significant improvements in coverage were discov-
ered. A similar approach is followed here; however, an ILP approach is followed
during the second optimisation stage instead. This is because the heuristic stage
reduces the number of candidate sites to a number which is small enough for use
with an ILP solver. A second and major advantage of the ILP approach, in a
practical sense, is that the user is able to specify the desired number of solutions
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(the number of selected weight combinations). Heuristics often generate an
impractically large number of solutions on the Pareto front approximation (poten-
tially hundreds or even thousands), which require further analysis to be reduced
to a manageable number for decision-makers to analyse and compare [60, 61], as
was observed in the results of Heyns et al. [2]. The mathematical formulation of
the CWDS site-selection problem and the optimisation approach followed in this
paper are presented in more detail later.

3. Data and Methods

3.1. Study Areas

The site locations of 165 actual CWDS towers were obtained from ForestWatch
for the classification and analysis of existing sites performed later in this paper.
The towers are part of systems in the Mpumalanga Province in South Africa (93
towers), Douglas County in the state of Oregon, USA (31 towers) and the central
region of Saskatchewan Province in Canada (41 towers). The layouts of the
CWDSs and the surrounding terrain are displayed in Fig. 7.

To evaluate the suitability of landform exploitation for CWDS site selection, a
system of twenty six cameras is used as a benchmark to compare and analyse
optimisation results, and was previously investigated by Heyns et al. [2]. The sys-
tem is located in the region of Nelspruit, in the north-east of South Africa, and

covers approximately 1 505 km2. The system is the highlighted region which may
be seen in the centre of Fig. 7a and is shown in more detail in Fig. 8. The relief
can be described as rough, with various mountains, hills, valleys, ridges and
slopes. The cameras in this system have a specified detection range of 8 km and
are placed on towers that range in height from 12 m to 54 m (averaging 42 m) at
the locations shown in Fig. 8. The cameras have an actual detection range of well
beyond 8 km and fires are often detected at twice this range. An 8 km range is
used for contractual purposes and to mitigate the negative effects of bad weather
on practical detection potential.

The Nelspruit PZ (without geomorphon exploitation) which is illustrated in
Fig. 4 was determined using ArcGIS 10.5.1 software. Roads shapefiles were pro-
vided by ForestWatch to determine distances from roads using the software’s
Euclidean distance tool, and slope was determined using the software’s slope anal-
ysis tool. The number of candidate sites in this PZ totalled 741,813. This signifi-
cant number is a result of the large area and because the terrain model is raster-
based at 30-m intervals.

3.2. Visibility Analyses

The detection potential of a CWDS is determined by the coverage it achieves with
respect to points within CZs. The smoke layer concept was introduced in Fig. 5,
and the CZs are simply the rasterised versions of such smoke layers above the cli-
ent and buffer areas. This is illustrated in Fig. 9a for a CZ (the brown surface and
markers) above the example client area that was introduced in Fig. 1. The portion
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of a CZ that is visible from a camera is referred to as a viewshed [4, 7, 62]. A sys-
tem viewshed is the merged viewsheds of all the cameras with respect to a specific
CZ. A top view of the terrain and CZ in Fig. 9a is provided in Fig. 9b. The com-

Figure 7. Landform classifications of towers from three ForestWatch
CWDSs are investigated in this paper. (a) Mpumalanga system (93
towers), (b) Douglas County system (31 towers) and (c) system in the
central region of Saskatchewan (41 towers). Sources: Esri, GEBCO,
NOAA, National Geographic, DeLorme, HERE, Geonames.org, and
other contributors.
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bination of the red surface and markers in the figure is an example of a system
viewshed achieved by a CWDS comprising four cameras (the black markers).

Figure 8. Top view of the ForestWatch CWDS and client area that
provided a benchmark for the evaluation of the research in this paper
[2] [Image used with copyright permission].

Figure 9. (a) A CZ above the client area, represented by raster data,
(b) top view of the terrain, in which an example of a CWDS tower
layout (the black markers) and the viewshed it achieves with respect
to the CZ (the red area and markers) [2] [Images used with copyright
permission] (Color figure online).
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A viewshed is determined by a collection of line-of-sight (LOS) queries between
the observer and each point in the CZ, returning either 1 if determined to be visi-
ble, or 0 otherwise. The Bresenham technique is a classic and simple technique to
determine such LOS queries [63, 64], has the advantages of simplicity and effi-
ciency, and is suitable for a raster grid structure. By traversing the raster points
along a straight line between the observer and the CZ-point, and comparing the
height of the terrain at each raster point with the height of the line between the
observer and CZ point, terrain obstructions may be determined. The authors’ own
Bresenham line-of-sight code—written and executed within the optimisation pro-
cesses in the MATLAB software environment discussed later—was used to deter-
mine viewsheds in this paper. The coverage achieved with respect to a specific CZ
is expressed as the percentage of the points in the CZ that are visible.

An important consideration in visibility evaluation is the tower height. Raising
a tower’s height allows it to see over obstructions such as terrain and vegetation
and therefore improves its visibility coverage, and should be incorporated into
viewshed computations. The base tower height that was available to planners for
the Nelspruit system in Fig. 8 was 12 m, and any increase above this height (typi-
cally added in 3 m increments) depended on a) site suitability to accommodate an
increase in tower size and resulting structural support, b) visibility obstruction
caused by surrounding vegetation (e.g. tree canopies), and c) coverage of client
areas achieved from the base tower height and the potential for improvement with
incremental extensions. During the optimisation process performed in this paper,
however, only the base tower height of 12 m is considered, since no actual site
inspections are carried out to determine whether sites are capable of hosting taller
towers. All viewsheds determined during optimisation in this paper are therefore
from a 12 m observer height above the terrain surface. The visible range that was
used in all viewshed analyses is 8 km.

A final factor to consider when determining viewsheds is the curvature of the
earth, which becomes more significant and influential in the determining of LOS
as the distance from the observer increases. The height at each raster point
between the observer and CZ point may be adjusted to simulate the earth’s curva-
ture using a method such as Yoeli’s correction [65], which is also used in ESRI
software. However, at a distance of 8 km from an observer this correction is
minor (approximately �4 m) and thus has not been considered here.

3.3. Evaluation of CWDSs

The process of evaluating a CWDS’s detection potential is described here. The
benchmark Nelspruit system is used as an example and its results are used later
for comparison with optimisation results. The evaluation process integrates some
elements of the real-world approach that was followed by ForestWatch experts in
determining the existing sites.

Two smoke layer heights, such as those illustrated in Fig. 5, were considered
above the Nelspruit client area in Fig. 8: 30 m and 100 m.2 A 500-m buffer was

2 The smoke layer heights were raised from 15 m and 30 m previously used by Heyns et al. [2] to better
reflect practical detection requirements, as advised by ForestWatch decision-makers.
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added to the 30-m smoke layer, while a 4-km buffer was added to the 100-m
layer. In the actual site-selection process, technicians decided to place six of the
towers in Fig. 8 at old watchtower sites and these sites are indicated as ‘‘preferred
sites.’’ These sites were selected without argument because of the existing infras-
tructure, road access and historically proven visibility cover. As a result, a thor-
ough site search and comparison of potential sites was only required to determine
the twenty remaining towers—according to acceptable terrain conditions, accessi-
bility, and visibility coverage potential [2]. It is accepted that, in a hypothetical
green-field exercise with collaboration from ForestWatch experts, the six preferred
sites and their associated tower heights would be used. These towers were there-
fore considered as given, and their coverage with respect to the smoke layers was
determined using their actual heights. Since certain parts of the smoke layers are
already covered by these towers, the placement of the twenty remaining towers
does not require coverage of these areas.

The aim of the optimisation process in this paper is therefore to maximise cover
with respect to the remaining uncovered areas, viewed from above in Fig. 10a, b.
These areas are the CZs: CZ1 at a 30-m smoke height with a 500-m buffer, and
CZ2 at a 100-m smoke height with a 4-km buffer. The twenty existing benchmark

Figure 10. Cover achieved from six preferred towers is removed
from smoke layers at 30 m and 100 m (with buffer sizes of 500 m
and 4 km, respectively) above the client area in Fig. 8 and result in
(a) CZ1, and (b) CZ2, viewed from above. Cover achieved by the
twenty benchmark towers, determined with a detection range of
8 km, is displayed with respect to (c) CZ1 (69.1%), and (d) CZ2
(66.1%).
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towers achieve cover of 69.1% (CZ1) and 66.1% (CZ2) when evaluated using
their actual heights, as shown in Fig. 10c, d.

3.4. Geomorphon Classification

The geomorphon classification process (with typical results as previously illus-
trated in Fig. 3b) was performed for all three regions in Fig. 7 using 30-m SRTM
elevation data, and all classifications were processed in the open-source geo-
graphic resources analysis support system (GRASS) 7.4.0 software environment.
An example of the single line of code used in GRASS to determine geomorphons
for a specified digital elevation model (DEM) is the following:

r.geomorphon elevation=input_dem forms=output_geomorphon_dem search=20

The first expression calls the geomorphon function, the next two expressions set
the input and output DEMs, while the final expression sets the lookup distance
(previously discussed in Sect. 3.4).

Guided by earlier examples from Jasiewicz and Stepinski [42], a lookup distance
of twenty raster points was decided to be sufficient for the purposes of this
research, and was also used for the determination of the geomorphons in Fig. 3b.
By not specifying any other parameters in the command line, all other parameters
are set to the default values of the geomorphon function in GRASS. Descriptions
of these parameters and their effects, as well as more detailed information of the
geomorphon function are available in the software documentation [47].

The geomorphon DEMs returned by GRASS were exported to raster data for
import into ArcGIS software for processing along with all other GIS data previ-
ously discussed in Sect. 3.1.

3.5. Mathematical Problem Formulation

The mathematical formulation of the problem—which is implemented within an opti-
misation software environment—is now presented. The aim of maximising demand
satisfaction given a fixed number of facilities that are available for placement is
known as the maximal covering location problem (MCLP) [66]. In the context of
CWDS optimisation, the demand is the visibility cover required by the points in the
CZs, while the facilities are the cameras placed on the towers. The CWDS planning
problem includes multiple covering objectives, for which a multi-CZ ILP formulation
of the MCLP is introduced here. The parameters used are listed below.

Nt Denotes the number of towers available for placement.

Nc Denotes the number of CZs.

s Denotes the index of feasible sites in the PZ.

dc Denotes the index of demand points in CZ c, where c 2 1; . . . ;Ncf g.
Ndc Denotes the number of demand points in CZ c.

Ndc Denotes the subset of sites in the PZ from which demand point dc in CZ c is visible.

xs Is 1 if a tower is placed at site s, and 0 otherwise.

ydc Is 1 if demand point dc in CZ c is covered, and 0 otherwise.
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The objective can then be written as

maximise Vc ¼
X

dc

ydc 8c 2 1; . . . ;Ncf g ð1Þ

where Vc is the visibility cover of CZ c, subject to the constraints

ydc �
X

s2Ndc

xs 8c 2 1; . . . ;Nc;f g; 8dc ð2Þ

X

s

xs ¼ Nt ð3Þ

xs 2 f0; 1g ð4Þ

ydc 2 f0; 1g: ð5Þ

The objective in (1) is to maximise cover with respect to each CZ c 2 1; . . . ;Ncf g.
Constraint (2) allows a demand point dc to be covered (ydc ¼ 1) only if one or
more cameras are placed at sites in the set Ndc . Constraint (3) ensures that exactly
Nt towers are sited, while constraints (4)–(5) specify binary requirements on the
auxiliary variables.

In order to obtain the solutions on the Pareto front that lie between the single-
CZ solutions (the end-points on the Pareto front in Fig. 6), the weighted-sum
approach is followed. To arrive at the weighted objective function, the Nc objec-
tives in (1) are reduced to a single function using a weight, wc, for each CZ. The
objective is then to

maximise V ¼
X

c

wc
100

Ndc

X

dc

ydc : ð6Þ

By varying the objective weights in multiple runs, a Pareto front approximation
may be traced out. The objective in (6) is subject to the same constraints (2)–(5),
enforced with respect to all CZs. The fraction is included in the objective function
to reflect the maximisation of the percentage of cover achieved with respect to
each CZ, so that the objective function is not biased towards larger CZs with
more demand points.

3.6. Optimisation Process

As discussed in Sect. 2.5, two stages are followed in the optimisation process fol-
lowed in this paper. An overview of this process is provided in Fig. 11. The entire
process in the figure was followed twice in order to compare the results of optimi-
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sation without and with landform exploitation—once using the all-landform PZ in
Fig. 4, and a second time using the PZ limited to selected landforms (determined
in the results section). In the first stage of the optimisation process, the NSGA-II
is employed to determine multiple Pareto front approximations. The sites in the
layouts from the multiple Pareto front approximations are then pooled together,
resulting in a smaller PZ to provide as input into the ILP stage (the same CZs are
again provided as input), solved using the weighted-sum approach and resulting in
an improved Pareto front.

The NSGA-II was run using the authors’ personal code in MATLAB R2019a.
The processing of data to provide as input into CPLEX for ILP optimisation (in-
cluding the automated generation of its data text file) was also performed in
MATLAB. Descriptions of the solution process of the NSGA-II and the parame-
ters that were used for the solutions determined in this paper are available in the
‘‘Appendix’’. CPLEX Studio IDE 12.8.0 was used to solve the weighted-sum
objective function in (6). The following weight combinations were used for the
two CZs: (1.00, 0.00), (0.75, 0.25), (0.5, 0.5), (0.25, 0.75), (0.00, 1.00). The first
and last weight combinations effectively examine the optimal solution for CZ1
and CZ2, respectively. All computations in this paper were run on a Dell 7820
Precision desktop PC, running Windows 10 Pro with an Intel Xeon Silver 4110
processor and 64 GB memory.

3.7. Framework for Analysis and Exploitation of Landforms

The optimisation process in Fig. 11 forms part of the larger landform analysis and
exploitation framework that is followed in this paper. This framework is also pro-
posed as a general process which may be followed in site-selection problems for
facilities with similar coverage requirements to those of CWDSs, and using alter-
native landform classification techniques. A summary of this proposed framework

Figure 11. An overview of the optimisation process followed in this
paper. In the first stage, the NSGA-II is employed to determine
multiple Pareto front approximations. The sites from these
approximations are then pooled together to form a smaller PZ, which
is sufficiently small to be provided as input to an ILP solver, which is
employed to determine CWDS layouts of improved quality.
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is provided in Fig. 12 and follows three stages—distinguished by colours in blue,
green, and red in the figure. The stages are the following:

� Site collection (Blue) The locations of existing facility sites (or historical loca-
tions for facilities that are mobile) are collected and, in a separate process, can-
didate sites are determined by optimisation without landform exploitation (the
process in Fig. 11 with the all-landform PZ).

� Landform analysis (Green) A suitable landform classification technique is selec-
ted and employed to classify the landforms at the existing/historical site loca-
tions and those determined by optimisation. The results of these classifications
are examined, with the aim of identifying exploitable overlaps between land-
forms observed in reality—i.e. real-word decision maker choices and preferences
reflected in existing site locations—and computational optimality.

� Landform exploitation (Red) Once exploitable landforms have been identified,
the original PZ is reduced to these landforms and the optimisation process in
Fig. 11 is repeated with the landform-reduced PZ as input, with the expectation
of improved solution quality within reduced computation times.

The framework is now followed in the next section for the study areas introduced
in Sect. 3.1.

Figure 12. The proposed landform analysis and exploitation
optimisation framework, comprising three stages indicated in blue,
green, and red. First, existing and optimisation-determined sites are
collected (blue), then these sites are analysed using a
suitable landform classification technique to identify
exploitable landforms (green). The selected landforms are then
exploited to reduce the size of the PZ, leading to improved
optimisation results within reduced computation times (red) (Color
figure online).
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4. Results

4.1. Landform Classification Analysis of Existing Sites

The terrains in Fig. 7 were classified using the geomorphon approach, and the
resulting classifications at tower sites are displayed in the bar chart in Fig. 13a.
The chart displays the percentage of towers per landform type in blue. As may be
seen in the figure, ridges and peaks account for the overwhelming majority of
tower landform types. Peaks are the most significant, with 58% of the tower sites
classified as such, while 25% of the towers are found at ridge sites. To put the
tower classifications in the context of their relative surrounding environment, all
sites within a 2-km radius of all the towers were also classified and the results are
displayed in orange. The radius was chosen as 2 km because ForestWatch techni-
cians consider alternative sites within such a range when a potential site has been
identified. Especially noteworthy is the large ratio of tower sites classified as
peaks, compared to the general surrounding terrain also classified as such—58%
compared to less than 3%. Peaks are clearly sought-after, while ridges are also
sought when compared to the surrounding terrain—although to a lesser extent.

A small percentage of towers are observed to be classified other than ridges or
peaks (29 towers, or 18%). A proximity analysis was performed to further investi-
gate this observation. From each of these towers the distance to the nearest ridge
or peak site was calculated. It was determined that 17 of the 29 towers are no fur-
ther than 45 m from a peak or a ridge, while 27 are no further than 95 m. Com-
plete results are displayed as a histogram in Fig. 13b. From discussions with
ForestWatch technicians, the explanation for this is that practical considerations
such as rocky and jagged ground surface conditions and challenging journeys
from roads result in desirable peak and ridge sites sometimes being sacrificed for
less challenging sites nearby which still offer good visibility. The information
encapsulated in Fig. 13 therefore reveal that the sites selected by ForestWatch
experts favour peaks and ridges (according to the geomorphon classification used
in this paper).

The primary conclusion from this analysis is that all 165 towers are either
placed at or very near to ridges and peaks, and as a result, limiting the site search
to geomorphon-classified peak and ridge landforms will provide decision makers
with sites that reflect their preferences and are either (a) practical and ultimately
implementable, or (b) sufficiently close to suitable alternatives.

4.2. Optimisation and Analysis with all Landforms

Fifteen NSGA-II Pareto front approximations were generated using as input the
PZ in Fig. 4 which has not been limited to specific landforms. A total of 2 097
solutions were returned by the approximations and are indicated by the orange
crosses in Fig. 14. Further investigation revealed that these solutions comprise dif-
ferent combinations of 564 unique sites.

The 564 unique sites were then used as a new set of candidate sites for ILP
optimisation. The weighted optimal solutions are displayed as red crosses in
Fig. 14. Further analyses revealed that the five ILP solutions are unique combina-
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tions of 47 sites. The total heuristic computation time was 174 h and 40 min,
while the ILP computation time of the five weighted runs totalled 3 h and 7 min.

The classifications of the constituent sites of the all-landform optimisation
results are displayed in Fig. 15 as a bar chart of the average percentage per land-
form type. Peaks and ridges dominate the 564 sites obtained by the heuristic runs,
as well as the 47 sites from weighted optimisation. Specifically, 87% of the sites
identified by the heuristics were either peaks or ridges. Even more dramatically, of
the 47 sites contained in the five weighted optimal solutions, 94% are classified as
peaks or ridges. Only three of these 47 sites are not peaks and ridges, and these

Figure 13. (a) Landform type percentages of 165 towers and
landform type percentages of all terrain within a 2 km radius from all
the towers. (b) Histogram showing the distances of towers that are
not classified as ridges or peaks from the nearest points that are
classified as ridges or peaks.
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three sites are all classified as spurs. Further investigation revealed that all three
were directly adjacent to a ridge site.

Figure 16 shows the distance to the nearest peak or ridge site as measured from
sites that are not classified as peaks or ridges, for the sites in the heuristic and
weighted solutions respectively. For the heuristic runs, 63 of the 72 sites that were
not peaks or ridges were within 50 m of a peak or ridge, as were the three ILP-de-
termined spur sites mentioned above. Based on the information provided in
Figs. 15 and 16 it may be concluded that, even when the candidate sites are not
limited to specific landforms, the final sites determined by the optimisation process
are destined to arrive at geomorphon-classified peaks and ridges, or close.

4.3. Optimisation and Analysis After Landform Exploitation

In the above sections, peaks and ridges were identified as exploitable landforms
based on the existing tower-site landform analysis and the results of all-landform
optimisation. The PZ in Fig. 4 is now limited to geomorphon-classified peaks and
ridges only and the result is displayed in Fig. 17. Compared to the original PZ
which comprises 741,813 candidate sites, the new PZ comprises only 146,874
sites—a significant reduction of 80% in the number of candidate sites.

Figure 14. Results in objective function space of multiple heuristic
runs (the orange crosses), and subsequent weighted optimal runs (the
red crosses), determined with respect to the all-landform PZ in Fig. 4
(Color figure online).
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The optimisation process in Fig. 11 was repeated, now using the landform-lim-
ited PZ as input—using the same heuristic parameters and ILP weight sets as
before. Fifteen Pareto front approximations obtained by the heuristic produced
2138 solutions—indicated by the grey circles in Fig. 18—which are combinations

Figure 15. Average percentage of sites per landform type per
optimisation stage for the solution process followed with all landform
types.

Figure 16. Distances of sites that are not classified as ridges or
peaks (the spurs, slopes and hollows in Fig. 15) from the nearest
points that are classified as ridges or peaks, per optimisation stage.
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of 476 unique sites. The solutions previously obtained by the all-landform PZ
optimisation process, in Fig. 14, are also displayed in Fig. 18 for comparison pur-
poses. The 476 unique sites from the landform-limited heuristic runs were then
used as input for weighted ILP runs, and the resulting solutions are displayed as
black circles in Fig. 18. The five solutions are unique combinations of 42 sites.

The total heuristic computation time using the new PZ was 149 h and 34 min,-
while the ILP computation time of the five weighted runs totalled 1 h and 59 min.

5. Discussion

A comparison between the results of optimisation with and without the exploitation of
landforms in Fig. 18 provides evidence that landform classification is beneficial to the
planning of CWDS layouts—without compromising solution quality and achieved
within reduced computation times. Comparing the results of the heuristic runs, con-
spicuous improvement in objective function values is observed in Fig. 18 when using
peaks and ridges only. This was achieved in 149 h and 34 min, which is 25 h (14.3%)
faster than the all-landform runs. Comparing the weighted optimal solutions, no dete-
rioration in solution quality is apparent by limiting the candidate sites to peaks and
ridges, and in some cases, the solution quality may be improved. However, a signifi-
cant reduction in computation time of 1 h 8 min (36.4%) was observed.

Of particular note is that one weighted solution from the peaks/ridges-only PZ
dominates the benchmark system with respect to both objectives—significant
because the optimisation approach only locates 12-m towers, while the benchmark
system is evaluated with actual tower heights that average 42 m. The installation
cost of a 12-m tower is more than three times less than that of a 42-m tower,3

Figure 17. Update of the PZ in Fig. 4, limited to peaks and ridges.

3 Determined from tower installation costs provided by ForestWatch technicians.
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indicating substantial potential cost savings if the optimisation approach is fol-
lowed in future CWDS planning. However, the optimisation approach does not
take vegetation growth around the sites into account (the terrain model only
includes surface elevation), and increases in tower heights above 12 m may still be
required to rise above vegetation, depending on site inspections. Nevertheless, the
same terrain model is used to determine the visibility of the benchmark towers at
an average of 42 m and the optimisation-determined solutions at 12 m.

The effect of vegetation interference (such as tree canopies) surrounding a tower
site is a factor that plays a deciding role in the height of a tower, but is problem-
atic to implement within the optimisation framework. This is because the vegeta-
tion around the towers regularly changes in this environment (forestry
compartments being harvested or vegetation cleared for fire management, etc.)
and because vegetation interference also depends on the terrain surrounding a
tower. This is because trees with a high canopy will interfere more with a tower’s
visibility if the area surrounding the tower is flat, than if trees with the same
canopy height are found on slopes running downward from the tower—in which
case only the immediately surrounding trees have a noteworthy impact on the

Figure 18. Results in objective function space of multiple heuristic
runs (the orange crosses and grey circles), and subsequent weighted
optimal runs (the red crosses and black circles). Solutions that are
orange and red crosses were determined with respect to the original
PZ in Fig. 4, while solutions that are grey and black circles were
determined with respect to the same PZ reduced to peaks and ridges
only (Fig. 17) (Color figure online).
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tower’s visibility. In practice, trees surrounding a future tower site are sometimes
cleared out to make space for the required structures, which also improves visibil-
ity. Including vegetation data is therefore not advised, because of its ever-chang-
ing nature. Instead, using the shortest tower height in the optimisation process is
the best approach, because the returned results should be considered worst-case
scenario. Increasing tower heights at proposed sites is inevitable, and these increa-
ses only improve the results calculated for 12-m towers once obstructions are
cleared.

The resolution of terrain data used plays a role in the optimisation process.
Here, 30-m SRTM data were used. Higher data resolutions are available, and
offer improved accuracy in terms of the terrain representation and associated visi-
bility computations. Higher resolution data can help to detect finer details in the
terrain’s topography and smaller visibility obstructions that can be detected by
higher-resolution satellite measurements and which may be overlooked at lower
resolutions (such as a boulder or local elevated area nearby a candidate site). It
has been shown how a DEM’s resolution plays a significant role in a site’s visibil-
ity computations, particularly in its nearby vicinity [64]. The detection of such
obstructions can play a significant role in the candidate site’s visibility computa-
tions, and the overall visibility determined for a CWDS layout. Nevertheless, even
if such nearby obstructions may be determined at higher resolutions, their impact
may not be problematic in reality because the tower can simply be raised to over-
look such an obstruction. These obstructions may therefore be more of a concern
in terms of the terrain’s suitability for tower installation and access and the use of
higher resolution should therefore be preferred for these reasons. However, higher
resolution data results in increased computational complexity because of the lar-
ger number of candidate sites. This provides further motivation to implement the
research presented in this paper so that the number of candidate sites can be effec-
tively reduced to a manageable number.

Different landform classification techniques exist which may be employed in the
landform exploitation framework. The geomorphon approach was selected here
because of its simplicity and availability in open-source software. The implementa-
tion of other techniques is certainly possible, and depends on user preference. As
long as the stages in the framework of Fig. 12 are followed, it should be possible
to emphasise desireable sites regardless of which classification technique is
employed—with the end result being that the landform-limited PZ returns solu-
tions that are superior, yet practical, compared to using a PZ that contains all
landforms.

The parameters of each technique are similarly of interest, as they may return
markedly different results. Consider, for example, the lookup distance specified for
the geomorphon approach (discussed in Sect. 3.4). A lookup distance of twenty
raster cells was used here. In post-analysis, the terrain was again classified using a
lookup distance of ten raster cells. When analysing the 42 sites in the weighted
sum solutions that were returned for the peaks/ridges-only PZ, 41 of these were
also classified as peaks or ridges using the classes returned with the smaller lookup
distance. The one site that was classified otherwise was a spur, with 4 of its neigh-
bouring sites classified as ridges. Using a lookup distance of ten cells would there-
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fore return similar results since the superior sites remain included and the one site
may be substituted by an immediate neighbour by the optimisation process. How-
ever, what is noteworthy is that the PZ limited to peaks and ridges using the
smaller lookup distance is comprised of 108,314 candidate sites, compared to the
146,874 in the PZ using a lookup distance of twenty. Therefore, similar results in
solution quality may be achieved, but with reduced complexity and within reduced
computation times due to a decrease of 38,560 (26%) in the number of candidate
sites. Similar improvements may be possible upon inspection of the effects of vari-
ations in other parameters, or by implementing other classification techniques.

The heuristic stage of the optimisation process followed in this paper is essential
for reducing the number of candidate sites so that improved results are possible
with the second optimisation stage. The NSGA-II is one of many algorithms that
may be used for this purpose. While the NSGA-II has been used in various simi-
lar problems and has achieved good results [2, 18, 20, 56, 59], alternatives may be
investigated to reveal if better solutions can be discovered (also considering com-
putation time). Examples include simulated annealing [67], the strength-pareto
evolutionary algorithm 2 [68], and the hybrid geospatial algorithm [61].

6. Conclusion

The implementation of landform classes to improve CWDS tower-site selection
optimisation was investigated. A preliminary analysis categorised 165 existing tow-
ers from three ForestWatch CWDSs according to geomorphon landform types—the
first time such a classification has been performed for actual sites of facilities with
visibility-based objectives. It was found that 136 (or 82%) of these towers were sited
at peak or ridge sites, while those that are sited otherwise are never far away from
peaks or ridges. Optimisation methods were then employed to determine candidate
CWDS layouts for a forestry area in the Nelspruit region of South Africa, currently
monitored by an existing ForestWatch CWDS—taking as input candidate sites that
were not limited to specific landforms. The results complemented those of the prac-
tical tower classification exercise; peaks and ridges made up 87% of the sites identi-
fied by the heuristic stage, while 94% of the sites in the weighted optimal solutions
were classified as peaks or ridges. Based on these results, the PZ was reduced to
geomorphon-classified peaks and ridges only. While the original all-landform PZ
comprised 741,813 candidate sites, it was possible to achieve an 80% reduction in
the number of candidate sites to 146,874 when considering peaks and ridges only.

The optimisation results provided clear evidence that landform classification is
beneficial to the planning of CWDS layouts without compromising solution qual-
ity (in fact, indicating potential improvement in solution quality), while significant
reduction in computation times was achieved. Furthermore, the analyses per-
formed in this paper revealed the practical functionality of implementing landform
exploitation. The selected landforms, of course, depend on the landform classifica-
tion technique employed—and could also depend on the type of facility investi-
gated—and other classification techniques may suggest the selection of different
landforms. A notable benefit of the landform exploitation framework presented
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here is that it may be employed with various terrain types (rough, flat, etc.), as
long as a suitable landform classification approach and parameter settings are
employed.

The work presented here may be easily replicated for use with other applica-
tions that require the placement of facilities with line-of-sight-based maximisation
objectives. Examples from the literature in which site-selection approaches were
followed that may well have benefited from the work presented here include mili-
tary equipment such as signal jammers [16] and radars and weapons [17], cellular
transmitters [11–13], and weather radar [14, 15]. Caution should, however, be
taken to avoid the haphazard selection of landform types to consider for place-
ment, while the landform classification technique to employ also requires investi-
gation. The hope is that the framework proposed and followed in this paper
(Fig. 12) provides a guideline for such replication.
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Appendix

The NSGA-II is a genetic algorithm, and a candidate CWDS layout is represented
as a chromosome string of feasible tower site numbers [58, 69]. The site numbers
are pre-determined by an indexing scheme—typically derived with respect to row
and column indices—for all the sites within the PZ’s raster representation [58]. A
chromosome 23-120-8779-13065, for example, represents a candidate CWDS with
four towers located at sites 23, 120, 8779 and 13065. Evolution-inspired popula-
tion progression processes and chromosome modification operators are performed
on a randomly generated population of such candidate CWDS chromosomes until
some termination criterion is met [69]. A typical termination criterion is when the
successive populations reach a point where they fail to significantly improve on
the solution quality of previous generations [61]. Solutions which perform well
with respect to the objective functions are normally selected for modification as
‘‘parents’’—meaning that the offspring solutions typically exhibit some of the
strong properties of their parents.

Two mechanisms are utilised by the NSGA-II to explore new solutions. Cross-
overs are performed between sub-strings of parent chromosomes and result in new
offspring solutions that consist of new site combinations that are inherited from
the parent solutions [58, 69]. Parents are selected for crossover from a smaller
pool of randomly selected solutions from the population (called a tournament
pool), and superior solutions from the smaller pool are selected for crossover—re-
sulting that the offspring solutions typically exhibit some of the strong properties
of their parents. Not all parent solutions chosen by tournament selection, how-
ever, undergo crossover. Instead, crossover is subject to a crossover probability
[69]. Mutation follows crossover and promotes site diversity by stochastically
introducing new, unexplored site locations into the chromosomes, instead of sim-
ply exchanging already explored sites by means of crossover [58, 69]. Mutation
occurs for each offspring solution from the crossover process with a mutation
probability.

For readers interested in the specific parameters, the following values were used.
The population size was chosen as 1400, the tournament size was 4, the crossover
probability was 0.9 and the mutation probability was 0.2 (which is unusually
high). Because crossover does not alter the sites in a solution combination (only
the combination), it lacks the inherent mutation that is present in traditional bin-
ary representations [70]. The unusually high mutation probability after crossover
therefore compensates for this.
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17. Tanergüclü T, Mara s H, Gencer C, Aygüneş H, (2010) A decision support system for
locating weapon and radar positions in stationary point air defence. Inf Syst Front
14:423–444

18. Heyns AM, Van Vuuren JH (2018) Multi-type, multi-zone facility location. Geogr Anal
32(11):1434–1444

19. Franklin WR (2002) Siting observers on terrain. In: Richardson DE, van Oosterom P
(eds) Advances in spatial data handling Springer, Berlin, pp 109–120

20. Kwong WY, Zhang PY, Romero D, Moran J, Morgenroth M, Amon C (2014) Multi-
objective wind farm layout optimization considering energy generation and noise propa-
gation with NSGA-II. J Mech Des 136(9):1–10

21. Heyns AM, Van Vuuren JH (2015) An evaluation of the effectiveness of observation
camera placement within the MeerKAT radio telescope project. S Afr J Ind Eng 26:1–
10

22. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M,
Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M,
Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys .
https://doi.org/10.1029/2005RG000183

23. Greysukh VL (1967) The possibility of studying landforms by means of digital comput-
ers. Soviet Geogr 8:137–149

2300 Fire Technology 2021

https://doi.org/10.1029/2005RG000183


24. Johnston EG, Rosenfeld A (1975) Digital detection of pits, peaks, ridges, and ravines.
IEEE Trans Syst Man Cybern SMC–5:472–480

25. Peucker TK, Douglas DH (1975) Detection of surface-specific points by local parallel

processing of discrete terrain elevation data. Comput Graphics Image Process 4:375–
387
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