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Abstract 

The medical properties of metals have been explored for centuries in traditional medicine for the treatment of infec-
tions and diseases and still practiced to date. Platinum-based drugs are the first class of metal-based drugs to be clini-
cally used as anticancer agents following the approval of cisplatin by the United States Food and Drug Administration 
(FDA) over 40 years ago. Since then, more metals with health benefits have been approved for clinical trials. Interest-
ingly, when these metals are reduced to metallic nanoparticles, they displayed unique and novel properties that were 
superior to their bulk counterparts. Gold nanoparticles (AuNPs) are among the FDA-approved metallic nanoparticles 
and have shown great promise in a variety of roles in medicine. They were used as drug delivery, photothermal (PT), 
contrast, therapeutic, radiosensitizing, and gene transfection agents. Their biomedical applications are reviewed 
herein, covering their potential use in disease diagnosis and therapy. Some of the AuNP-based systems that are 
approved for clinical trials are also discussed, as well as the potential health threats of AuNPs and some strategies that 
can be used to improve their biocompatibility. The reviewed studies offer proof of principle that AuNP-based systems 
could potentially be used alone or in combination with the conventional systems to improve their efficacy.
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Introduction
Medicine is among the many fields that have benefitted 
from nanotechnology. Nanotechnology emerged with a 
lot of opportunities to improve and develop novel diag-
nostic and therapeutic agents through the use of nano-
materials [1, 2]. AuNPs, in particular, exhibit unique 
physicochemical properties and good chemical stability. 
They are easy to functionalize with almost every type of 
electron-donating molecules, through various chem-
istries or based on their strong affinity for thiolated 

molecules [3, 4]. Due to their tiny size, AuNPs have a 
larger surface area and high drug loading capacity. Mul-
tiple moieties can be incorporated in the AuNPs for bio-
medical applications; these include targeting molecules 
to increase specificity, contrast agents for bio-imaging 
and to monitor disease response to drugs in real time, 
and therapeutic agents for disease treatment [5, 6]. Inter-
estingly, even without any added biomolecules, AuNPs 
are capable of targeting, imaging and treatment of dis-
eases. Based on their size-dependent properties, novel 
AuNP-based systems can be created for use in various 
biomedical applications [7].

AuNPs are made from a metal precursor that is ther-
mostable and are therefore very stable and non-biode-
gradable. Bulk gold is used in medicine and had proven 
to be bio-inert and non-toxic [8, 9]; hence, the gold core 
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in the AuNPs will essentially display similar properties 
[3, 10]. AuNPs and their applications have been exten-
sively studied for over five decades and have shown great 
promise as theranostic agents in preclinical [5, 11–13] 
and clinical studies [14–18]. Many more opportunities 
for novel AuNP-based systems exist as discussed in this 
review. AuNPs are already explored in clinical trials as 
drug carriers for the treatment of late stage cancers [16, 
17], and as PT agents in the treatment of prostate can-
cer [19] and acne [18]. Without undermining the health 
and regulatory issues that surround the use of AuNPs 
[20], a future for these systems in biomedicine is at hand. 
Multifunctional AuNP-based systems that are capable of 
combating drug resistance with localized and improved 
efficacy are possible [11, 21, 22]. The review highlights 
the biological properties of AuNPs in preclinical and 
clinical studies, by reflecting on their bio-applications as 
both diagnostic and therapeutic agents. Their potential 
health threats and strategies that were used to overcome 
their limitations are also described. Finally, the future 
perspectives of the AuNPs in medicine are highlighted.

Gold Nanoparticles
The popularity of AuNPs in medical applications has 
gained a lot of momentum due to their unique chemi-
cal and physical properties. AuNPs are solid colloidal 
particles that range in size from 1 to 100  nm [23]. The 
applications of AuNPs in biology are rooted in their 
physicochemical properties, not limited to their size, 
surface plasmon resonance (SPR), shape and surface 
chemistry [3, 10]. These parameters influence their activ-
ity and make them perfect candidates for use in disease 
diagnostics and treatment, either as delivery, sensitizing, 
contrasts, or therapeutic agents. Their small size is asso-
ciated with a larger surface area, which allow for surface 
modification and attachment of multiple payloads, such 
as targeting, imaging and therapeutic agents [4, 24–26]. 
Their small size also makes it possible for the NPs and 
their cargo to cross through biological barriers that are 
otherwise hard to reach and penetrate [11].

AuNPs are increasingly being recognized as feasible 
diagnostic, therapeutic and theranostic (an agent that 
can simultaneously be used to diagnose and treat a dis-
ease) agents, which has potential to address the off-target 
effects associated with conventional therapies. However, 
AuNPs possess different properties and functions com-
pared with their biocompatible bulk counterparts, which 
could be hazardous to human health [27–29]. The clini-
cal use of bulk gold compounds for disease treatment is 
ancient practice and certified as safe [8]. In recent years, 
research has shown that AuNPs have similar or improved 
medical properties [29]. Due to their unique optical, 
chemical and physical properties, AuNPs often present 

novel properties compared to the bulk gold [30, 31] and 
can serve as diagnostic and therapeutic agents [5].

Synthesis of AuNPs
AuNPs can be produced in several ways following either 
the top-down or the bottom-up approach. The top-down 
approach uses physical and chemical methods to produce 
desired sizes from the bulk material, while the bottom-
up approach involves chemical methods to assemble the 
building blocks in the formation of nanosized systems 
[32, 33]. The physical methods (such as milling, photo-
chemical, radiation and lithography) use extensive energy 
and pressure to scale down bulk materials into  10–9 bil-
lionth of a meter in size [10, 32, 34]. Nucleation processes 
are easily controlled when using the physical methods, 
reducing agents are not required, and with some of these 
methods the synthesis occurs simultaneously with the 
sterilization of the NPs. However, the physical technolo-
gies are often costly, not readily available and require 
specialized equipment. Moreover, capping and stabiliz-
ing agents may not survive the high energy processes 
involved in these processes [34].

The bottom-up approach is mostly preferred in the 
synthesis of AuNPs as it is rapid, is easy and does not 
require the use of sophisticated equipment [33–35]. It 
is based on the chemical method developed by Turk-
evich in 1951 (Fig.  1A), which use citrate for reduction 
and stabilization of a gold precursor, resulting in the pro-
duction of 15-nm spherical AuNPs [3, 10, 23, 33, 36, 37]. 
The method was further modified by varying the ratio 
of citrate to gold precursor content and resulted in size 
diameter range of 15–150 nm AuNPs (Fig. 1B) [10, 24]. A 
number of reducing agents such as sodium borohydride, 
cetyltrimethylammonium bromide (CTAB) and ascorbic 
acid were also introduced. Some of the chemical reduc-
ing agents are unfortunately toxic [33, 34, 36] and usually 
passivated by adding stabilizing agents on their surface 
such as polyethylene glycol (PEG), gum arabic, polysac-
charides and bio-active peptides [37, 38].

Greener approaches such as microwave-induced 
plasma-in-liquid process (MWPLP) and green nanotech-
nology have been explored in synthesis AuNPs to avoid 
the use of toxic chemical reducing agents. The MWPLP 
uses microwaves to generate nucleation of metallic NPs 
and does not require any reducing agents, and the energy 
required for the synthesis is very low [34]. Green nano-
technology, on the other hand, uses natural compounds 
originating from plants and microorganisms as a source 
of reducing agents in the synthesis of biogenic AuNPs 
[12, 33, 39–41]. Green nanotechnology is considered as 
eco and environmentally friendly and thus more suitable 
for biomedical applications. Plant-mediated synthesis is 
more economical than using microorganisms. Moreover, 



Page 3 of 27Sibuyi et al. Nanoscale Research Letters          (2021) 16:174  

the synthesis can be performed in just one step, and the 
NPs are easier to purify. In addition, plants are renew-
able; various parts of the plants such as leaves, stems, 
barks, roots, flowers and fruits can be harvested with-
out killing the plant and used for synthesis. Extracts pre-
pared from the plant material contain phytochemicals, 
proteins and enzymes that can function as the reducing, 
stabilizing and capping agents [10, 12, 24, 34, 35, 40, 42]. 
Epigallocatechin from green teas [42] and mangiferin 
(MGF) from mangoes [12, 43] are among plant-derived 
compounds that have been extensively used to synthe-
size AuNPs [34]. More information on these methods is 
extensively reviewed in the following references [10, 24, 
34, 35].

Biological Application of AuNPs
The role and significance of AuNPs in medical science 
are undoubtedly becoming more visible, which is backed 
by the increasing number of studies demonstrating their 
multifaceted application in a wide range of biomedical 
fields. The biocompatibility of AuNPs is attributed to the 
long history of gold in the treatment of human diseases, 
which goes back to 2500–2600 BC. Chinese and Indian 
people used gold for the treatment of male impotence, 
epilepsy, syphilis, rheumatic diseases and tuberculosis. 
China discovered the longevity effect of red colloidal 
gold, which is still practiced in India as part of Ayurvedic 
medicine for rejuvenation and revitalization. Cinnabar-
gold (also known as Makaradhwaja) is used for improved 
fertility in India. In the Western countries, gold has been 
used to treat nervous disorder and epilepsy. No toxicity 
was reported for its use in both in vitro and in vivo stud-
ies [8, 44, 45]. Since then, oral and injectable gold com-
pounds continued to be used as treatments for arthritis 
[9, 46] and have also been shown to have anticancer 

effects [8]. Similar and in some instances improved 
effects were also reported for AuNPs, which are emerg-
ing as promising agents for disease diagnosis [47–49] and 
therapy [3, 29, 50, 51].

AuNPs have a larger surface area that can be exploited 
for biomedical applications, by attaching various bio-
molecules to suit a desired function. These can include 
targeting moieties to help recognize disease-specific 
biomarkers, contrasts agents for bio-imaging and thera-
peutic agents for treatment of diseases [24, 25]. The 
advantage of using AuNPs over other nanomaterials is 
that they can be easily functionalized using various chem-
istries as demonstrated in Fig. 2 [4, 26]. AuNPs have high 
affinity for thiolated molecules, and thiol-gold binding is 
the most commonly used method to adsorb molecules 
onto the NP surface [4]. Affinity-based chemistries such 
as biotin-streptavidin binding and carbodiimide coupling 
are also used. AuNPs are used in three main areas of bio-
medicine: delivery of pharmaceuticals, diagnostic and 
therapeutic purposes [24, 35], and have demonstrated a 
huge potential in these areas as discussed below.

AuNPs as Drug Delivery Agents
The most common application of AuNPs is as deliv-
ery vehicles for drugs [11, 18, 52], vaccines [53] and 
gene therapy [24, 32]. AuNPs possess properties that 
can resolve most of the issues associated with conven-
tional therapies such as drug resistance, low drug dis-
tribution, biodegradation and early drug clearance [11]. 
AuNPs can significantly reduce drug dosage, treatment 
frequency and capable of transporting hydrophobic and 
insoluble drugs. They are considered to be bio-inert and 
can mask their cargo from attack by immune cells, pro-
tect the drugs from proteolytic degradation as they travel 
through the circulatory system, and thus increase the 

Fig. 1 AuNP formulation through one-phase system by citrate reduction (A) and two-phase system reduction followed by stabilization and 
functionalization via ligand exchange reaction, Brust–Schiffrin method (B). Reproduced with permission [36]. Copyright 2013, De Gruyter. TOAB 
tetrabutylammonium bromide, SH thiolated molecules
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drug circulation time. These factors can readily increase 
the efficacy of the drugs by concentrating and retaining 
them in the diseased tissues with little or no effect to the 
normal tissues [25].

The use of AuNPs in cancer treatment has been 
extensively studied [17, 37, 54], and over the years it 
has been extended to other diseases such as obesity [50, 
55, 56] and acne [18]. Nano-based systems are smaller 
than most cellular components and can passively trans-
verse through cellular barriers by taking advantage of 
the enhanced permeability and retention (EPR) effect 
on the vasculature of the diseased tissues [25]. The EPR 
in a pathological state is characterized by excessive 

angiogenesis and increased secretion of permeability 
mediators, which can enhance AuNP uptake by the 
diseased tissues. These characteristics are only associ-
ated with pathological states and not normal tissues, 
which provide an opportunity for selective targeting of 
the AuNP conjugates [25]. AuNPs are attractive as drug 
carriers as they can carry multiple molecules simulta-
neously, further diversifying their properties. This is a 
desirable trait in medicine in which most of the AuNP 
bio-applications are rooted upon, as AuNPs can be tai-
lored for a specific biomedical function. This can help 
control the way they interact with cellular organelles 
and therefore hold promise for future development of 

Fig. 2 Synthesis and functionalization of AuNPs. Biomolecules with functional groups are first adsorbed on the NP surface through gold-thiol 
affinity. Then, other functional groups such as amine group can be used to bind molecules with a carboxyl groups to attach targeting or drug 
moieties. Adapted from [32]
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effective diagnostic and treatment modalities for vari-
ous diseases [4].

AuNP‑Based Diagnostic Systems
The emergence of nanotechnology has raised the stance 
in developing detection systems that are rapid, robust, 
sensitive and highly competitive compared to the con-
ventional diagnostic tests [48]. Nanomaterials are usually 
integrated in existing biosensing platforms for the detec-
tion of gases, DNA and protein markers involved in the 
development of diseases [47]. Among the various nano-
materials (which include metallic, polymeric, magnetic 
and semiconductor NPs) used in diagnostics, AuNPs 
have been widely used in biosensors, electrochemical 
sensors and chromogenic assays to detect or sense the 
presence of disease biomarkers [49]. Their localized SPR 
(LSPR), fluorescence resonance energy transfer (FRET), 
surface-enhanced Raman scattering, conductivity, redox 
activity and quantized charging effect make them an ideal 
tool for imaging and detection of target molecules [10, 
24]. Their electronic and optical properties, and ability to 
scatter visible and near-infrared (NIR) light are compat-
ible and measurable with various technologies such as 
microscopic techniques (electron, confocal and dark-field 
light scattering) [57], computed tomography (CT), PT 
heterodyne imaging technique, UV–Vis and Raman spec-
troscopy [24, 35].

The development of AuNP-based diagnostic systems 
involves modification of the AuNP surface, for example, 
through the attachment of biomolecules that recognize 
disease biomarkers [3, 24, 58]. Lateral flow assays (LFAs) 
are probably the best-known example of nanotechnol-
ogy-based diagnostic tools. LFAs typically make use of 
AuNPs of about 30–40 nm because smaller particles have 
a very small extinction cross sections, whereas larger 
particles are usually unstable for use in these assays [59]. 
In addition, other molecules/enzymes that can trigger 
changes in SPR, conductivity and redox of AuNPs are 
included. These indicators give a detectable signal after 
binding of analytes to the AuNP conjugates [24], lack or 
presence of signal will then reflect the absence or pres-
ence of the target molecule or the disease. The signal gen-
erated by AuNPs is chemically stable, long-lasting and 
consistent when used in different test formats: test tube, 
strip, in  vitro and in  vivo [24]. Hence, their application 
has remarkably increased the speed and success of diag-
nostic assays.

Colorimetric AuNP‑Based Assays
In colorimetric assays, AuNPs produce a visual signal 
(usually a color change) that can be detected with the 
naked eye without the use of advanced instruments. 
Generally, a colloidal solution of AuNPs has a ruby red 

to grape color that is highly dependent on the interparti-
cle distance [60, 61]. Binding of an analyte to the AuNPs 
modified with molecular bio-recognition elements (e.g., 
antibodies, peptides, aptamers, enzymes, etc.) induces a 
distinct shift in the LSPR, consequently resulting in the 
change of color from ruby red to blue [60, 62, 63]. The 
intensity of color is directly proportional to the concen-
tration of an analyte and used to confirm the presence 
and state of the disease. The AuNP-based colorimetric 
diagnostics has been used successfully in the detection of 
influenza A virus [64], Zika virus [65], T7 Bacteriophage 
[66], Mycobacterium tuberculosis [67], and recently, for 
the detection of severe acute respiratory syndrome-coro-
navirus-2 (SARS-CoV-2) [60, 68].

An example of a colorimetric AuNP-based assay was 
demonstrated for the detection of SARS-CoV-2 [60], a 
virus that causes a highly infectious Corona virus disease 
2019 (COVID-19) [60, 68]. With this assay, the presence 
of the virus was reported by a simple color change; no 
instrumentation was required to do the diagnosis. The 
current clinical diagnostic tests of this virus either use 
the reverse transcriptase real-time polymerase chain 
reaction (RT-PCR) assay, which takes 4–6  h, while the 
rapid point-of-care (PoC) systems detect antibodies that 
might take several days to appear in the blood. In com-
parison, the colorimetric AuNP-based assay was more 
robust and faster as demonstrated in Fig.  3. Incubating 
AuNPs-tagged with antisense oligonucleotides (ASOs) 
in the presence of SARS-CoV-2 RNA samples resulted 
in the formation of blue precipitate within ~ 10  min. In 
a SARS-CoV-2-positive test, binding of the ASOs to the 
N-gene in the nucleocapsid phosphoprotein of the virus 
induced a blue color that was visually detected. The test 
was very sensitive and had a limit of detection of 0.18 ng/
μL for the SARS-CoV-2 RNA [60].

AuNP-based LFAs follow the same principle as the 
one shown in Fig. 3; however, instead of a color change 
in a solution, a visible line is formed on a test strip when 
an analyte is present. In the presence of an analyte, 
AuNPs were captured on the test line and formed a dis-
tinct red line, which was visualized by the naked eye. 
The intensity of the line is determined by the number of 
adsorbed AuNPs [69]. An example of a simple and rapid 
AuNP-based LFA is shown in Fig.  4, for the detection 
of Pneumocystis jirovecii (P. jirovecii) IgM antibodies in 
human sera. The 40  nm AuNPs were conjugated with 
the recombinant synthetic antigens (RSA) of P. jirovecii, 
either the major surface glycoprotein or kexin-like ser-
ine protease, which were used as an indicator for the 
presence or absence of P. jirovecii. In a positive test, the 
P. jirovecii IgM was captured by the AuNP-RSA conju-
gate at the conjugate pad. The AuNP-RSA/IgM complex 
then flows to the analytical membrane where it binds the 
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Fig. 3 AuNP-based colorimetric diagnostic system. Selective naked eye detection of SARS-CoV-2 RNA by the ASO-capped AuNPs. Reproduced with 
permission [60]. Copyright 2020, ACS Nano

Fig. 4 AuNP-based LFAs for detection of IgM P. jirovecii antibodies. The presence (positive test) or absence (negative control) of the P. jirovecii 
antibodies could be differentiated by the AuNP reddish color in both test and control lines, or only in the control line, respectively. Reproduced with 
permission [70]. Copyright 2019, Frontiers in Microbiology
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anti-human IgM (test line) and the excess move to the 
anti-RSA antibodies (control line), resulting in two red 
lines. The negative test will only have a red color on the 
control line [70]. An independent study used the AuNP-
based LFA to selectively detect the SARS-CoV-2 IgM as 
confirmed by the appearance of the red lines in both test 
and control lines [68]. The color was visually detected by 
naked eyes within 15  min in the two systems, and only 
10–20 μL serum samples were needed per test [68, 70].

One of the first examples of the use of AuNPs as a sign-
aling probe on a LFA was for the detection of Ramos 
cells; the TE02 aptamer was used as a capture probe and 
the TD05 aptamer as a detection probe. The aptamer-
AuNP biosensor can visually detect a minimum of 4 000 
Ramos cells without any instrumentation and 800 Ramos 
cells with a portable strip reader within 15  min. Using 
this sandwich detection biosensor, the assay successfully 
detected Ramos cells spiked in human blood [71] and was 
used as a proof of concept for developing a rapid, sensi-
tive and low-cost systems for qualitative and quantitative 
detection of circulating cancer cells. Since then, various 
AuNP-based LFAs have been designed for the diagno-
sis of numerous infectious diseases, including diseases 
caused by Pneumocystis pneumonia [70], Ebola virus 
[72], HIV, Hepatitis C virus, and Mycobacterium tubercu-
losis [73] and more recently SARS-CoV-2 virus [68].

AuNP‑Based Imaging Systems
AuNPs have been intensively investigated for applica-
tions in bio-imaging because of their ability to absorb and 
scatter light matching their resonance wavelengths, up to 
 105 times more than the conventional fluorophores [74]. 
AuNPs have a higher atomic number and electron density 
(79 and 19.32  g/cm3) as compared to the conventional 
iodine-based agents (53 and 4.9 g/cm3), thus proving to 
be better contrast agents [24]. The AuNPs amass on the 
diseased cells or tissues and induce a strong X-ray attenu-
ation making the targeted site highly distinct and easily 
detectable. AuNPs are attached to chemical moieties and 
molecular bio-recognition agents that can selectively tar-
get specific antigens to induce distinct and target-specific 
contrast for CT imaging [75].

In vitro targeted molecular CT imaging system was 
achieved by using AuNPs functionalized with a RNA 
aptamer that binds to the prostate-specific membrane 
antigen (PSMA). The AuNP–PSMA aptamer conju-
gate showed more than fourfold CT intensity for the 
PSMA-expressing prostate (LNCaP) cells compared to 
the PC-3 prostate cells, which lacks the target receptor 
[76]. Similarly, AuNP-diatrizoic acid-AS1411 aptamer 
conjugate was localized in CL1-5 (human lung adeno-
carcinoma) cells and CL1-5 tumor-bearing mice. The 
AS1411 aptamer targets nucleolin (NCL) receptor that 

is expressed by the CL1-5 cells on the cell surface, while 
diatrizoic acid is an iodine-based contrast agent. The 
AuNP–diatrizoic acid–AS1411 aptamer conjugate had 
a linear attenuation curve with a slope of 0.027  mM Au 
Hounsfield unit  (HU−1) indicating accumulation of the 
AuNPs at the tumor site [77]. The AuNPs exhibited a 
longer vascular retention time, which prolonged their 
circulation time in the blood [77–79] and improved the 
CT signal of diatrizoic acid [77].

Figure 5 shows an in vivo CT vascular imaging of coro-
nary arteries using AuNPs that were conjugated to colla-
gen-binding adhesion protein 35 (CNA35) for targeting 
collagen I in myocardial infarction in rodents. The AuNP 
signal was still detected in the blood 6  h after intrave-
nous (i.v) administration, which was significantly higher 
than the half-life (5–10 min) of iodine-based agents [79]. 
These effects were replicated by using green-synthesized 
mannan-capped AuNPs, which showed receptor-medi-
ated uptake and non-toxicity in mannose expressing (DC 
2.4 and RAW 264.7) cells. The mannan-capped AuNPs 
selectively targeted the popliteal lymph nodes in  vivo 
after injection into the hind leg of the mice [38]. The 
AuNP-based CT imaging can provide significant infor-
mation for diagnosis of various diseases not limited to 
coronary artery and cancers [76, 77, 79–81]. The use of 
AuNPs as contrast agents has shown potential in other 
imaging systems such as photoacoustic, nuclear imaging, 
ultrasound and magnetic resonance imaging. These sys-
tems are extensively reviewed elsewhere [82, 83].

AuNPs in Fluorescent‑Based Detection Systems
AuNPs are used in fluorescent-based detection systems 
as either fluorescent agents or fluorescent quenchers. At 
sizes ≤ 5 nm, AuNPs display properties of quantum dots 
(QDs) and can be used in their place. The  Au55(PPh3)12Cl6 
nanoclusters introduced in 1981 are probably the most 
intensively studied owing to their quantum size behavior 
[7]. Since then, various quantum-sized AuNPs (AuNPsQ) 
such as  Au25(SR)18,  Au38(SR)24 and  Au144(SR)60 [84] have 
been studied mostly in electrochemical sensing as they 
are excellent electronic conductors and redox mediators 
[85].

AuNPsQ film electrodes were used in the fabrication 
of an ultrasensitive electrochemical immunosensor for 
the detection of prostate-specific antigen (PSA). The 
immunosensor had a sensitivity of 31.5 μA mL/ng and a 
detection limit of 0.5  pg/mL for PSA in 10 μL of undi-
luted human serum. The immunoassay performed eight-
fold better than a previously reported carbon nanotube 
forest immunosensor containing multiple moieties, at the 
biomarker concentration that was lower than the levels 
associated with the presence of cancer. As such, it can be 
used to measure the test biomarker in both normal and 
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diseased states. The performance of the immunosensor 
was comparable to the reference ELISA method [86]. 
AuNPsQ was also incorporated into porously structured 
 CaCO3 spheres to form a fluorescent  CaCO3/AuNPsQ 
hybrid for the detection of neuron-specific enolase, a 
diagnostic and prognostic biomarker for traumatic brain 
injury and lung cancer. The sensor had a detection limit 
of 2.0 pg  mL−1 [87]. Until now, several AuNP-based flu-
orescent detection systems have been reported for the 
detection of analytes associated with Hepatitis B [73, 88], 
Influenza A [89], cancer [90] and heart injury [91].

AuNPs are also excellent FRET-based quenchers [92]. 
Their unique optical properties (stable signal inten-
sity and photobleaching resistance), size and ability to 
be modified have made them attractive probes in fluo-
rescence sensing platforms [93, 94]. Larger AuNPs 
(≥ 10–100  nm) have low quantum yields that are not 
suitable for direct fluorescent sensing; however, their 
ability to quench fluorescent dyes under relatively high 
excitation energy state has made them effective photo-
luminescence quenchers [94]. In principle, fluorescence 
nanoprobes are composed of a donor fluorophore (dye 
or QDs) and an acceptor AuNPs, and when brought into 
close proximity, the fluorescence of the selected fluoro-
phore is quenched by the AuNPs [94, 95]. In the absence 
of a target as indicated by a lack of a fluorescent signal, 
the nucleic acid probe hybridizes and forms a looped 
structure that brings the fluorophore and a quencher at 
its opposite ends into close proximity; while binding of 

the analyte to the nucleic acid probe displaces the fluo-
rophore from the AuNPs resulting in a fluorescent signal 
[24, 94, 96]. Taking advantage of the above-mentioned 
properties, AuNPs were incorporated in molecular bea-
cons for in vitro (gold nanospheres, AuNSs) and in vivo 
(gold nanorods, AuNRs) detection of the matriptase 
expression on tumor cells. The two molecular beacons 
were composed of a matriptase cleavage site as a linker 
between the AuNPs and the fluorophores. The AuNS–
molecular beacon was constructed with the fluores-
cein isothiocyanate (FITC), and the AuNR–molecular 
beacon had a NIR fluorescent dye (mercaptopropionic 
acid, MPA). In the absence of the target, the AuNSs 
and AuNRs, respectively, blocked the FITC and MPA 
fluorescence. Cleavage of either FITC or MPA from the 
AuNP–molecular beacons in the presence of matriptase 
exhibited a quantifiable fluorescence signal. The fluores-
cent signal of the MPA–AuNR–beacon in the nude mice 
bearing HT-29 tumors lasted for 14 h in the tumor site, 
while the signal gradually disappeared from the non-
tumor site over time [97].

The AuNPs were reported to have comparable or higher 
fluorescence quenching efficiency than organic quench-
ers such as 4-((4′-(dimethyl-amino)phenyl)azo)benzoic 
acid (DABCYL) [94, 98] and Black Hole Quencher-2 [99]. 
The fluorescence quenching efficiency of 1.4 nm AuNPs 
was compatible with the four commonly used organic 
fluorophores (FITC, rhodamine, texas red and Cy5). 
The fluorescence quenching efficiency of the AuNPs was 

Fig. 5 In vivo CT imaging using AuNPs as CT contrast agents. Mannan-capped AuNPs and their CT imaging of the lymph node (A), and 
CNA35-conjugated AuNPs CT imaging of myocardial scar burden (B). Reproduced with permission [79]. Copyright 2018, Elsevier
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similar to that of DABCYL, and unlike DABCYL, the 
AuNPs showed consistency in both low and high salt 
buffers [98]. In a competitive hybridization assay, 10 nm 
AuNPs showed superior (> 80%) fluorescence quenching 
efficiency for Cy3 dye than the commercial Black Hole 
Quencher-2 (~ 50%). The assay had a limit of detection of 
3.8  pM and a detection range coverage from 3.8  pM to 
10 nM for miRNA-205 in human serum, and it was able 
to discriminate between miRNAs with variations in their 
nucleotide sequence [99]. The competitive sensor arrays 
were not only sensitive [96, 99] but were able to differen-
tiate between normal and diseased cells, as well as benign 
and metastatic cancers [96].

AuNP‑Based Bio‑barcoding Assay
AuNP-based bio-barcoding assay (BCA) technology 
has become one of the highly specific and ultrasensi-
tive methods for detection of target proteins and nucleic 
acids up to 5 orders of magnitude than the conventional 
assays [100]. The assay relies on magnetic microparticle 
probes, which are functionalized with antibodies that 
bind to a specific target, and AuNP probes encoded with 
DNA that recognizes the specific protein target and anti-
bodies. Upon interaction with the target DNA, a sand-
wich complex between the magnetic microparticle and 
AuNPs probes is formed. The sandwich is then separated 
by the magnet followed by thermal dehybridization to 
release the free bar-code DNA, enabling detection and 
quantification of the target [101, 102].

The AuNP-based BCA assay was able to detect HIV-1 
p24 antigen at levels that was 100–150-fold higher than 
the conventional ELISA [103]. The detection limit of PSA 
using these systems was 330 fg/mL [104]. The versatility 
of AuNPs for the development of a BCA-based platform 
was further demonstrated by measuring the concentra-
tion of amyloid-beta-derived diffusible ligands (ADDLs), 
a potential Alzheimer’s disease (AD) marker found in the 
cerebrospinal fluid (CSF). ADDL concentrations were 
consistently higher in the CSF taken from the subjects 
diagnosed with AD than in non-demented age-matched 
controls [105]. These results indicate that the universal 
labeling technology can be improved through the use of 
AuNPs to provide a rapid and sensitive testing platform 
for laboratory research and clinical diagnosis.

AuNP‑Based Therapies
Metal-based drugs are not new to medicine; in fact, they 
are inspired by the existing metallic drugs used in clini-
cal treatment of various diseases [9, 106–109]. The widely 
studied and clinically used metal-based drugs were 
derived from platinum (e.g., cisplatin, carboplatin, tetra-
platin for treatment of advanced cancers), bismuth (for 
the treatment of infectious and gastrointestinal diseases), 

gold (for the treatment of arthritis) and gallium (for the 
treatment of cancer-related hypercalcemia) [108, 109]. 
The approval of cisplatin in 1978 by the FDA for the clini-
cal treatment of cancer [107] further inspired research on 
other metals (such as palladium, ruthenium, rhodium) 
[32, 106, 110].

Owing to the bioactivities, which included anti-rheu-
matic, antibacterial and anticancer effects, and the bio-
compatibility of bulk gold [8, 9, 46, 111], AuNPs are 
extensively investigated for the treatment of several dis-
eases. AuNPs displayed unique and novel properties that 
are superior to its bulk counterpart. AuNPs are highly 
stable and have a distinct SPR, which guides their appli-
cation in medicine [112], as drug delivery and therapeutic 
agents. AuNPs have a lot of advantages over the conven-
tional therapy; they have a longer shelf-life and can circu-
late long enough in the system to reach their targets [25] 
with [11, 49, 113] or without targeting molecules [14, 15, 
24, 25, 114]. AuNPs can provide localized and selective 
therapeutic effects; some of the areas in which AuNPs 
were used in therapy are described below.

Therapeutic Effects of Untargeted AuNPs
The as-synthesized (i.e., unmodified or uncapped) AuNPs 
have been shown to have diverse therapeutic effects 
against a number of infectious [115, 116], metabolic and 
chronic diseases [3, 29, 50, 51]. Their antioxidant, anti-
cancer, anti-angiogenic [3, 32], anti-inflammatory [3, 
51] and weight loss [29, 50, 112] effects are beneficial for 
diseases such as cancer, rheumatoid arthritis, macular 
degeneration and obesity [5, 25, 113, 117]. The above-
mentioned diseases are characterized by a leaky vascula-
ture and highly vascularized blood vessels [5, 113], which 
provides the NPs an easy passage into the diseased tissues 
and increase the susceptibility of cells to their effects. 
Through the EPR effect, uncapped AuNPs can passively 
accumulate in the vasculature of diseased cells or tissues. 
Hence, AuNPs have been specifically designed to have 
anti-angiogenic effects in diseases where angiogenesis 
(the growth and extension of blood vessels from pre-
existing blood vessels) spins out of control like cancer, 
rheumatoid arthritis, macular degeneration and obesity 
[5, 25, 113, 117]. Targeting and destroying the defective 
blood vessels prevent oxygen and nutrients from reach-
ing the diseased cells, which results in their death. The 
pores in the blood vessels at the diseased site (especially 
in cancer and obesity) are 200–400  nm and can allow 
materials in this size range to pass from the vasculature 
into the diseased tissues and cells [14, 15, 25, 114].

The cellular uptake, localization, biodistribution, circu-
lation and pharmacokinetics of the uncapped AuNPs rely 
strongly on size and shape [49]. Although these effects 
are applicable to all AuNPs, the biological effects of 
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citrate-capped AuNPs  (cAuNPs) are extensively studied 
and reviewed. Spherical cAuNPs demonstrated selective 
in vitro anticancer activity that was size and concentra-
tion dependent on murine and human cell lines [3, 51]. 
Different sizes (10, 20 and 30  nm) of cAuNPs showed 
differential effects in human cervical carcinoma (HeLa), 
murine fibroblasts (NIH3T3) and murine melanoma 
(B16F10) cells. The 20 and 30  nm cAuNPs showed a 
significant cell death in HeLa cells starting at the low-
est concentration of 2.2  µg/mL, while the 10-nm NPs 
was toxic at concentrations ≥ 8.75 µg/mL. The activity of 
these NPs was negligible in the noncancerous NIH3T3 
cells, especially the 10 and 20  nm. The 20  nm reduced 
viability by ≤ 5% at the highest concentration (35 µg/mL), 
and ~ 20% for the 10 and 30 nm. The  IC50 values for 10, 
20 and 30 nm cAuNPs in the Hela cells were 35, 2.2 and 
4.4  μg/mL, respectively, while the  IC50 values for non-
cancerous cells were higher than 35  µg/mL [3]. Using 
a concentration range of 0.002–2  nM, 13  nm cAuNPs 
induced apoptosis in rabbit articular chondrocytes and 
no effects were observed for 3 and 45 nm cAuNPs under 
the same conditions. The 13 nm cAuNPs induced mito-
chondrial damage and increased reactive oxygen species 
(ROS); these actions could not be blocked by pre-treat-
ment with a ROS scavenger, the N-acetyl cysteine [51]. 
Size-dependent effects were also observed in  vivo after 
injecting cAuNPs of various sizes (3, 5, 8, 12, 17, 37, 50 
and 100 nm) into mice (8 mg/kg/week) for 4 weeks. The 
8, 17, 12 and 37 nm were lethal to the mice and resulted 
in tissue damage and death after 14  days of treatment; 
the other sizes were not toxic and the mice survived the 
experimentation period. On the contrary, the same-size 
AuNPs at a concentrations up to 0.4 mM were not toxic 
to HeLa cells after 24 h exposure [118].

The cAuNPs can interact and accumulate nonspecifi-
cally within various tissues and organs in the body, espe-
cially in the reticuloendothelial system (RES) organs 
(blood, liver, spleen, lungs) [55, 119]. This was evident 
in high-fat (HF) diet-induced obese Wistar rats [55] and 
Sprague–Dawley rats [119] following acute (1 dose for 
24 h) [55] and chronic (1 dose; 0.9, 9 and 90 µg/week over 
7 week period) [119] exposure to 14 nm cAuNPs, respec-
tively. Majority of the i.v injected cAuNPs were detected 
in the liver, spleen, pancreas, lungs, kidneys [55, 119] 
including the skeleton and carcass of the rats [119]. Chen 
et al. observed that after intraperitoneal (i.p) injection of 
a single dose (7.85  µg/g bodyweight) of 21  nm cAuNPs 
in lean C57BL/6 mice, they accumulated in the abdomi-
nal fat tissues and liver after 24–72 h [29], as well as the 
spleen, kidney, brain and heart in the HF-induced obese 
mice that were injected with the same dose daily for 
9 weeks [50]. The cAuNPs reduced the abdominal WATs 
(retroperitoneal and mesenteric) mass and blood glucose 

levels 72 h post-injection [29]. In the diet-induced obese 
mice, the 21  nm cAuNPs demonstrated anti-inflamma-
tory and anti-obesity effects [50]. They also improved 
glucose tolerance, enhanced the expression of inflamma-
tory and metabolic markers in the retroperitoneal WATs 
and liver [50]. Both the 14 and 21 nm cAuNPs showed no 
sign of toxicity or changes in the markers associated with 
kidney and liver damage [29, 55, 119].

Similar findings were reported for plant-mediated 
AuNPs, without targeting molecules they can access, 
ablate tumors [40, 120] and obese WATs [121] in rodents. 
Differential uptake, distribution and activity of biogenic 
AuNPs also vary depending on the size and shape of the 
NPs. While certain sizes can pass through the vascular 
network and be retained at the site of the disease; others 
can be easily filtered out of the system through the RES 
organs and the mononuclear phagocytic system as shown 
in Fig. 6 [15, 114]. NPs can be removed by tissue-resident 
macrophages (TRMs) before they reach the disease cells. 
Those that escape the TRMs and do not reach the dis-
ease site, especially smaller NPs (≤ 5  nm), are excreted 
through glomerular filtration in the kidney [25, 114]. Pre-
treatment with clodronate liposomes depleted the TRMs 
in the liver and spleen before exposure to 50, 100 and 
200 nm AuNPs. This reduced uptake of the AuNPs by the 
liver, increased their half-life in the blood as well as their 
accumulation at the tumor site [122]. However, TRMs 
are not the only obstacle that the AuNPs that rely on EPR 
effect for uptake must overcome. EPR effect alone can 
only ascertain ≤ 1% AuNP uptake [15, 114], and deple-
tion of the TRMs prior to treatment resulted in just ≤ 2% 
of NPs reaching the target [122]. The success of non-tar-
geted AuNPs depends on their ability to reach and accu-
mulate in the diseased tissues, of which passive targeting 
through the EPR effect might not be efficient. The NPs 
also need to circulate longer, escape early clearance, and 
most importantly show reduced bystander effects [25, 
123]. These qualities can increase bioavailability and 
ensure selectivity and efficacy of the AuNPs. These can 
further be improved by changing the surface chemistry of 
the AuNPs as discussed below [15, 124].

Therapeutic Effects of Surface‑Functionalized AuNPs
The common strategy in AuNP-based therapeutics 
involves modifying the AuNP surface with therapeu-
tic agents [3, 124–126]. The therapeutic agents can be 
drugs already used for the treatment of a particular dis-
ease or biomolecules with known inhibitory effects on 
cell signaling. In some instances, the therapeutic AuNPs 
have also been designed to have molecules that facili-
tate active targeting of the AuNPs toward specific cells 
and tissues. The molecules can easily adsorb on the 
AuNP surface by thiolation, chemical modification using 
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chemistries such as 1-ethyl-3-(3-dimethylaminopro-
pyl) carbodiimide (EDC), streptavidin/biotin binding 
[3, 124–127] and ionic interactions based on opposite 
charges between the NP surface and the biomolecules 
[124–126]. Functionalization of the AuNP surface influ-
ences their physicochemical properties and can affect 
their safety, biocompatibility and mobility. To ensure 
that the cargo carried by the AuNPs is delivered to the 
intended site, consideration should thus be given to both 
the physical and chemical properties of the AuNPs [124–
126]. It is especially the size, shape, charge and the cap-
ping agents of the AuNPs that play an important role in 
the functionality of the AuNP conjugates [124] and can 

completely alter the pharmacokinetics of the AuNP-
based therapeutics.

Functionalization allows for the development of cus-
tomized nanosystems to reduce undesirable bystander 
effects often associated with traditional medicine. Func-
tionalization of AuNPs can also prevent nonspecific 
adsorption of proteins onto the AuNP surface which 
can result in the formation a protein corona, resulting in 
the early clearance of the AuNPs through opsonization 
by the phagocytic cells [49, 123]. The surface charge of 
NPs can have a major influence on the behavior of NPs 
within biological environments. AuNPs with a neutral 
surface charge are unreactive and have a higher rate of 

Fig. 6 RES-based clearance of systemic administered AuNPs depends on their size. Large AuNPs accumulate in the liver, while smaller AuNPs are 
likely to end up in the spleen or be excreted in the urine via glomerular filtration. The AuNPs that escape the TRMs could accumulate in the diseased 
tissues. Reproduced with permission [114]. Copyright 2019, Frontiers in Bioengineering and Biotechnology
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escaping opsonization than charged AuNPs. Hydrophilic 
NPs will also behave differently to those with hydropho-
bic surfaces [49, 123]. PEG is one of the polymers most 
often used to mask AuNPs from phagocytic cells and 
has been shown to stabilize and enhance the biocom-
patibility of the AuNPs in numerous in vivo studies [49, 
55, 123]. Pegylation improved the biocompatibility of 
8.2  nm AuNPs by preventing neutrally and negatively 
charged AuNPs to bind to cell membranes or localize to 
any cellular components in African green monkey kidney 
(COS-1) cells [49]. And when the pegylated AuNPs were 
functionalized with a polyarginine cell penetrating moi-
ety, the AuNPs were visualized on the cell membrane and 
inside the COS-1 cells [49]. Cell-penetrating peptides 
such as nuclear localization signal from SV40 virus, Tat 
from HIV and polyarginine peptides have been explored 
in translocation of AuNPs inside all cell type, normal or 
diseased. However, high specificity is required for clini-
cal applications and can be achieved by taking advantage 
of the physiological differences between malignant and 
normal cells. This has been achieved by functionalizing 
the AuNPs with targeting molecules that recognize cell-
specific receptors that are exclusively or overexpressed 
on the surface of target cells. This way, the AuNPs can be 
directed and delivered only to cells that express the target 

receptor. Therefore, conjugation of targeting moieties to 
the AuNPs (active targeting) will provide more selectivity, 
reduced bystander toxicity and enhanced efficacy since 
the AuNPs will be confined only to malignant tissues that 
express the target receptors [49, 55, 57, 113, 126, 127].

A good example to demonstrate the versatility of 
AuNPs is shown in Fig. 7, where four different molecules 
were conjugated onto the AuNPs to target two inde-
pendent markers and mechanisms [11]. The multifunc-
tional AuNPs were used for the treatment of leukemia 
(K562DR) cells that are resistant to doxorubicin (Dox). 
The 40 nm AuNPs were modified with two targeting moi-
eties (folate and AS1411 aptamer) and two therapeutic 
agents (Dox and anti-miRNA molecules/anti-221). Folate 
molecule and AS1411 aptamer, respectively, recognize 
the folate and NCL receptors that are overexpressed on 
the cell surface and through receptor-mediated endo-
cytosis will traffic the AuNP-conjugate into the cells. 
The AS1411 aptamer had dual functions, by also target-
ing the NCL receptor that is expressed inside the cells. 
After the AuNP-conjugate has been shuttled into the 
cells, the cargo (AS1411 aptamer, anti-221 and Dox) is 
off-loaded which independently act on three mechanisms 
that will synergistically bring about the demise of the 
cells. AS1411 aptamer together with anti-221 prevented 

Fig. 7 Multifunctional AuNPs in the treatment of multidrug-resistant (MDR) leukemia cells by increasing the sensitivity of the cells to Dox. 
Reproduced with permission [11]. Copyright 2019. Springer Nature. Folate (FA) receptor
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leukemogenesis by suppressing the endogenous NCL and 
miR-221 function in the NCL/miR-221 pathway, thereby 
sensitizing the cells to the effects of Dox [11].

Interestingly, similar dual targeting and treatment 
effects were achieved with green synthesized AuNPs 
without any additional molecules. With natural products 
acting as reducing agents, the biogenic AuNPs might also 
be more biocompatible than the chemically synthesized 
NPs [12, 40, 41, 43, 120]. MGF-AuNPs selectively tar-
geted the laminin receptors in prostate (PC-3) and triple-
negative breast cancer (MDA-MB-231) cells, and their 
xenografts in severe combined immunodeficiency (SCID) 
mice bearing these tumors [12, 40, 120]. In the normal 
SCID mice, the majority (85% at 30 min increasing to 95% 
after 24 h) of the i.v-injected MGF-AuNPs accumulated 
in the liver. Less than 10% were detected in the blood 
(2.7%), spleen (5%), lungs (0.6%), stomach, intestines and 
kidneys. When intra-tumorally injected in SCID mice-
bearing prostate tumors, only 11% of the MGF-AuNPs 
were detected in the liver 24 h post-injection, while ~ 80% 
was in the tumor. Negligible amounts were found in the 
stomach, carcass and the small intestines. Some of the 
AuNPs were excreted through the renal and hepatic 
pathways in the urine and feces after 24 h [40, 120]. Nano 
Swarna Bhasma, a mixture consisting of AuNPs synthe-
sized from mango peel extracts and phytochemicals from 
mango, turmeric, gooseberry and gum arabic, showed 
reduced toxicity toward normal endothelial cells after 
48 h compared to the MDA-MB-231 cells [12].

Several studies have demonstrated that AuNPs have 
potential for clinical application. In combination with 
conventional drugs, it can be used to sensitize dis-
eased cells to the drug effects [12, 128] and also prevent 
or reduce drug-related bystander effects [12]. AuNPs 
improved the pharmacokinetics of chemotherapeutic 
drugs, such as Dox [43, 129] and 5-fluorouracil (5-FU) 
[128]. Great improvements were mostly seen in the per-
meability and retention of drugs in the diseased cells, 
resulting in enhanced efficacy [130]. Dox-loaded AuNPs, 
which were non-toxic toward normal mouse fibroblast 
(L929) cells, also demonstrated selective toxicity toward 
fibrosarcoma tumors in mice [129]. 5-FU conjugated to 
the cAuNPs had better activity than 5-FU on its own in 
colorectal cancer cells [128]. AuNP co-treatment with 
chemotherapeutic drugs was highly efficient in improv-
ing the efficacy of chemotherapeutic drugs [12, 43, 128, 
129, 131]. Orally ingested Nano Swarna Bhasma in 
combination with Dox and Cyclophosphamide reduced 
tumor volumes in SCID mice-bearing breast tumor cells 
and also showed acceptable safety profile and reduced 
bystander effects of the chemotherapeutic drugs in stage 
IIIA/B metastatic breast cancer patients [12]. Active 
targeting alone can ensure that the AuNPs are directly 

delivered into the desired targets, achieving a balance 
between efficacy and toxicity while minimizing damage 
to healthy tissues [14, 15, 49]. Controlled drug release is 
also among the many advantages offered by the AuNP-
based systems and is crucial as it allows for localized and 
selective toxicity [49]. The AuNPs can be designed in 
such a way that their conjugates respond to internal (glu-
tathione displacement, enzyme cleavable linkers, pH) or 
external (light, heat) stimuli to function [24, 25, 34, 128].

AuNPs as Transfection Agents in Gene Therapy
The use of AuNPs in gene therapy has shown promising 
outcomes by facilitating the delivery of genetic material 
to cells to silence or enhance expression of specific genes 
[24, 32, 132]. Thus, AuNPs can be used as transfection 
reagents in gene therapy for the treatment of cancer and 
other genetic disorders. AuNP conjugates have demon-
strated higher transfection efficiency than experimental 
viral and non-viral gene-delivery vectors including poly-
cationic reagents that has been approved for clinical use 
[24].

AuNPs are highly conductive and well suited for use 
as microelectrodes during electroporation for intracel-
lular delivery of biomolecules for disease treatment. 
AuNPs significantly enhanced the performance of elec-
troporation systems and have been used successfully for 
the delivery of DNA into hard-to-transfect cells such as 
the K562 cells [133]. To prevent cell loss which is often 
associated with electroporation, targeting moieties can 
be conjugated to the AuNPs to facilitate cellular uptake 
of AuNP conjugates through receptor-mediated mecha-
nisms [133]. The use of AuNPs to transfect cells with oli-
gonucleotide molecules also has the added advantage of 
increasing the half-life of these biomolecules and their 
efficacy [24, 32].

Untargeted AuNP conjugates are passively transported 
into cells and rely on the surface charge and AuNP shape 
for efficient transfection [24, 36, 134, 135]. The charge of 
the biomolecules that are conjugated onto AuNP surface 
plays a crucial role in their transfection efficiency; for 
instance, AuNPs functionalized with cationic molecules 
produce higher transfection efficiency than AuNPs func-
tionalized with anionic molecules. Positively charged 
amino acids (lysine) can be attached on the NP surface to 
increase the rate of transfection. AuNSs [24] and AuNRs 
[36, 134, 135] are commonly used for transfections, 
and relative to the conventional transfection reagents 
(X-tremeGENE and siPORT), they inhibited the expres-
sion of target gene by > 70% in  vitro [134] and in  vivo 
[135]. In these studies, transfection efficiency was quanti-
fied based on target expression using RT-PCR and immu-
nostaining [134, 135]. As transfection reagents, AuNPs 
provide long-lasting effects, localized gene delivery and 
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higher efficacy [36, 134, 135]. Other types of nanoma-
terials (e.g., polymeric, liposomes, ceramic and carbon 
nanotubes) had received more attention for use in gene 
therapy than AuNPs. Six clinical trials using either poly-
meric or lipid-based nanomaterials for delivery of siRNA 
in solid tumors have been completed [36, 134, 136]. All 
of which suffer from low loading efficiency, low stability, 
and insufficient payload release [36, 136]. On the other 
hand, transfection systems based on AuNPs make use of 
easy chemistry that ensures efficient loading capacity and 
formation of stable complexes [36, 135]. Their safety can 
be controlled by manipulating their shape, size distribu-
tion and surface composition [36].

Antimicrobial Effects of AuNPs
MDR microbes are a major health concern and a lead-
ing cause of mortality, worldwide [21, 137–141]. These 
microorganisms have become resistant to conventional 
antimicrobial agents, due to over-prescription and mis-
use of these drugs [142]. No new antibiotics have been 
produced in over 40 years, mainly because the big phar-
maceutical companies have retreated from their anti-
biotic research programs due to the lack of incentives 
[143]. As such, new and effective antimicrobial agents 
are urgently required to combat what could be the next 

pandemic, the antimicrobial resistance, and avoid surge 
in drug-resistant infections.

AuNPs are among the new generation of antimicro-
bial agents under review. They have shown broad anti-
microbial (bactericidal, fungicidal and virucidal) effects 
against a number of pathogenic and MDR microorgan-
isms and thus have potential to overcome microbial drug 
resistance [21, 142, 144]. Their antimicrobial effects are 
dependent on their physicochemical properties, espe-
cially their size, surface composition, charge and shape 
[21, 144]. Due to their small size, AuNPs can easily pass 
through the bacterial cell membrane, disrupt their physi-
ological functions and induce cell death [35]. The exact 
antimicrobial mechanisms of AuNPs are not yet fully 
elucidated; despite this, some of the reported modes of 
actions that results from the interaction of various nano-
structured materials (NSMs) with the bacterial cells are 
illustrated in Fig.  8. The highlighted mechanisms are 
also implicated in antimicrobial activity of AuNPs, they 
include induction of microbial death through membrane 
damage, generation of ROS and oxidative stress, orga-
nelle dysfunction, and alteration of gene expression and 
cell signaling [141].

AuNPs have multiple roles to play toward the devel-
opment of antimicrobial agents, aside from being 

Fig. 8 Antimicrobial mode of actions of the NSMs. Various NSMs can induce cell death by altering various biological functions, X represents 
alteration of cell signaling by de-phosphorylation of tyrosine residues in proteins as one of the mechanisms. Reproduced with permission [141]. 
Copyright 2018, Frontiers in Microbiology
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antimicrobial agents by themselves; they can serve as 
drug sensitizers and drug delivery vehicles [35, 58, 132, 
145]. These features are applicable to both the chemical 
and green synthesized AuNPs, which have been reported 
to have antimicrobial effects against a number of human 
[21, 145–147] and waterborne [148] pathogenic strains. 
Generally, the test bacteria had shown low susceptibil-
ity toward the chemically synthesized AuNPs, i.e., the 
cAuNPs [21, 146, 147] and the  NaBH4-reduced AuNPs 
[149]. This was due to the repulsive forces between the 
negative charges on the AuNP surfaces and bacterial 
cells, thus preventing the interaction between AuNPs and 
the bacteria [21]. The activity of chemically synthesized 
AuNPs is based on their size, shape, concentration and 
exposure time. As an example, one study reported that 
 NaBH4-reduced AuNPs had no activity against Staphy-
lococcus aureus (S. aureus) and Escherichia coli (E. coli) 
at 500 µg/mL for the duration of 6 h [149]. In contrast, 
another study showed a significant dose (1.35, 2.03 and 
2.7 μg/mL) and size (6–34 nm vs 20–40 nm) dependent 
antibacterial effects of the  NaBH4-reduced AuNPs on 
Klebsiella pneumonia, E. coli, S. aureus and Bacillus sub-
tilis [145].

The AuNPs are either used alone or in combination 
with other antimicrobial agents to treat microbial infec-
tions [35, 58, 132, 145]. When used in combination with 
other antimicrobial agents, the AuNP conjugates resulted 
in synergistic antimicrobial effects that surpassed the 
individual effects of the AuNPs and drugs [21, 35, 58, 132, 
150]. These drugs were conjugated onto the AuNPs by 
either chemical methods [4, 151] or the drugs were used 
as reducing and capping agents [21, 149]. By so doing, the 
AuNPs improved drug delivery, uptake, sensitivity and 
efficacy. Some of the FDA-approved antibiotics and non-
antibiotic drugs that were loaded onto the AuNPs are 
shown in Table  1 [4, 21, 149, 152]. Ciprofloxacin [152], 
cefaclor [149], lincomycin [4], kanamycin [21], vanco-
mycin, ampicillin [151] and rifampicin [32] are among 
the antibiotics loaded on the AuNPs and demonstrated 
the versatility of AuNPs. These strategies were success-
ful with various sizes and shapes of AuNPs, including 
gold silica nanoshells [152], AuNP-assembled rosette 
nanotubes [151] and AuNPs encapsulated in multi-block 
copolymers [153]. For instance, cefaclor-reduced AuNSs 
inhibited the growth of S. aureus and E. coli within 2–6 h 
depending on the concentration (10–50  µg/mL), while 

Table 1 Antimicrobial activities of AuNP loaded with some of the FDA-approved drugs

N/T not tested

Drug Drug type Core sizes (nm) Shape Test microorganisms Ref

Ciprofloxacin Antibiotic 15 Gold silica nanoshells E. coli DH5α
Lactococcus lactis

[152]

Cefaclor Antibiotic 23–52 Spheres S. aureus
E. coli

[149]

Lincomycin Antibiotic S. aureus
S. pyogenes

[4]

Vancomycin Antibiotic Vancomycin-resistant strains (VRE) [150]

Ampicilin Antibiotic 1.43 Spheres assembled 
into rosette nanotube

S. aureus
MRSA

[151]

Rifampicin Antibiotic 28 Spheres N/T [153]

Kanamycin Antibiotic 20 Spheres Streptococcus bovis (S. bovis)
Staphylococcus epidermidis (S. epidermidis)
Enterobacter aerogenes (E. aerogenes)
Pseudomonas aeruginosa
(P. aeruginosa)
Yersinia pestis (Y. pestis)

[21]

4,6-diamino-2-py-
rimidinethiol (DAPT)

Inactive alone 5 / 16.57 Spheres S. aureus
E. coli
P. aeruginosa
E. coli infected mice

[13, 112]

5FU Anti-leukemic drug 18 Spheres Micrococcus luteus
S. aureus
P. aeruginosa
E. coli
Aspergillus fumigatus
Aspergillus niger

[58]

Metformin Anti-hyperglycemic drug 3.1 S. aureus
E. coli
P. aeruginosa

[13]
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complete bacterial growth inhibition by the drug alone 
was only observed at 50 µg/mL after 6 h. The minimum 
inhibitory concentration (MIC) of the treatments was 
10 µg/mL and 50 µg/mL for cefaclor-AuNPs and cefaclor, 
respectively [149].

AuNPs have presented properties that make them ideal 
candidates as alternative antimicrobial agents; the most 
important being their broad antimicrobial activity [21, 
35, 58, 132, 150]. Owing to their biocompatibility and 
easily modifiable surface, microorganisms are less prone 
to developing resistance toward AuNPs [21]. For exam-
ple, the kanamycin (Kan)-resistant bacteria (S. bovis, S. 
epidermidis, E. aerogenes, P. aeruginosa and Y. pestis) 
showed increased susceptibility toward Kan-reduced 
AuNPs. The MIC values for Kan-AuNPs on the test bac-
teria were significantly reduced to < 10 µg/mL when com-
pared to the MIC values for Kan alone at 50–512 µg/mL. 
This shows that AuNPs can restore the potency of anti-
biotics toward the drug-resistant strains by facilitating 
the uptake and delivery of the antimicrobial agents [21]. 
AuNPs can enhance drug-loading capacity and control 
the rate at which the drugs are released. AuNP hybrids 
with the multi-block copolymers increased the loading 
capacity of rifampicin and the drug’s half-life to 240 h. By 
sustaining the drug in the system for that long, ensured 
slow release of rifampicin from AuNPs at the target sites 
after oral administration of the AuNP conjugates to rats 
for 15 days. The drug on the surface was released within 
24 h followed by the drug trapped in the polymer matrix 
after 100 h. And lastly, the drug entrapped between the 
AuNPs and the polymer matrix took over 240  h to be 
released in the interstitial space [153].

The AuNP hybrids also allow for the conjugation of 
multiple molecules with independent but synergistic 
functions. This was demonstrated by co-functionaliza-
tion of the AuNPs with antimicrobial peptide (LL37) and 
the pcDNA that encode for pro-angiogenic factor (vas-
cular endothelial growth factor, VEGF) and used in the 
treatment of MRSA-infected diabetic wounds in mice 
[132]. The AuNPs served dual functions, as a vehicle for 
the biomolecules, and also as transfection agent for the 
pcDNA. After topical application of the AuNP conjugates 
on the wound, the LL37 reduced MRSA colonies, while 
the pcDNA promoted wound healing by inducing angio-
genesis through the expression of VEGF [132].

AuNPs have been shown to confer activity and repur-
pose some non-antibiotic drugs toward antimicrobial 
activity. The examples of repurposed drugs, which were 
used for the treatment of diseases other than bacte-
rial infections, include 5FU [58], metformin [147] and 
4,6-diamino-2-pyrimidinethiol (DAPT) [13, 112]. AuNPs 
as drug carriers are able to transport the drugs into the 
cells and allow direct contact with cellular organelles that 

resulted in their death [58, 147]. 5FU is an anti-leukemic 
drug, when attached to AuNPs was shown to kill some 
bacterial (Micrococcus luteus, S. aureus, P. aeruginosa, E. 
coli) and fungal (Aspergillus fumigatus, Aspergillus niger) 
strains [58]. While bacteria are resistant to DAPT, DAPT-
AuNPs displayed differential antibacterial activity against 
the Gram-negative bacteria. Furthermore, conjugation 
of non-antibiotic drugs (e.g., guanidine, metformin, 
1-(3-chlorophenyl)biguanide, chloroquine diphosphate, 
acetylcholine chloride, and melamine) as co-ligands 
with DAPT on AuNPs exerted non-selective antibacte-
rial activity and a two–fourfold increased activity against 
Gram-negative bacteria [13]. When used in  vivo, orally 
ingested DAPT-AuNPs showed better protection by 
increasing the intestinal microflora in E. coli-infected 
mice. After 4  weeks of treatment, the DAPT-AuNPs 
cleared the E. coli infection with no sign of mitochondrial 
damage, inflammation (increase in firmicutes) or meta-
bolic disorders (reduction in bacteroidetes) in the mice 
[112].

The virucidal effects of the AuNP-based systems have 
been reported against several infectious diseases caused 
by influenza, measles [154], dengue [155, 156] and 
human immunodeficiency [115] viruses. Their anti-viral 
activity was attributed to the ability of AuNPs to either 
deliver anti-viral agents, or the ability to transform inac-
tive molecules into virucidal agents [154, 156]. AuNPs 
synthesized using garlic water extracts inhibited mea-
sles viral growth in Vero cells infected with the measles 
virus. When the cells were exposed to both the virus and 
AuNPs at the same time, they blocked infection of Vero 
cells by the measles virus [154]. The AuNPs were non-
toxic to the Vero cells up to a concentration of 100  µg/
mL but inhibited viral uptake by 50% within 15–30 min 
at a concentration of 8.8  μg/mL [154]. Based on the 
Plaque Formation Unit assay, the viral load was reduced 
by 92% after 6  h exposure to 8.8  μg/mL of the AuNPs. 
The AuNPs interacted with the virus directly and blocked 
its transmission into the cells [154]. Modification of the 
AuNP surface with ligands that bind to the virus [156] or 
anti-viral agents [115, 155] protected them from degra-
dation, enhanced their uptake and delivery onto the cells. 
The charge of the AuNPs also played a role, with cationic 
AuNPs being more effective in the delivery and efficacy of 
the AuNPs than the anionic and neutrally charged NPs. 
Cationic AuNPs complexed with siRNA inhibited den-
gue virus-2 replication in dengue virus-2-infected Vero 
and HepG-2 cells and also the virus infection following 
pre-treatment of the virus with AuNPs [155]. Inactive 
molecules are transformed into highly potent anti-viral 
agents after conjugation to AuNPs. One such example is 
the transformation of SDC-1721 peptide, a derivative of 
TAK-779, which is an antagonist of CCR5 and CXCR3 
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receptors for HIV-1 strain. SDC-1721 has no activity 
against the HIV-1, but when conjugated to the AuNPs it 
inhibited HIV-1 infection of the human phytohemagglu-
tinin-stimulated peripheral blood mononuclear cells. The 
inhibitory effects of SDC-1721-AuNPs were comparable 
to the TAK-779 [115].

AuNPs as PT Agents
Diseased cells are sensitive to temperatures above 40 °C; 
cancer cells in particular appear to be even more sensi-
tive to these high temperatures. Studies have shown that 
high fevers in cancer patients either reduced the symp-
toms of cancer or completely eradicated the tumors as 
a result of erysipelas infections [33, 157, 158]. Histori-
cally, fevers induced by bacterial infections, hot desert 
sand bath, or hot baths were used to increase the body 
temperature in order to kill the cancer cells [157]. These 
findings gave birth to PT therapy (PTT), which is mostly 
used for the treatment of cancer. PTT makes use of 
organic photosensitizers (indocyanine green, phthalo-
cyanine, heptamethine cyanine) that are irradiated by the 
external source to generate heat energy that will increase 
the temperature to 40–45  °C (hyperthermia) in the tar-
get cells. Hyperthermia then triggers a chain of events 
(such as cell lysis, denaturation of the genetic materials 
and proteins), resulting in the destruction of the diseased 
cells [57, 158–160].

The organic dyes are used alone, or in combination 
with chemotherapy and radiotherapy for enhanced effi-
cacy [157, 160]. Ideally, the effects of the PT agents must 
be confined to target cells and display minimal bystander 
effects. However, the organic PT dyes have several limi-
tations such as toxic bystander effects, susceptibility 
to photobleaching and biodegradation [159]. In recent 
years, AuNPs are being explored as alternative PT agents 
as they exhibit strong plasmonic PT properties, and 
depending on their shape, they can absorb visible or NIR 
light. Absorption of light in the NIR spectrum is an added 
advantage that can allow deep tissue PTT [158, 161, 162]. 
Unlike organic dyes, AuNPs operate in an optical window 
where the absorption of light by interfering biological PT 
agents such as hemoglobin, melanin, cytochromes and 
water is very low [158, 161, 162].

The practicality of AuNP-based PTT has been dem-
onstrated through in vitro and in vivo studies [158, 162, 
163]. When the AuNPs are exposed to light, they can 
convert the absorbed light energy into thermal energy 
within picoseconds [57, 158, 159], consequently activat-
ing cell death via necrosis or apoptosis in the target cells 
or tissues. AuNP-based hyperthermia in diseased cells 
has been reported to occur at half the amount of the 
energy required to kill normal cells, thus perceived to be 
safer and better PT agents than the conventional dyes 

[33, 160]. AuNPs can be easily modified to have localized 
and enhanced PT activity by targeting and accumulat-
ing in only diseased cells through either active or passive 
targeting. And since the tumor environment is already 
hypoxic, acidic, nutrient starved and have leaky vascu-
lature, the tumors will be most sensitive to the AuNP-
based hyperthermia than the surrounding healthy cells 
and tissues [33, 160].

AuNP-based PTT has been extensively studied [158, 
161, 162] and established that AuNPs (e.g., AuNRs, 
nanocages and nanoshells) that absorb light in the NIR 
spectrum are best for in vivo and deep tissue PTT [161]. 
While the ones that absorb and emit light in the visible 
spectrum (AuNSs and hollow AuNPs) have been dem-
onstrated to treat diseases that affect shallow tissues (up 
to a depth of 1 mm), which could be of benefit to super-
ficial tumors [158, 161, 162], ocular surgery [164, 165], 
focal therapy and vocal cord surgery [158, 165]. Although 
the PTT effects of AuNSs are limited in vivo or for use 
in deep tissues, combination therapy or active targeting 
can be incorporated to facilitate target-specific effects 
[158, 161, 163]. The AuNPs in the combination therapy 
will serve dual functions as both drug sensitizer and a 
PT agent, and was shown to enhance anticancer effects 
of chemotherapeutic drugs [158, 162, 163]. AuNS-Dox 
combination demonstrated enhanced cancer cell death 
after laser exposure when compared to the individual 
effects of the AuNSs and Dox with and without laser 
treatment [158].

Active targeting on its own can also improve AuNP 
uptake, localization and target-specific PT effects, which 
can be viewed in real time by adding fluorophores. 
AuNSs (25  nm) loaded with transferrin targeting mol-
ecules and FITC were shown to accumulate and destroy 
human breast cancer cells at a higher rate than in non-
cancer cells and had better efficacy than the untargeted 
AuNSs [57]. An independent study also demonstrated 
that DNA aptamers (As42)-loaded AuNSs (As42-AuNP) 
induced selective necrosis in Ehrlich carcinoma cells 
that express HSPA8 protein, a receptor for the aptam-
ers. None of these effects were observed in blood and 
liver cells mixed with target cells, or cells treated with 
the AuNSs without laser treatment [163]. The PT effects 
of the As42-AuNP were replicated in mice transplanted 
with Ehrlich carcinoma cells in their right leg. As shown 
in Fig. 9, tail-vein injections of As42-AuNPs followed by 
laser irradiation resulted in targeted PT destruction of 
the cancer cells. The As42-AuNPs reduced tumor size in 
a time-dependent manner; cell death was attributed to 
increased temperature up to 46 °C at the tumor site. The 
tumor in mice treated with As42-AuNPs without laser 
treatment and the AuNPs conjugated with nonspecific 
DNA oligonucleotide continued to grow but at the lower 
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rate compared to mice injected with PBS. This suggests 
that the AuNPs were also localized in the tumor [163]. In 
cases where AuNSs are not efficient for deep tissue PTT, 
other shapes such as nanocages, nanoshells and AuNRs 
can be used [158]. Alternately, the visible light absorption 
of the AuNSs can be shifted to NIR by using processes 
such as two-photon excitation [57].

The PT effects of the AuNPs have also been reported 
for the reversal of obesity [52, 56], using hollow AuNSs 
(HAuNSs) [52] and AuNRs [56] for the PT lipolysis of 
the subcutaneous white adipose tissue (sWAT) in obese 
animals. The HAuNSs were modified with hyaluronate 
and adipocyte targeting peptide (ATP) to produce HA–
HAuNS–ATP conjugate [52]. Hyaluronate was used to 
ensure topical entry of the HA–HAuNS–ATP through 
the skin [52, 166], while ATP will recognize and bind 
to prohibitin once the HAuNSs are internalized. Pro-
hibitin is a receptor that is differentially expressed by 
the endothelial cells found in the WAT vasculature of 
obese subjects [5, 52, 55]. The HA–HAuNS–ATP was 

topically applied in the abdominal region of the obese 
mice, and through hyaluronate were transdermally 
shuttled through the epidermis into the dermis where 
the ATP located the sWATs (Fig.  10). Illumination of 
the target site with the NIR laser selectively induced 
PT lipolysis of the sWAT in the obese mice and reduced 
their body weight [52]. The AuNRs were used in the 
photothermolysis-assisted liposuction of the sWATs in 
Yucatan mini pigs. The untargeted PEG-coated AuNRs 
(termed NanoLipo) were injected in the sWATs through 
an incision, followed by laser illumination to heat up 
the sWATs, which was then aspirated using liposuction. 
The amount of fat removed from NanoLipo-treated 
porcine was more than the one removed with conven-
tional suction-assisted lipectomy (SAL). NanoLipo-
assisted fat removal had several advantages over the 
conventional SAL; it took less time (4 min) for liposuc-
tion compared to 10  min for SAL, the swelling in the 
treated site healed faster, and the weight loss effects 
lasted over 3 months post-liposuction [56].

Fig. 9 In vivo plasmonic PT therapy of cancer cells using targeted AuNSs. As42-AuNPs localized in HSPA8-expressing tumor cells after i.v injection. 
Exposure to laser treatment resulted in hyperthermia that caused cancer cell death. Reproduced with permission [163]. Copyright 2017, Elsevier
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AuNP-based PTT clearly offers a lot of advantages 
compared to the conventional agents. Their biocompat-
ibility allows for broader applications both in  vitro and 
in vivo. Moreover, they can be customized based on their 
shapes for shallow (AuNSs) [158, 161, 162] or deep tis-
sue (AuNRs and stars) PTT [158, 161]. At 1–100  nm 
diameter, AuNPs and its conjugates can circulate long 
enough to reach and accumulate in the target tissues, 
with or without targeting moieties [159, 167]. Active tar-
geting can be used to ensure localized PT effects through 
various routes of administration and might be effective 
for solid and systemic diseases. AuNP-based PTT can 
also be used to sensitize cancer cells when administered 
in combination with chemotherapy, gene therapy and 
immunotherapy [159]. Therefore, AuNP-based PTT has 
potential for treatment of chronic diseases [161].

Toxicity of AuNPs
AuNPs can play an important role in medicine, as dem-
onstrated by the preclinical and clinical studies under 
review. Their full potential in clinical application as both 
diagnostic and therapeutic agents can only be realized if 
they do not pose any health and environmental hazards. 
While their use in  vitro appears to be inconsequential, 
in  vivo application can be hampered by their potential 

toxicity, which could be detrimental to human health. A 
major concern with their clinical use is that AuNPs are 
non-biodegradable and their fate in biological systems 
has not been fully studied [5, 30]. Although AuNPs are 
considered to be bio-inert and compatible, their prop-
erties (size, shape, charge and composition) raise con-
cerns as they can alter their pharmacokinetics when 
used in biological environment [27, 34, 118]. The toxicity 
of AuNPs of varying sizes and shapes has been demon-
strated in animals [27, 118]. These NPs can accumulate in 
the RES organs where they induce damage.

AuNPs are 1–100  nm in diameter which makes them 
smaller than most of the cellular components. At these 
sizes, AuNPs can passively transverse cellular barriers 
and blood vessels by taking advantage of the EPR effect 
in pathological cells. AuNPs with smaller diameters 
(1–2  nm) can easily penetrate cell membranes and bio-
logically important cellular organelles such as mitochon-
dria and nuclei [7, 168]. Accumulation of AuNPs in these 
organelles induces irreversible damage that can cause cel-
lular demise. On the contrary, AuNPs larger than 15 nm 
are restricted to the cytoplasmic spaces and unable to 
penetrate internal organelles [168]. These features are 
desirable for targeting pathological cells, however, AuNPs 
can also be taken up by healthy cells and alter their 

Fig. 10 PT lipolysis of the sWATs using HA-HAuNS-ATP. The ATP was conjugated to the AuNSs for targeted delivery and destruction of the 
prohibitin-expressing sWATs after NIR laser exposure. Reproduced with permission [52]. Copyright 2017, American Chemical Society
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physiology [118]. Administration of AuNP-based thera-
peutics can be done via different routes (i.e., intranasal, 
oral, transdermal, i.p or i.v) and transported through 
blood vessels into different tissues and organs [34, 118]. 
They are able to pass through the blood brain barrier 
and the placental barrier [34]. Toxicity is size dependent, 
with certain sizes of AuNPs being well tolerated, while 
others could be lethal to healthy tissues. Unfunctional-
ized AuNSs at 8, 17, 12, 37 nm caused physical changes 
(i.e., change the fur color, loss of bodyweight, camel-like 
back and crooked spine) within 14 days of treatment (2 
doses of 8 mg/kg/week) in rats [118]. Most (> 50%) of the 
rats died within 21  days (i.e., after 3 doses), and abnor-
malities in the RES organs (liver, lungs and spleen) were 
observed. On the contrary, mice treated with 3, 5, 50 
and 100 nm AuNPs were not affected by the NPs and no 
adverse effects or death occurred throughout the dura-
tion (50  days) of the study [118]. In diet-induced obese 
rats that received i.v injections of 14  nm cAuNPs, the 
NPs were detected in various tissues after 24 h and were 
mostly confined to the RES organs [55].

The shape, charge and surface chemistry of AuNPs can 
influence their toxicity. These factors can determine how 
AuNPs will interact with the biological systems, their cel-
lular uptake and effects on the cells. AuNSs are readily 
taken up by cells and proven to be less toxic than other 
shapes such as rods and stars. AuNP surfaces are charged 
and will influence how they interact and behave within 
a biological environment [169]. Cationic AuNPs are 
likely to be more toxic compared to neutral and anionic 
AuNPs, as their charge allows these NPs to easily inter-
act with negatively charged cell membranes and biomol-
ecules such as DNA. Both the positively and negatively 
charged AuNPs have been associated with mitochondrial 
stress, which was not observed with the neutrally charged 
AuNPs [34, 35].

The shell that forms on the surface of the AuNP core 
can also influence the functioning of the NPs. These are 
usually reducing and/ or stabilizing agents such as citrate 
and CTAB, and once subjected to a biological environ-
ment, these molecules can cause either the desorption or 
absorption of biomolecules found in the biological envi-
ronment. This can result in the formation of a corona or 
cause the NPs to become unstable. Citrate- and CTAB-
capped AuNPs are highly reactive, which can facilitate 
the attachment of biocompatible polymers such as PEG, 
polyvinyl-pyrrolidone, poly (acrylic acid), poly(allylamine 
hydrochloride), and polyvinyl-alcohol) or biomolecules 
such as albumin and glutathione to prevent the forma-
tion of AuNP-corona with serum proteins. These mol-
ecules serve as a stabilizing agent and form a protective 
layer that can mask the AuNPs from attacks by phago-
cytes [7, 29, 34, 170] and prevent off-target toxicity [7]. 

As discussed in “AuNP-Based Therapies” section, AuNPs 
can be functionalized with targeting and therapeutic 
agents to define their targets and effects [34].

In addition to their physicochemical properties, the 
dosage, exposure time and environmental settings also 
influence the activity of AuNPs. Lower doses and short-
term exposure times might render AuNP as nontoxic, 
while increasing these parameters will lead to cytotoxic 
effects [34]. Moreover, in  vitro studies do not always 
simulate in  vivo studies. At times, AuNPs that seem to 
be nontoxic in cell culture-based experiments end up 
being toxic in animal experiments. Many factors could 
be responsible for these discrepancies [118], and some 
steps have been identified that can guarantee the safety of 
AuNPs in biomedical applications. The biocompatibility 
and target specificity of AuNPs can be improved by mod-
ifying the surface of the NPs. Attaching targeting moie-
ties on the AuNPs can channel and restrict their effects to 
specific targets or pathological cells [5, 55, 127]. Modifi-
cation of AuNP surface with bio-active peptides provides 
a platform for developing multifunctional AuNPs with 
enhanced specificity, efficacy and potentially sustainable 
effects [11, 127]. All of these effects will be instrumental 
in the design and development of AuNP-based systems 
for clinical applications.

Clinical Application of AuNPs
Nanotechnology has the potential to shape the future 
of healthcare systems and their outcomes. Its promise 
of creating highly sensitive and effective nanosystems 
for medicine has been realized with the introduction of 
organic nanoformulations for cancer treatment. These 
systems have already paved the way for nanomaterials 
into clinical applications: doxil and abraxane have been 
in the market for over two decades and demonstrated 
the potential of nanotechnology in medicine [1, 2]. More 
recently, this technology has been used for the develop-
ment of the SARS-CoV-2 lipid NP-based vaccine to fight 
against the COVID-19 pandemic [171]. Inorganic nano-
systems such as AuNPs offer many advantages over their 
organic counterparts, yet few of these systems are used 
clinically (Table 2) [19, 32].

While several AuNP-based drugs are some of the 
inorganic nanomaterial-based drugs that  were tested in 
clinical trials, they are not progressing at the same rate 
as organic liposome-based nanodrugs. Aurimune (CYT-
6091) and aurolase were the first of AuNP-based formu-
lations to undergo human clinical trials for the treatment 
of solid tumors. CYT-6091 clinical trials started in 2005 
for delivery of recombinant TNF-α as an anticancer 
therapy in late-stage pancreatic, breast, colon, mela-
noma, sarcoma and lung cancer patients. CYT-6091 con-
sists of 27-nm cAuNPs loaded with TNF-α and thiolated 
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PEG. The CYT-6091 nanodrug has achieved safety and 
targeted biologic response at the tumor site at a dose 
lower than that required for TNF-α alone [16, 17]. CYT-
6091 is approved and yet to start phase II clinical tri-
als in combination with chemotherapy. Based on phase 
II clinical trial strategy, several variants of CYT-6091 
have been developed and tested in preclinical studies. 
All the nanosystems contain TNF-α with either chemo-
therapy (paclitaxel, dox and gemcitabine), immunother-
apy (Interferon gamma) or apoptosis inducing agents 
attached to the 27 nm cAuNPs [14–16]. The AuNP con-
jugates preferentially accumulated in the tumor sites after 
systemic administration through the EPR effect and vas-
cular targeting effects of the TNF-α. The AuNPs were not 
detected in the healthy tissues, and the anti-tumor effects 
of TNF-α were restricted to the tumor environment [14, 
16, 19].

The first clinical trial for the PT treatment with Auro-
Lase® for refractory and/or recurrent head and neck can-
cers was completed. Information on the outcome of this 
trial is still pending. The second trial is set to evaluate the 
effects of AuroLase® on primary and/or metastatic lung 
tumors in patients where the airway is obstructed [19]. 
The number of human trials based on AuNP-based for-
mulation is increasing, covering the treatment of a wide 
range of medical conditions including skin, oral, heart 

and neurological diseases. AuNP-formulation (150  nm 
silica-gold nanoshells coated with PEG), which is similar 
to AuroLase®, was approved for PT treatment of moder-
ate-to-severe inflammatory acne vulgaris. The nanoshells 
were topically applied on the acne area and transdermally 
delivered into the follicles and sebaceous ducts through 
low-frequency ultrasound or massage. Nanoshells 
applied through massage were effective in penetrating 
the shallow skin infundibulum (90%) and the sebaceous 
gland (20%), while the low-frequency ultrasound can 
penetrate both shallow and deep skin tissues. NIR laser 
treatment resulted in focal thermolysis of the sebaceous 
glands in the affected area and disappearance of the acne 
[18, 167]. The gold–silica nanoshells were well-tolerated, 
showed no systemic toxic effects with minor side effects 
(reddiness and swelling) at the treatment site [18]. AuNPs 
offer many health benefits based on their unique proper-
ties but at the same time have raised a lot of political and 
ethical issues, and resulted in termination of some clini-
cal studies (NCT01436123).

Conclusion and Future Perspectives
Applications of AuNPs in biomedicine are endorsed 
by their unique physicochemical properties and have 
shown great promise as theranostic agents. The increas-
ing interest in biomedical applications of AuNPs is 

Table 2 AuNP-based formulations approved for clinical trials by FDA. Adapted from [19, 32]

AuNP formulation Condition or disease Properties of the metallic NPs NCT number

Aurrimune Late stage pancreatic, breast, colon, mela-
noma, sarcoma and lung cancer

27 nm AuNPs core loaded with TNF-α and 
PEG

NCT00356980 
NCT00436410

Aurolase Refractory and/or recurrent tumors for 
head and neck cancer
Primary and/or metastatic lung tumors

150 nm silica-gold nanoshells coated with 
PEG

NCT00848042
NCT01679470

Sebacia Microparticles Acne vulgaris 150 nm silica-gold nanoshells coated with 
PEG

NCT02219074
NCT02217228

C19-A3 GNP peptide Type 1 diabetes AuNPs with peptide fragment related to 
insulin

NCT02837094

NU-0129 Gliosarcoma

Recurrent glioblastoma AuNPs with nucleic acid NCT03020017

NANOM-FIM Stable angina
Heart failure
Atherosclerosis

Multivessel coronary artery disease Silica- AuNPs vs AuNPs with silica–iron 
oxide shells with photothermic burning or 
melting effect onto the lesion

NCT01270139

Nano Care Gold Cavity pre-treatment in Caries class Ii AgNPs and AuNPs in 70% isopropyl alcohol NCT03669224

Exhaled Breath Olfactory Signature (Artifi-
cial Nose)

Pulmonary hypertension AuNPs coated with organic ligands as sen-
sor array for detection of volatile organic 
compounds in breath of patients

NCT02782026

Na-nose Gastric diseases Functionalized AuNPs and carbon nano-
tubes nanosensor arrays

NCT01420588

Nanomedical Artificial Olfactory System Parkinson’s disease
Parkinsonism

Functionalized AuNPs and carbon nano-
tubes nanosensor arrays

NCT01246336
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further encouraged by the biocompatibility and medical 
history of bulk gold, which suggests that the gold core 
in AuNPs will essentially display similar or improved 
properties [3]. But at the same time their small size 
can infer unique properties that will completely change 
their pharmacokinetics [144]. The diverse biomedical 
applications of AuNPs in diagnostics and therapeutics 
herein discussed demonstrate their potential to serve 
as adjunct theranostic agents. They can be used as drug 
delivery, PTT, diagnostic and molecular imaging agents 
[12, 33, 128]. In time, and with better knowledge of 
mechanisms of action, more AuNP-based systems will 
obtain approval for clinical use. However, the excite-
ment of these biomedical applications of AuNPs should 
unequivocally be balanced with testing and valida-
tion of their safety in living systems before any clinical 
applications.

In conclusion, more work needs to be done to taper 
the toxicity of AuNPs. This can be achieved by intro-
ducing biocompatible molecules on their surface [14, 
15, 58, 159], and developing new and better synthesis 
methods, such as the use of green chemistry to pro-
duce biogenic NPs. All these developments may further 
broaden the applications of AuNPs in nanomedicine. 
AuNPs are non-biodegradable, and off-target distribu-
tion could result in chronic and lethal effects. All these 
concerns must be addressed before clinical translation; 
the existing trials will soon provide some clarity on 
their impact in human health. Should their health ben-
efits outweigh their potential risks as is the case with 
the existing clinical drugs, it is a matter of time before 
they are approved for clinical use.
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unit; LFAs: Lateral flow assays; LSPR: Localized surface plasmon resonance; 
MDR: Multidrug resistant; MGF: Mangiferin; MPA: Mercaptopropionic acid; 
MWPLP: Microwave-induced plasma-in-liquid process; NCL: Nucleolin; NIR: 
Near-infrared; NSMs: Nanostructured materials; P. jirovecii: Pneumocystis jirovecii; 
PEG: Polyethylene glycol; PSA: Prostate-specific antigen; PSMA: Prostate-
specific membrane antigen; PT: Photothermal; PTT: Photothermal therapy; 
QDs: Quantum dots; RES: Reticuloendothelial system; ROS: Reactive oxygen 
species; SARS-CoV-2: Severe acute respiratory syndrome-coronavirus-2; SCID: 
Severe combined immunodeficiency; SPR: Surface plasmon resonance; sWAT 
: Subcutaneous white adipose tissue; TOAB: Tetrabutylammonium bromide; 
TRMs: Tissue-resident macrophages; VEGF: Vascular endothelial growth factor; 
WAT : White adipose tissue.
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