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Abstract
Invasive Alien Plants (IAPs) pose major threats to biodiversity, ecosystem function-
ing and services. The availability of moderate resolution satellite data (e.g. Sentinel-2 
Multispectral Instrument and Landsat-8 Operational Land Imager) offers an opportu-
nity to map and monitor the occurrence and spatial distribution of IAPs. The use of two 
multispectral remote sensing data sets to map and monitor IAPs in the Heuningnes 
Catchment, South Africa, was therefore investigated using the maximum likelihood 
classification algorithm. It was possible to identify areas infested with IAPs using re-
mote sensing data. Specifically, IAPs were mapped with a higher overall accuracy of 
71%, using Sentinel-2 MSI as compared to using Landsat 8 OLI, which produced 63% 
accuracy. However, both sensors showed similar patterns in the spatial distribution 
of IAPs within the hillslopes and riparian zones of the catchment. This work demon-
strates the utility of the two multispectral data sets in mapping and monitoring the 
occurrence and distribution of IAPs, which contributes to improved ecological model-
ling and thus to improved management of invasions and biodiversity in the catchment.

Résumé
Les plantes étrangères envahissantes constituent une grave menace pour la biodi-
versité, le fonctionnement et les services de l’écosystème. La disponibilité de don-
nées satellite à résolution moyenne (ex. : Sentinel-2 Multispectral Instrument et 
Landsat 8 Operational Land Imager) offre l’opportunité de cartographier et de con-
trôler l’apparition et la répartition spatiale des plantes étrangères envahissantes. 
L’utilisation de deux ensembles de données multispectrales obtenues par télédétec-
tion pour cartographier et contrôler les plantes étrangères envahissantes sur le bas-
sin versant d’Heuningnes, en Afrique du Sud, a fait l’objet d’une étude en utilisant 
l’algorithme classification de vraisemblance maximale. L’identification des zones 
envahies par les plantes étrangères envahissantes a été rendue possible à l’aide 
de données obtenues par télédétection. Les plantes étrangères envahissantes ont 
notamment été cartographiées avec une précision d’ensemble plus élevée de 71,03% 
à l’aide de Sentinel 2 MSI, en comparaison avec l’utilisation de Landsat 8, qui a permis 
d’atteindre une précision de 62,95%. Cependant, les deux sondes ont montré des 
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1  | INTRODUC TION

The spreading of invasive alien species is a global problem. A review 
by Turbelin, Malamud, and Francis (2017) established that in terms of 
the number of occurrences of alien species, the USA, New Zealand, 
Australia and South Africa were the leading countries. However, 
small island states such as the Reunion, French Polynesia and Fiji 
were highly affected with number of alien species ranging from 914 
to 6,890 species per 100,000 km2. Alien species outcompete and 
cause a decline of the number of indigenous species. Terrestrial alien 
plants also increase the frequency and intensity of fires (Pyšek et al., 
2012; Van Wilgen & Richardson, 2012). Initially, Invasive Alien Plants 
(IAPs) were introduced in different countries for economic devel-
opment and to curb environmental problems. For example, Prosopis 
was introduced in Sudan to curb desertification. In South Africa, they 
were introduced during the 19th century for the supply of timber (e.g. 
Eucalyptus, Pines), fodder (e.g. Acacias, Prosopis) and stabilisation of 
dunes (Acacia). However, these species have become problematic 
and expand at unprecedented rates. For example, in South Africa, the 
condensed area covered by the different IAPs is currently equivalent 
to 8% of the country's total land area and 16% of the Western Cape 
Province (Le Maitre, Versfeld, & Chapman, 2000).

South Africa is predominantly semi-arid to arid, with an average 
annual rainfall of approximately 464 mm/year of which 8% forms 
surface run-off. Mountainous areas, which cover 8% of South 
Africa's land area, generate over 50% of the surface run-off and are 
considered to be strategic water source areas for the whole country 
(Nel, Colvin, Le Maitre, Smith, & Haines, 2013). However, the spread 
of IAPs into these mountainous areas is a major threat to the avail-
ability of water resources. Le Maitre et al. (2000) estimated that the 
presence of alien invasive plants causes 7% decrease in the available 
water due to the increase in transpiration losses. The most prob-
lematic IAPs in South Africa are the Australian Acacia, Eucalyptus 
and Pinus genera (Chamier, Schachtschneider, Le Maitre, Ashton, 
& Van Wilgen, 2012; Dzikiti, Schachtschneider, Naiken, Gush, & 
Le Maitre, 2013; Dzikiti, Schachtschneider, Naiken, Gush, Moses, 
et al., 2013; Meijninger & Jarmain, 2014). Studies done in the Cape 
Agulhas showed that IAPs were consuming water equivalent to the 
long-term average run-off (Mazvimavi, 2018; Mkunyana, Mazvimavi, 
Dzikiti, & Ntshidi, 2018). Due to the considerable adverse effects of 

IAPs on water resources, the South African government launched 
the Working for Water Programme in 1996, focusing on clearing 
IAPs (Le Maitre et al., 2000). Landowners such as those in the Cape 
Agulhas are also involved in clearing programmes. The effectiveness 
of clearing programmes depends on knowledge about the spatial 
distribution of IAPs. This requires routine monitoring since the spa-
tial distribution of IAPs often rapidly increases over a year in some 
locations. National surveys of the spatial distribution have been 
undertaken, for example, the Southern African Plant Invaders Atlas 
(Henderson, 1998; Versfeld, Le Maitre, & Chapman, 1998), National 
Invasive Alien Plant Survey (Kotzé, Beukes, Van den Berg, & Newby, 
2010). However, such surveys undertaken after a lengthy period, for 
example 10 years, do not provide information necessary for imple-
menting effective clearing on an annual basis. The availability of re-
mote sensing data offers the opportunity to monitor the changes in 
the spatial distribution of IAPs on an annual basis and thus assist in 
identifying areas to be targeted for routine clearing.

Data from Landsat 8 OLI (LT8), which has a spatial resolution of 
30 m and a 16-day revisit time, and Sentinel-2 MSI (S2), with the 
spatial resolution of 10–20 m on selected bands and a 5-day revisit 
time, offer an opportunity to establish the spatial distribution of 
IAPs at time intervals suitable for developing routine clearing pro-
grammes. A study by Dube, Mutanga, Sibanda, Bangamwabo, and 
Shoko (2017a,b) showed that the spatial distribution of IAPs could be 
established using Landsat 7 data. The study presented in this paper, 
thus, has the objective of evaluating the feasibility of determining 
the spatial distribution of IAPs in the Heuningnes Catchment, South 
Africa, using LT8 and S2. The study used data sets from the two sat-
ellites in order to identify which data source would be more appro-
priate for accurately mapping the distribution of IAPs.

2  | MATERIAL S AND METHODS

2.1 | Study area description

The National Invasive Alien Plant Survey done by Kotzé et al. (2010) 
and work by Le Maitre et al. (2000) showed that the Cape Agulhas 
area of the Western Cape Province of South Africa had the great-
est proportion of over 60% of the land area being affected by IAPs. 

tendances similaires dans la répartition spatiale des plantes étrangères envahissantes 
sur les flancs des collines et dans les zones riveraines du bassin versant. Ce travail dé-
montre l’utilité de deux ensembles de données multispectrales dans la cartographie 
et le contrôle de l’apparition et de la répartition des plantes étrangères envahissantes, 
ce qui contribue à l’amélioration de la modélisation écologique et donc de la gestion 
des invasions et de la biodiversité dans le bassin versant.
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The Heuningnes Catchment, with a catchment area of 1,401 km2, 
is located at the southernmost tip of Africa and is one of the se-
verely affected catchments (Figure 1). Landowners in this catchment 
formed a forum to coordinate and implement clearing of IAPs on a 
continuous basis. Previous studies in this catchment found that IAPs 
occurred along riparian zones and hillslopes and were rapidly spread-
ing (Mazvimavi, 2018; Mkunyana, et al., 2018). Both the Working 
for Water Programme and landowners require information about 
changes on an annual basis of areas with IAPs, in order to identify 
areas to be targeted for clearing. Due to this demand for information 
about the spatial distribution of IAPs, the Heuningnes Catchment 
was selected for the study presented in this paper. Eucalyptus, Pinus 
and Acacia (Acacia longifolia, A. cyclops and A. saligna) are the domi-
nant species in the Heuningnes Catchment (Nowell, 2011).

The Heuningnes Catchment has an altitude varying from 100 to 
700 m above sea level, on the north-western part of the catchment, 
while the south-western area has mostly coastal lowlands at <60 m 
(Figure 1). Pans and wide floodplains dominate on the south-western 
part. The Soetendalsvlei, which is about 3 km wide and 8 km long, is 
the largest lake in the catchment. Other lakes are the Voevlei (4 km 
by 1.7 km), Soutpan (1.3 km by 1.9 km), Longpan (1 km by 0.5 km) and 
Roundepan (0.6 km by 0.4 km). The Soetendalsvlei drains into the 
Heuningnes River that joins the Indian Ocean. The average rainfall 

varies from 400 mm/year in the lowlands to 675 mm/year in the moun-
tains, which form the headwaters. Most of the rainfall occurs during 
winter, May–August. Average temperatures range from 10°C in winter 
to 28°C in summer, while the annual average A-pan evaporation rate 
is 1,445 mm/year.

The Heuningnes catchment is part of the Cape Floristic Region 
(CFR) rich in biodiversity (Fourie, De Wit, & Van der Merwe, 2013). 
The sclerophyllous shrub, fynbos, is the main indigenous vegetation, 
with species belonging to Proteaceae, Ericaceae and Restionaceae 
families (Mucina & Rutherford, 2006). The major land uses are dry-
land crop cultivation (wheat, barley, canola), livestock production 
(cattle and sheep), vineyards and growing of indigenous flowers 
(Mazvimavi, 2018; Mkunyana et al., 2018).

2.2 | Field data collection

This study required groundtruth data on the occurrence of IAPs in 
order to assist in the classification and validation of land cover types 
from satellite images. Therefore, the groundtruth data was collected 
during August 2018, which coincided with flowering period of most 
IAPs in the catchment. A plot size of 30 m × 30 m was used to collect 
GPS locational data on individual species within the plot. This was 

F I G U R E  1   Location of the Heuningnes catchment situated in Western Cape Province, South Africa [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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solely informed by other works in literature that have compared the 
two satellite sensors, in vegetation mapping or other-related types 
of works (Abdullah, Skidmore, Darvishzadeh, & Heurich, 2019; Clark, 
2017; Forkuor, Dimobe, Serme, & Tondoh, 2018). Species locations 
were recorded using the eTrex 10 Garmin GPS, with an error mar-
gin of 3.65 m (Garmin, 2019). Three hundred and sixty-five ground 
truth points representing different land cover types were identified 
and recorded. The minimum distance between the GPS points was 
at least 100 meters, to avoid over sampling. The observed vegetation 
classes included cultivated lands, natural shrubs, fynbos and alien 
shrubs and invasive tree species namely Acacia longifolia, A. saligna, 

F I G U R E  2   Co-occurrence of IAPs [Colour figure can be viewed 
at wileyonlinelibrary.com]

F I G U R E  3   Landsat 8 (a) and 
Sentinel-2 (b) classified images showing 
discrimination of IAPs from other land 
cover classes [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


     |  713MTENGWANA ET Al.

A. cyclops, Eucalyptus, Hakea and Pines. Figure 2 shows photo-
graphs of co-occuring typical IAPs occurring within the Heuningnes 
catchment.

2.3 | Satellite data acquisition

Landsat images were obtained from the online USGS earth obser-
vation database (http:/earth explo rer.usgs.gov). The Sentinel-2 MSI 
was obtained from the European Space Agency Copernicus hub. 
Three image scenes with minimal cloud cover (T34HCG, T34HDG 
and T34HCH) of S2 Level-1C products, covering the study area, 
were acquired for the 24th of August 2018. The LT8 scene (Path 
174/Row 84) that fitted the entire study area and with minimal cloud 
cover was obtained for 18 July 2018. The selected images for both 
satellites had a cloud cover of <2%. The preferences of cloud free im-
ages resulted in a 5-week difference between images obtained from 
the two satellites.

2.4 | Image processing and classification

The atmospheric correction for both LT8 and S2 images was done, 
using the Dark Object Subtraction 1 (DOS1) (Chavez, 1988). The 

S2 images contained radiometric and geometric corrections, which 
include orthorectification and spatial registration (SUHET, 2015). 
Further, images from both S2 and LT8 were then re-projected to 
the Universal Transverse Mercator (UTM) 34 South based on the 
World Geodetic System (WGS) 84 Spheroid. In S2, the 20 m vegeta-
tion red-edge bands (5, 6, 7 and 8a) were resampled, using the near-
est neighbour technique (Baboo & Devi, 2010) to match the 10 m 
spatial resolution of the visible (VIS) spectrum bands (band 2–4) 
and the near-infrared (NIR) band 8. The image scenes were further 
mosaicked to form a single image scene, covering the entire catch-
ment. The mean mosaicking operation was applied where images 
overlapped. We assumed that since the image scenes were taken 
on the same day, the averaging of the mean would have a minimal 
to no difference. For the LT8 data, only bands 1–7, which constitute 
the coastal, visible and near-infrared regions, were used. Image band 
composites were generated, using the common geographic informa-
tion systems tools. The study area was then extracted from the mo-
saicked and layer stacked image scenes prior to the classification of 
IAPs.

The surveyed ground truth points were overlaid on the composite 
image, to create training samples and signature files for image clas-
sification. The image classification process made use of raw spectral 
bands, to identify different land cover classes, in order to discrim-
inate IAPs from other land cover types. The supervised maximum 

TA B L E  1   Error matrix results for Landsat 8 OLI and Sentinel-2 image classification.

IAPs Built up Water Cultivation
Natural 
vegetation

Bare 
surfaces Burnt areas Total

UA 
(%)

L8

IAPs 31 8 0 1 13 2 0 55 56

Built up 0 21 0 1 4 5 0 31 68

Water 5 4 31 2 6 7 0 55 56

Cultivation 2 1 1 51 11 0 0 66 77

Natural vegetation 6 5 0 5 34 8 1 59 58

Bare surfaces 4 7 0 4 5 44 0 64 69

Burnt areas 0 3 0 0 10 2 14 29 48

Total 48 49 32 64 83 68 15 359

PA (%) 65 43 97 80 41 65 93

Overall accuracy (%) 62.95

S2

IAPs 37 11 0 2 1 4 0 55 67

Built up 1 26 0 0 0 5 0 32 81

Water 2 7 35 1 1 5 0 51 69

Cultivation 1 9 0 56 1 4 0 71 79

Natural vegetation 0 5 0 1 30 15 1 52 58

Bare surfaces 0 4 1 8 1 55 0 69 80

Burnt areas 0 1 0 0 2 10 16 29 55

Total 41 63 36 68 36 98 17 359

PA (%) 90 41 97 82 83 56 94

Overall accuracy (%) 71.03

Bold values indicating the number of correctly classified classes.

http:/earthexplorer.usgs.gov
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likelihood classification was used (Sisodia, Tiwari, & Kumar, 2014). 
The following metrics were used to assess the accuracy of image 
classification: overall accuracy, user and producer accuracy, errors of 
commission and the errors of omission (Coluzzi, Imbrenda, Lanfredi, 
& Simoniello, 2018). The allocation of agreements and disagree-
ments was determined following Pontius and Millones (2011). The 
McNemar test was performed to determine whether there were any 
statistical differences between the two classified images. However, 
the class areas detected were not reflective of the true estimated 
size based on the actual acquired accuracies because each land 
cover type is subjected to accuracy errors. Therefore, the areal ex-
tent was further analysed, by considering accuracies and errors of 
each class, using the user's accuracy, to ascertain the reliability of 
the model. It is recommended that estimation of the areas invaded 
should be quantified based on the reference data as it provides the 
best assessment of ground conditions (Olofsson et al., 2014). The 
areas covered by IAPs were thus estimated from the classified im-
ages. The areal extents of IAPs were assessed, by considering accu-
racies and errors of each class, using the user's accuracy, to assess 
the reliability of classification results. The correlation analysis of the 
areas covered by different land cover types estimated from S2 and 
LT8 was undertaken.

3  | RESULTS

3.1 | Comparison of satellite-derived IAPs 
distribution at catchment scale

A visual comparison of classification done from the S2 and LT8 im-
ages showed similar spatial distribution of IAPs, within the catch-
ment (Figure 3). IAPs occurred mostly on the hillslopes and riparian 
zones. As expected, the occurrence of IAPs was limited in areas 
dominated by crop cultivation, such as the northern part of the 
catchment. Landowners are obviously likely to clear any woody 
plant emerging in cropped lands. The IAPs were widespread on the 

hillslopes of the Koue Mountains, on the north-western part, and 
Bredasdorp Mountains on the central part. The distribution of areas 
affected by the IAPs tended to be widespread and patchy, particu-
larly on the southern part on LT8, when compared to the S2 mapping 
results (Figure 3).

3.2 | Classification accuracy assessments

The classification of LT8 image had an overall accuracy of 63% whereas 
71% was observed for the S2 image. The S2 had better user's accuracy 
(UA) (67%) and producer's accuracy (PA) (90%), while these were 56% 
and 65%, respectively, for the LT8 image (Table 1). The natural vegeta-
tion class was mapped, with a negligible difference in the UA between 
the two satellites, 58% for both the S2 and LT8. However, the PA for 
the natural vegetation was 83% for the S2 and 41% for LT8.

When considering the accuracy differences in class detection 
within the same satellite, the LT8 similarly represented IAPs and 
the natural vegetation with a negligible difference in UA (1.27%), 
but with better PA than natural vegetation due to high omission 
error (Table 1). Using the S2, the UA and PA for IAPs were both 
greater than that of the natural vegetation, with differences of 
9.58% and 6.91%, respectively. Overall, the results showed that 
the S2 performed better than the LT8, when comparing the capa-
bility of detecting and mapping both IAPs and natural vegetation.

The allocation of agreements for the IAPs was higher than the 
allocation disagreement measures (i.e. commission and omission) for 
both the S2 and LT8 classified images (Figure 4a,b). However, the 
allocation of agreements for the S2 image (Figure 4b) was generally 
higher when compared to those of the LT8 (Figure 4b), for all the land 
cover types. Overall, the classification of the S2 image had lower 
disagreements than that of the LT8, across the land cover types. 
Classification of LT8 had an overall disagreement of 37%, while this 
was 29% for the S2. The omission for the natural vegetation mapped 
from the LT8 was very high, at 14% when compared to the 2% for 
the S2. This could explain the low PA for the natural vegetation in 

F I G U R E  4   Allocation of agreements and disagreements for (a) Landsat 8 and (b) Sentinel-2 [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the LT8 image classification results. The classification of the LT8 had 
a greater quantity and allocation disagreement (19%) when com-
pared to that of the S2 (15%). The results showed that the S2 was 
slightly better than the LT8, at detecting and discriminating the IAPs. 
However, the McNemar statistical test results showed that the per-
formance between the two sensors was not significantly different 
(p-value = 0.5254).

3.3 | Estimation of the spatial coverage of IAPs as 
detected by LT8 and S2

The area covered by the IAPs based on the classification of the LT8 
image was approximately 22% of the catchment area (~31,424 hec-
tares), while the estimated based on the S2 was 13% (~17,945 hec-
tares). Table 2 further showed that the accurately detected area for 
IAPs was approximately 17,712 hectares (13%) and 12,072 hectares 
(9%) by the LT8 and S2, respectively. LT8 showed a major difference 
between the total detected and the accurately detected area, while 
S2 still retained the 9% cover for the IAPs. It can also further be ob-
served that the area occupied by the IAPs as derived from theLT8 was 
greatly overestimated when compared to that of the S2. However, 
the correlation test between the derived areas generated from the 
two satellites showed a strong relationship between the detected 
(0.86), accurately detected (0.87) and the undetected (0.91) areas. 
The opposite was observed for the overestimated areas that a very 
weak agreement (0.26) between the estimated areas. Both satellite 
images showed an overestimation in particular classes over the other.

4  | DISCUSSION

The main aim of the study was to detect and map the spatial distribu-
tion of IAPs, using the LT8 and S2 multispectral remote sensors in the 

Heuningnes catchment, Western Cape, South Africa. The accurate 
detection of the IAPs is important to provide accurate information 
on their occurrence and their spatial distribution for the rehabilita-
tion of the affected areas and related-management strategies.

The results showed that the S2 image provided a better repre-
sentation of the distribution of the IAPs and the other land cover 
types in comparison with the LT8 image. The observed results show-
ing the capability of the S2 in this study are confirmed by other 
recent studies, which have demonstrated its unique ability to out-
perform the LT8, with better accuracies. Thamaga and Dube (2018) 
also found that S2 performed better in discriminating water hyacinth 
when compared to the LT8. Rajah, Odindi, and Mutanga (2018) re-
ported that the S2 images were appropriate for the mapping invasive 
species across different seasons.

The higher spatial and spectral resolutions of the S2 when 
compared to the LT8 contribute to the improved detection of the 
IAPs. The higher spatial resolution of the S2 reduced the problem 
of mixed pixels, while the spectral resolution contributed to the 
better classification of the IAPs because of the improved classes' 
discrimination (Li, Li, Lu, & Chen, 2019). This is also evident in this 
study that used 10 bands for the S2, and 7 bands for the LT8 for 
the image classifications. The S2 has an increased number of four 
red-edge (RE) bands and two near-infrared (NIR) when compared 
to the LT8. This increased the ability of the S2 to discriminate veg-
etation (Cho et al., 2012; Shoko & Mutanga, 2017). Consequently, 
the S2 had an improved discrimination of the IAPs and the natural 
vegetation class when compared to the LT8 image. This is evident 
from the comparison of the overall, user's and producer's accu-
racy metrics. Other studies have also found that the use of the 
near-infrared (NIR), red-edge (RE) and shortwave infrared (SWIR 
1, SWIR 2) bands improved the discrimination of different vege-
tation types (Astola, Häme, Sirro, Molinier, & Kilpi, 2019; Dube 
et al., 2017a,b; Forkuor, et al., 2018; Li et al., 2019; Thamaga & 
Dube, 2018).

TA B L E  2   Areal estimates of land cover types for Landsat 8 and Sentinel-2 based on classification results in hectares and percentages

Area (hectares)

Detected Accurately detected Not detected Overestimation

LT8 S2 LT8 S2 LT8 S2 LT8 S2

IAPs 31,424 17,945 17,712 12,072 13,712 5,873 11,129 1,751

Built up 5,703 9,867 3,863 8,017 1,840 1,850 3,259 5,795

Water 1,534 1,216 865 835 669 382 48 34

Cultivation 66,197 76,367 51,152 60,233 15,045 16,134 13,446 13,476

Natural vegetation 70,503 49,191 40,629 28,379 29,874 20,812 41,622 8,198

Bare surfaces 13,301 37,810 9,144 30,138 4,156 7,672 4,694 16,590

Burnt areas 4,898 1,169 2,365 645 2,534 524 327 69

Total 193,561 193,565 125,730 140,319 67,831 53,245 74,526 45,913

IAPs area (%) 16 9 14 9 20 11 15 4

Accurately Detected (user's accuracy), Not Detected (omission error), Overestimated (commission error)

Correlation 0.86 0.87 0.91 0.26
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On the other hand, the LT8 showed more overestimation of the 
IAPs than the S2 image. The high overestimation by the LT8 is evi-
dent when analysing the differences in the distribution of the IAPs in 
comparison with the S2 because the commission errors and omission 
errors were generally higher for the LT8 than the S2. This can be 
ascribed to the low ability of the sensor to distinguish between the 
species and the surrounding vegetation, due to the lack of RE bands. 
This is evident in this study because the user accuracy for the natural 
vegetation and the IAPs were similar, although negligible. Possibly, 
the use of the robust algorithms is required for the detection and 
monitoring of the IAPs and the use of the combination of both the 
VIs and spectral bands to improve classification, when using Landsat 
data series (Matongera, Mutanga, Dube, & Sibanda, 2017; Thamaga 
& Dube, 2018).

Both the LT8 and S2 had a similar distribution pattern of the 
invaded areas, thus showing the capability of both satellites in de-
tecting the IAPs and other classes, within the catchment despite 
the slight differences in the classification accuracies. The McNemar 
statistical test results confirmed that the classification perfor-
mance between the two sensors was not significantly different (p-
value = 0.5254). This observation therefore implied that both the 
S2 and LT8 can equally be used to map the occurrence of the IAPs, 
with a reasonable certainty. This was also the case for Sanchez-
Espinosa and Schroder (2019), where the distribution of the LULC 
was similar between the two satellites. The larger patterns of dense 
stands of the IAPs were similarly detected by both satellite images 
than the sparse and relatively smaller patches to pixel sizes of the 
respective satellites. The finer spatial resolution of the S2 has al-
lowed for the better detection and mapping of the IAPs at locations 
with relatively small or sparse vegetation coverages. The LT8 has a 
greater limitation over the S2 in adequately detecting the smaller 
patches of the IAPs. However, the two satellite data sets provide 
time scale and spatial complementarity required for ecological 
monitoring.

In addition, there was a strong relationship between the estima-
tion of the accurately detected areas. But the improved spatial and 
spectral resolutions of the S2 have provided the opportunity for more 
accurate detection and quantification of the areas invaded by the 
IAPs (Sanchez-Espinosa & Schroder, 2019). The detection and deter-
mination of the spatial extent of the IAPs is valuable as it provides the 
requisite baseline information for mitigating and rehabilitating the in-
vaded landscapes (Dube et al., 2020; Mudereri et al., 2020). Mapping 
the spatial distribution of the IAPs is also important for conserva-
tion, and the allocation of resources for management and planning 
purposes (Masocha et al., 2017; Masocha & Dube, 2017; Masocha 
& Dube, 2018; Mungate et al., 2019). The spatial understanding of 
the extent and distribution of the IAPs is important for providing the 
appropriate management strategies (Matongera et al., 2017). The use 
of the S2 can have a better implication for the management of the 
IAPs at catchment scale, as it has the potential to provide more detail 
and accurate information. This information can help in decision-mak-
ing to inform the clearing and rehabilitation of these IAPs in invaded 
areas. The freely available multispectral data of the S2 can reduce the 

cost of management practises when determining the spatial extent of 
these IAPs (Matongera et al., 2017; Rajah et al., 2018).

5  | CONCLUSION

This study assessed the potential use of the Landsat 8 and Sentinel-2 
MSI data in mapping the IAPs. Both sensors were capable to detect 
and map areas where alien invasive plants were mostly dominant, 
particularly, within the hillslopes and riparian zones of the catch-
ment. However, the Sentinel-2 demonstrated more potential in the 
overall classification of the species. The Landsat 8 was not able to 
detect small patches of alien invasive plants, within the catchment. 
The unique capability of the Sentinel-2 MSI to discriminate these 
IAPs is attributed to its improved spatial resolution and the pres-
ence of the red-edge bands, which is critical in enhancing the ability 
to distinguish between different types of vegetation, among other 
bands that include the NIR and SWIR. Overall, the findings of this 
work can be used for more extensive analyses of the occurrence and 
the environmental impact of invasive species and aid in proving the 
extensive reliable distribution of IAPs using the easily accessible and 
cost-efficient satellite data, as a surrogate for in-situ measurements 
in remote areas. Further, these results can be used as a baseline in-
formation for the IAPs eradication programmes.
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