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On the Evolution Equation for Modelling
the Covid-19 Pandemic

J. M. Blackledge

Abstract The paper introduces and discusses the evolution equation, and, based
exclusively on this equation, considers randomwalk models for the time series avail-
able on the daily confirmed Covid-19 cases for different countries. It is shown that
a conventional random walk model is not consistent with the current global pan-
demic time series data, which exhibits non-ergodic properties. A self-affine random
walk field model is investigated, derived from the evolutionary equation for a speci-
fied memory function which provides the non-ergodic fields evident in the available
Covid-19 data. This is based on using a spectral scaling relationship of the type 1/ωα

where ω is the angular frequency and α ∈ (0, 1) conforms to the absolute values of
a normalised zero mean Gaussian distribution. It is shown that α is a primary param-
eter for evaluating the global status of the pandemic in the sense that the pandemic
will become extinguished as α → 0 for all countries. For this reason, and based on
the data currently available, a study is made of the variations in α for 100 randomly
selected countries. Finally, in the context of the Bio-dynamic Hypothesis, a para-
metric model is considered for simulating the three-dimensional structure of a spike
protein which may be of value in the development of a vaccine.

Keywords Einstein’s Evolution equation · Self-Affine random walk fields ·
Pandemic time series analysis · Bio-dynamics hypothesis · Fractal geometry of
spike proteins.
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1 Introduction

Coronaviruses are a family of viruses that can cause illnesses from the common cold
to severe acute respiratory syndrome. In late 2019, a new coronavirus was identified
as the cause of a disease outbreak that originated in China. The virus is now known as
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease it
causes is called coronavirus disease 2019 (Covid-19), and, inMarch 2020, theWorld
Health Organisation declared the Covid-19 outbreak a pandemic [1]. A pandemic
is an epidemic of an infectious disease that spreads across large regions such as
multiple continents or worldwide, affecting a substantial number of people. They
are a natural occurrence of human evolution, made more probable by the increasing
size of the human population and its propensity to localisation in urban centres. Past
pandemics were caused by diseases such as Small Pox and Tuberculosis. The most
fatal pandemic in recorded historywas the BlackDeath (The Plague), which killed an
estimated 75–200 million people in the 14th Century. The most notable pandemic of
the last century occurred over 100years ago, namely the influenza pandemic (Spanish
flu) which killed an estimated 50–100 million people worldwide.

The 1918 Spanish flu pandemic initiated some of the earliest work on the math-
ematical modelling of infectious diseases. Since the pioneering work of Kermack
and McKendrick in 1926-27 [2], modelling the dynamics of disease transmission
has been based on the development of increasingly complex systems of differential
equations. A fundamental property of such models is the Basic Reproduction Num-
ber which is a threshold value, below which an infectious disease cannot spread in
a susceptible population. This number needs to be less than one for an infectious
disease to be extinguished.

In the context of any infectious disease, and, an associated vaccination program
(if one exists), the concept of herd immunity is fundamental [3]. This is because
with herd immunity, it is not necessary to vaccinate an entire population in order
to reduce the progress and possibly eliminate an infectious disease, a concept that
proved its value during the eradication of Smallpox in the1970s, for example. Since
then, mathematical modelling has become increasingly important for public health
policymaking. This has included the control of the human immunodeficiency viruses
in terms of predicting the further course of the epidemic and trying to identify the
most effective prevention strategies. With further infectious disease outbreaks such
as the Severe Acute Respiratory Syndrome virus of 2002, Swine Flu in 2009, and,
more recently, the outbreak of Covid-19, infectious disease models have become
increasingly sophisticated, e.g. [4, 5].

Mathematical models that are based on systems of differential equation are exam-
ples of deterministic models where each term in the equation plays a part in mod-
elling a specific component of a dynamical process. Such models depend onmultiple
parameters (coefficients and initial conditions, for example) that affect the solutions
obtained. This is because each term that is included is usually predicated on some
coefficient which needs to be known relatively accurately and may vary in time. In
the absence of accurate values for these coefficients, some of which may be known
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unknown’s, these models can output error prone results in terms of predicted out-
comes as a function of time. In the current Covid-19 pandemic, the sophistication of
such models has been extended further to incorporate more and more effects in line
with the policies and practices implemented by central government and local health
authorities. The sophistication of such models increases further the parameter sets
whose values require increasingly accurate estimates. This problem is typical of sit-
uations in mathematical modelling where deterministic models become too complex
to provide future forecasts that are accurate enough to be of significance [6]. Further,
if these models include nonlinear terms, it is likely that the output(s) may be become
chaotic. In this case, the determinism of such models becomes an irrelevance and we
must turn to the application of stochastic modelling methods which is the subject of
this work.

In this paper, an approach is explored whose aim it to model a set of time series
(Covid-19 daily cases, for example) but not in terms of predicting a specific outcome
for a specific country at a point in time. Instead we focus on modelling the global
random walk field for the current Covid-19 pandemic. This is where the assembly
of all time series for all countries is treated as a set of random walks to produce a
‘random walk field’. The aim is to simulate this field in a way that is representative
of the known data and to show that it is analogous to the interaction of a canonical
ensemble of particles each undergoing random motion over a period of time. In this
context, it is assumed that the pandemic will eventually diffuse throughout the world
population and become a steady state effect rather than be fully eradicated, and, that
any intervention in this process will only delay the final steady state condition rather
than extinguish it.

A random walk model is developed which illustrates that the Covid-19 data fields
available (i.e. the set of time series data on daily cases) are not representative of clas-
sical diffusion [7] but of fractional diffusion [8]. The development of this model is
predicated on an analysis of the evolution equation as are all the results presented in
the paper. This allows the models developed to be understood in the context of a fun-
damental field equation of statistical physics as discussed in the following section.We
then use this field equation to develop models for ergodic random and non-ergodic
self-affine random walk fields which is the subject of Sect. 3 and Sect. 4, respec-
tively. This is followed by the introduction of a parametric solution for modelling
the structural complexity of the viral spike protein which may have ramifications in
the development of a vaccine subject to the Bio-dynamics Hypothesis as presented
in Sect. 5.

The Bio-dynamics Hypothesis is the result of asking a simple question: why are
so many biological entities, irrespective of their physical scale or origin, composed
of self-affine structures? In the context of this question, the hypothesis states that: If
replication is a self-affine process of time, then the geometrical structure of the result
is also self-affine [9]. The hypothesis attempts to relate the dynamical behaviour
of replication, mutation and evolutionary biology to the self-affine structure (the
fractal structure) of biological entities. In this paper, we present some results from
an analysis of Covid-19-based data assuming that the pandemic is a self-organising
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processes, a result that is derived specifically from the evolution equation. This
approach complements the analysis of the pandemic based on self-organising maps,
for example [10].

2 The Evolution Equation

Let p(r) denote a Probability Density Function (PDF) where

∞∫

−∞
p(r)dnr = 1

which characterises the position of particles in a n-dimensional space r ∈ R
n (n =

1, 2, 3). At any instant in time t , the particles are distributed in space as a result
of some ‘random walk’ process involving elastic interactions or ‘elastic scattering’
(with other like particles in the same n-dimensional space, when, in all cases, both
momentumand energy are conserved). Let u(r, t) denote the density function (i.e. the
number of particles per unit of an n-dimensional space) associated with a canonical
assemble of particles all undergoing the same random walk processes.

Consider an initial condition where we have an infinitely small concentration of
such particles at a time t = 0 located at an origin r = 0. The density function at
t = 0 is then given by u(r, 0) = δn(r) where δn(r) is the n-dimensional Dirac delta
function. At some short time later t << 1, it can be expected that the density function
will be determined by the PDF governing the distribution of particles after a (short
duration) random walk. Thus we can write

u(r, t) = p(r) ⊗ u(r, 0) = p(r) ⊗ δn(r) = p(r)

where ⊗ denotes the convolution integral over r. The PDF p(r) therefore represents
the response (in a statistical sense) to a short time random walk process, and, in
this context, can be taken to be is a distributional Impulse Response Function (IRF).
Thus, for any time t , the density field at some later time t + τ will be given by

u(r, t + τ) = p(r) ⊗ u(r, t) (1)

For any instant in time t , Eq. (1) shows that the spatial behaviour of the density
field at some future time τ is given by the convolution of the density of particles at a
previous time with the PDF of the system that governs its ‘statistical evolution’. In
this sense, p(r) is analogous to the IRF of a linear stationary system when, for an
initial condition u0(r) ≡ u(r, t = 0), say,

u(r, t) = g(r, t) ⊗ u0(r)



On the Evolution Equation for Modelling the Covid-19 Pandemic 55

where g(r, t) is the characteristic Green’s function of the system. However, in this
case u(r, t) denotes a deterministic function associated with the behaviour of a deter-
ministic system, whereas in Eq. (1), u(r, t) is the density function associated with
the evolution of a distribution for a stochastic system. This ‘system’ is taken to be
stationary in a statistical sense because it is assumed that p(r) does not vary in time
and the time evolution model given by Eq. (1) is referred to as being ‘Ergodic’.
Further, we note that if the PDF is symmetric, then p(r) ≡ p(r) where r =| r |.

Equation (1) is an evolution equation first derived by Albert Einstein in 1905
[11]. It is the principal field equation for elastic scattering processes in statistical
mechanics and is an example of a continuous time random walk model where p(r)
is the PDF for the displacement r of a particles position over time interval τ . For
some stochastic source function s(r, t), the evolution equation is generalised further
to the form

u(r, t + τ) = p(r) ⊗ u(r, t) + s(r, t) (2)

This equation describes the evolution of the density function u(r, t) when the initial
particle concentration is replenished in space and/or time and can be extended further
to include a decay factor over time when it is required to consider an evolution
equation of the type (for decay rate factor λ, say)

u(r, t + τ) = p(r) ⊗ u(r, t) + s(r, t) − λu(r, t)

In this paper, we focus exclusively on the application of Eq. (2) for modelling and
analysing time series data associatedwith theCovid-19 pandemic. In this application,
the density field u is taken to be the number of infections divided by the number of
those at risk to infection.

One of the purposes of this paper is to bring to the attention of the reader the
value of using Eq. (2) to develop a unified framework for stochastic modelling in
public health medicine. In this context, there are two other equations which, although
essentially different ways of writing Eq. (2), are nevertheless informative, especially
in regard to understanding someof the consequences of imposing certain condition on
Eq. (2) and the interpretation of the results that follow. These equations are discussed
in the following sections.

2.1 The Classical Kolmogorov–Feller Equation

Consider the following Taylor series for the function u(r, t + τ) in Eq. (2):

u(r, t + τ) = u(r, t) + τ
∂

∂t
u(r, t) + τ 2

2!
∂2

∂t2
u(r, t) + ...

For τ << 1
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u(r, t + τ) � u(r, t) + τ
∂

∂t
u(r, t)

and from Eq. (2), we obtain the Classical Kolmogorov–Feller Equation (CKFE), [13,
14]

τ
∂

∂t
u(r, t) = −u(r, t) + u(r, t) ⊗ p(r) + s(r, t) (3)

which is a representation of Eq. (2) when τ << 1.
Equation (3) is based on a critical assumption which is that the time evolution of

the density field u(r, t) is influenced only by short term events and that longer term
events have no influence on the behaviour of the field at any later time. This is to
say that the ‘system’ described by Eq. (3) has no ‘memory’. This statement is the
physical basis upon which the condition τ << 1 is imposed, thereby facilitating the
Taylor series expansion of the function u(r, t + τ) to first order alone. It means that
if a time series is taken to be described by u(t) (for some fixed position in space)
then the behaviour of this time series at any time t is not influenced by its behaviour
at some earlier time less that t . This is the basis for understanding classical diffusion,
for example, when Eq. (3) can be used to derive the classical diffusion equation given
that p(r) is a Gaussian distribution. For r ∈ R

n , this can be shown by approximating
the Characteristic Function for a Gaussian distribution (which is itself Gaussian).
For example, if we consider the case when the source function is zero and apply the
approximation exp(− | k |2) � 1 − k2, then, in Fourier space, Eq. (3) is given by

τ
∂

∂t
U (k, t) = −k2U (k, t)

which is a Fourier space representation of the classical diffusion equation

∂

∂t
u(r, t) = D∇2u(r, t)

where D = 1/τ is the diffusivity, i.e. a measure of the rate at which particles can
spread. The Green’s function solution to the diffusion equation is [15]

u(r, t) = g(r, t) ⊗ u0(r)

where g(r, t) is the Green’s function given by

g(r, t) =
(

1

4πDt

) n
2

exp

(
− r2

4Dt

)
, t ≥ 0

and u0(r) = u(r, t = 0) is the initial condition. On the basis of this solution, we
can infer that as τ increases, the speed of diffusion decreases, i.e. the distribution
of u(r, t) in time is slower for larger values of τ . The equivalent solution to Eq. (3)
which is inclusive of the source function is
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u(r, t) = g(r, t) ⊗ u0(r) +
t∫

0

g(r, t − τ) ⊗ s(r, t)dτ

Thus, if we consider an asymptotic solution when r → 0, then for u0(r) = 0 we
obtain

u(t) =
(

1

4πDt

) n
2

⊗ s(t), s(t) ≡ s(0, t)

where ⊗ denotes the casual convolution integral in time. This result is an example
of a continuous time random walk model for a stochastic time source s(t) which, for
classical diffusion, is characterised by scaling factor 1/tn/2.

2.2 The Generalised Kolmogorov–Feller Equation

Given that Eq. (3) is memory invariant, the question arises as to how longer temporal
influences can be modelled, other than by taking an increasingly larger number of
terms in the Taylor expansion of u(r, t + τ) which is not analytically consequential,
i.e. writing Eq. (2) in the form

τ
∂

∂t
u(r, t) + τ 2

2!
∂2

∂t2
u(r, t) + ... = −u(r, t) + u(r, t) ⊗ p(r) + s(r, t)

The key to solving this problem is to consider the idea of expressing the Taylor series
on the left-hand side of the equation above in terms of a ‘memory function’m(t) and
write

τm(t) ⊗ ∂

∂t
u(r, t) = −u(r, t) + u(r, t) ⊗ p(r) + s(r, t) (4)

This is the generalised Kolmogorov–Feller equation (GKFE). In addition to specify-
ing the source function and the PDF in order to develop a solution for u, this equation
also requires a memory function to be specified. In this case, if a time series is taken
to be described by u(t) (for a fixed position in space) then the behaviour at a time
t is influenced by the behaviour at some earlier time according to the characteris-
tics of the memory function. This is an example of a stochastic process in which
the past influences the future. The time scale over which this effect is possible then
depends on the ‘width’ in time of the memory function where it is noted that the
GKFE reduces to the CKFE when m(t) = δ(t) which is equivalent to imposing the
condition τ << 1.
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2.3 Orthonormal Memory Functions

For any inverse function or class of inverse functions of the type n(t), say, such that

n(t) ⊗ m(t) = δ(t)

the GKFE can be written in the form

τ
∂

∂t
u(r, t) = −n(t) ⊗ u(r, t) + n(t) ⊗ u(r, t) ⊗ p(r) + n(t) ⊗ s(r, t) (5)

where the CKFE is again recovered when n(t) = δ(t) given that δ(t) ⊗ δ(t) = δ(t).
The function n(t) is a orthonormal function of m(t). Writing the GKFE in this form
facilitates the development of solutions for u(r, t) given that n(t) can be derived from
m(t). In principle, this is possible, given that in Fourier space, the orthonormality
relationship between m(t) and n(t) is (using the convolution theorem)

N (ω) = 1

M(ω)
(6)

where N (ω) and M(ω) are the Fourier transforms of n(t) and m(t), respectively.

2.4 Time Series Models

Equation (5) is a description for a density field that is dependent on both space and
time. Given that we are interested in analysing data that are time series alone, it is
necessary to develop a time-only series model. A conditional example of this is to
note that when p(r) = δn(r), we can write Eq. (5) as

τ
d

dt
u(t) = n(t) ⊗ s(t) (7)

where

u(t) =
∫

u(r, t)dnr and s(t) =
∫

s(r, t)dnr

To generalise this result further, we consider an asymptotic result for the spatial
component of Eq. (5). To do this, we note that using a Taylor expansion for the
convolution integral over r, we can write

u(r, t) ⊗ p(r) =
∫

p(r − s)u(s, t)dns =
∫

[p(r) − s · ∇ p(r) + ...] u(s, t)dns
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= p(r)
∫

u(s, t)dns + ∇ p(r) ·
[∫

su(s, t)dns
]

+ ... ∼ p(r)
∫

u(s, t)dns

If the PDF is such that p(r) → 0 as r → ∞, and, in addition, we can assume that
the gradient of p(r) and all higher-order gradients approach zero in the same limit,
then, given the above series, we can consider the case where

u(r, t) ⊗ p(r) ∼ 0, r → ∞

The contribution of the term n(t) ⊗ u(r, t) ⊗ p(r) in Eq. (5) then becomes insignif-
icant, and we can consider the time-only dependent asymptotic equation

τ
d

dt
u(t) = −n(t) ⊗ u(t) + n(t) ⊗ s(t) (8)

where u(t) ≡ u(r, t), r → ∞ and s(t) ≡ s(r, t), r → ∞.
The essential difference between Eqs. (8) and (7) is compounded in the inclusion

or otherwise of the term −n(t) ⊗ u(t), respectively. In the latter case, i.e. Eq. (8),
the spectral response of u(t) to s(t) is determined by the transfer function

T (ω) = N (ω)

N (ω) + iωτ

In the former case, i.e. Eq. (7), the transfer function is

T (ω) = N (ω)

iωτ

In both cases, the stochastic behaviour of the density field u(t) depends on the source
function s(t) and the memory function m(t).

2.5 Logarithmic Scale Analysis

If we let u = logw, then Eq. (7) becomes

τ
d

dt
logw(t) = n(t) ⊗ s(t)

By way of an example, consider case when n(t) = δ(t) and

τ
d

dt
logw(t) = s(t)
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Then, for a constant value of s(t) = ±s0∀t say, we obtain the standard exponential
growth/decay model when, for some initial condition w0 = w(t = 0),

w(t) = w0 exp(±s0t/τ)

Thus, we observe that this most basic of time evolution models (exponential
growth/decay) is in fact, just a conditional model of the evolution equation when
p(r) = δn(r) and n(t) = δ(t) where the density field is taken to be on a logarithmic
scale. For a time varying source function, over some interval of time t , the solution
is

w(t) = exp

⎡
⎣1

τ

t∫
s(ξ)dξ

⎤
⎦

3 RandomWalk Fields

Consider the example data given in Fig. 1 which shows the daily new confirmed
Covid-19 cases (for approximately 200 days) on a linear scale for different countries
[16]. The plots provide the rolling 7-day average where the number of confirmed
cases is taken to be lower than the number of actual cases due to limited testing. One
of the purposes of applying a rolling average is to eliminate the characteristic and

Fig. 1 Daily confirmed Covid-19 cases (for approximately 200 days) on a linear scale for a range
of different countries with highlights for the UK, the USA and Brazil [16]
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periodic decrease on the daily rates that occurs over the weekends, at least for the
majority of countries when a Saturday and a Sunday are non-working days for the
majority of the population. The data must be considered to contain a wide range of
errors (e.g. false negatives and false positives), and, on a country by country basis, to
have substantial differences in accuracy, consistency and relevance. In this context,
Fig. 1 highlights three specific times series for cases in the UK, the USA and Brazil
to illustrated some extreme example differences in the progression of the disease for
three different countries.

The reasons for the differences in the growth (and decay) of the disease on a
country-by-country basis are multifaceted. They are due to differences in the health
systems of each country, their social-economic characteristics, the genetic dispo-
sitions of the population, age range and immunity signatures, etc. as well as the
production and management of the data and the different policies adopted by cen-
tral governments to control the disease. Thus, the data provided in Fig. 1 cannot be
assumed to be an fully accurate representation for any case or to have a uniformity
in its inaccuracies across the range of countries given. In this regard, the purpose of
this section is to show that in a global context, the behaviour of the pandemic from
one country to another appears to reflect a random walk process (a stochastic time
series). Taking all the times series given in Fig. 1 produces a random walk field. It is
this field that is a focus of the mathematical modelling considered in this work.

In terms of Eq. (7), the randomwalkmodel that is now considered is predicated on
a one-dimensionalmodelwhen τ << 1, i.e. the systemhas nomemory so that n(t) =
δ(t). It therefore represents a model in which the simulation of the results given in
Fig. 1 are based on the assumption that any interventions imposed or otherwise by a
central authority are irrelevant and that the evolution of the pandemic is independent
of any other factors such a asymmetry, herd immunity and the effects of a vaccination
program, for example. In this case, Eq. (7) reduces to the simplest of evolution
equations, namely,

τ
d

dt
u(t) = s(t) (9)

Fig. 2 provides an example of a typical set of random walks—a random walk field
consisting of 15 trajectories over 200 steps re-scaled to 1. This results are based on
using Euler’s method and forward differencing the gradient in time for Eq. (9) to
produce the difference equation

un+1 = un + 
sn, n = 1, 2, ..., N − 1

with 
 = 0.001. Each trajectory follows a different random path from a common
initial condition u1 = 0. In this case, sn is taken to be aGaussian distributed (discrete)
variable with a mean of zero. The random walks therefore have both positive and
negative amplitudes.

The random walk field illustrated in Fig. 2 spreads out over time, the difference
from one trajectory to the next being due to different initial conditions used to seed
the Gaussian random number generator (in this example, the MATLAB function
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Fig. 2 Simulation of a random walk field illustrating random walks for un (above) and | un | based
on Eq. (9) for a random Gaussian distributed source sn

randn has been applied). The result is to produce a random walk field whose spatial
dissipation is not as diverse as is evident in Fig. 1 (for the time series given by | u(t) |).
The principal reason for this is that the distribution in amplitudes of the trajectories
given in Fig. 2 are within a common range and thus the distribution of gradients for
any trajectory is the same, i.e. given Eq. (9), the derivative of u(t) must be zero
mean Gaussian distributed if s(t) is so distributed. The principal difference between
a random walk field based on Eq. (9) and that given in Fig. 1 is that in the former
case, the field is ergodic [17] from one trajectory to the next.

For a system to be ergodic, any collection of random samples from a process
must represent the average statistical properties of the entire process. In other words,
regardless of what the individual samples are, a broad view of the collection of
samples must represent the whole process. In the case of Fig. 1, it is clear that the
statistical properties of the time series vary significantly from one country to another,
specifically in regard to the standard deviation of the daily case time differences, i.e.
the gradients of each time series. In this context, Eq. (9), and, themodel it is predicated
upon, fails to account for the differences in the infection rates that are observed. The
solution to this issue is explored in the section that follows.

4 Self-Affine RandomWalk Fields

The solution to Eq. (7) requires the distribution of the source term to be quantified
and the memory function to be specified. In the latter case, let the memory function
be given by
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m(t) = 1

�(1 − α)tα
, α ∈ (0, 1) (10)

where � is the Gamma function. The reason for adopting this particular function is
that, as shall now be shown, the solution to Eq. (7) can be shown to yield a self-affine
time series which is characteristic of many natural random processes including those
presented in Fig. 1. In this context, the aim is to both simulate and quantify the data
field in Fig. 1, the quantification being compounded in the parameter α. To do this,
we note a key result which is that

1

(iω)α
↔ 1

�(α)t1−α

where ↔ denotes Fourier transformation. Thus,

m(t) ↔ 1

(iω)1−α
⇒ N (ω) = (iω)1−α

given Eq. (6).

4.1 Solution for Eq. (7)

In Fourier space, Eq. (7) is given by (using the Convolution Theorem)

iωτU (ω) = N (ω)S(ω)

whereU (ω) and S(ω) are the Fourier transforms of u(t) and s(t), respectively. Thus,
we can write

U (ω) = 1

iωτ
(iω)1−αS(ω)

or, using the convolution theorem again,

u(t) = 1

τ�(α)t1−α
⊗ s(t) (11)

The solution for u(t) is then expressed in terms of the Riemann–Liouville (frac-
tional) integral which is an icon of the fractional calculus, Liouville having been
one of the first to consider the possibility of fractional calculus in 1832. The integral
may be considered to be the anti-derivative of a fractional differential and one of its
principal properties is its scale invariance, given that for some scale length λ > 0 (in
this case, a scale in time) and using a change of variable, it can be shown that
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uλ(t) = 1

τ�(α)t1−α
⊗ s(λt) = u(λt)

λα

and we can therefore write
u(λt) = λαuλ(t)

For this reason, the function u(t) is a random scaling fractal and has a power spectral
density function which scales with frequency as 1/ | ω |2α assuming that the power
spectral density function for s(t) is a constant, i.e. s(t) is a ‘white noise’ source. This
scaling law is a principal ‘signature’ for stochastic time series that exhibit random
self-affine properties, the relationship betweenα and the fractal dimension D ∈ (1, 2)
for such a time series being [18]

α = 5

2
− D

4.2 Solution for Eq. (8)

Given Eq. (10), and, following the analysis given in Sect. 4.1, Eq. (8) becomes

u(t) = − 1

τ�(α)t1−α
⊗ u(t) + 1

τ�(α)t1−α
⊗ s(t) (12)

which has the transfer function

T (ω) = 1

1 + τ(iω)α
(13)

One approach to solving Eq. (12) is to apply iteration when

u(k+1)(t) = − 1

τ�(α)t1−α
⊗ u(k)(t) + 1

τ�(α)t1−α
⊗ s(t), k = 0, 1, 2, ...

where

u(1)(t) = 1

τ�(α)t1−α
⊗ s(t)

The first iteration is then equivalent to Eq. (11). In this case, a condition for the
convergence of the solution must be investigated and obtained. Another approach to
the problem is to consider the relationship between Eqs. (11) and (12) in terms of
their respective transfer functions. This is the approach that is considered here, as
shall now be addressed.

Since the transfer function for Eq. (11) is 1/τ(iω)β, β ∈ (0, 1), if we can relate
α to β, then it becomes possible to compare the solution given by Eq. (11) and the
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Fig. 3 Surface plot of β(α, τ), α ∈ (0, 1), τ ∈ (0, 10] based on Eq. (14) illustrating that for τ >>

1, there is a linear relationship between α and β.

solution we now require to Eq. (12). To do this, we equate the power spectra of the
two transfer functions. This yields a relationship between α and β for τ given by

τ 2 | ω |2β= 1 + τ 2 | ω |2α +2τ | ω |α cos(απ/2)

so that upon setting ω = e we can write

β = 1

2
log[1 + τ 2 exp(2α) + 2τ exp(α) cos(απ/2)] − log τ (14)

Figure3 shows a plot of β for α ∈ (0, 1) and τ ∈ (0, 10] based on Eq. (14) and
illustrates that as τ > 1 increases, there develops a linear relationship between α

and β. In particular, for τ = 10, a linear fit between the two parameters yields β =
0.9016α + 0.09393. Since Eqs. (11) and (12) are both scaled by 1/τ , this result
implies that for τ >> 1 the two equations are equivalent. Thus, the solution for
u(t) given by Eq. (11) is equivalent to the solution for u(t) given by Eq. (12) with
α � 1.1β − 0.1. Moreover, any estimate for α given u(t) based on Eq. (11) through
application of a regression analysis is simply related to an estimate for α, given
Eq. (12). For this reason, in the following section, we focus on the time series model
compounded in Eq. (11).

4.3 Random Walk Analysis

Equation (11) can be written in the form
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Fig. 4 Example simulation of a self-affine random walk field | u(t) | for τ = 10 using Eq. (15)
when α ∈ (0, 1) is assumed to be a random Gaussian distributed variable

τ
d

dt
u(t) = d

dt

(
1

�(α)t1−α

)
⊗ s(t) = 1

�(α)t1−α
⊗ d

dt
s(t) (15)

This provides an equation that is compatiblewithEq. (9) so that, on comparingEq. (9)
with Eq. (15), it is apparent that if α is the same for all random walk trajectories the
random walk field will be ergodic. However, if α varies randomly from one country
to another, a non-ergodic random walk field will result of the type that is evident
in Fig. 1. In this regard, the value of α determines the relative rate of growth of
a trajectory and it is clear that as α → 0, any rate of growth becomes increasing
suppressed because �(α) → ∞ as α → 0. This characteristic is reflected in Fig. 4
which shows an example random walk field | u(t) | for τ = 10 based on Eq. (15)
where α ∈ (0, 1) is chosen from a zero mean Gaussian distributed source (by taking
the absolute value of the output array and normalising the result) .

An essential difference between this model and that presented in Sect. 3 is that the
non-ergodic characteristics of random walk field—specifically, the standard devia-
tion of the gradients of u(t) - are a measure of the random changes in the value of
α ∈ (0, 1) for each country. This is a consequence of the self-affine model developed
through the application of the memory function given by Eq. (10).

4.4 Example Results

Based on the model for the memory function given by Eq. (10), α determines the
memory of the system. Thememory decays faster as α → 1 when one can intuitively
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expect the random walk field to have greater dispersion. In this sense, α can be
interpreted as a measure of ‘control’ on the rate of infection which in turn, is related
to issues such a lock-down and herd immunity. Thus, in the context of the self-
affine random walk model being considered, the infection will be suppressed when
α → 0 for all countries (assuming travel continues form one country to another).
Consequently, the evaluation of α on a country by country basis using available data
is informative as given in Fig. 5 for 100 randomly selected countries. The basis for
these results is the application of a least squares regression method to compute α

given that (for a constant C)

log | U (ω) |2= C − 2α log(ω), ω > 0

where | U (ω) |2 is the power spectrum of the data plotted in Fig. 1 for each country.
The results in Fig. 5 illustrate some important features that include the following:

(i) The values of α are not confined to the condition α ∈ (0, 1);
(ii) there is a significant diversity in the values of α computed;
(iii) the distribution of values for α decays with higher values;
(iv) the mean value of α is 0.5746.

The reasons for point (i) above are that the quantity of data currently available
is not significant enough to provide accuracy on the computation of α through the
regression method used (i.e. a least squares estimate of α). Another issue is that for
some countries, the model for u(t) being considered may not conform to the data.
Hence, the results shown in Fig. 5 should not be taken to be statistically significant. It
is expected that the significance of such results will improve as further data becomes
available. Nevertheless, in regard to point (ii) above, the results illustrate that there
is, as would be expected, significant diversity in the random walk fields given in
Fig. 1 for the Covid-19 pandemic, irrespective of directives from the World Health
Organisation, for example.

By way of some specific examples, compared to Sweden, α is larger for both the
USA and theUK, for example, that have introduced lock-down policies [19]. Sweden
has endorsed a policy not to lock down the country in response to the global pandemic.
Thus, on the basis of Eq. (11), and its interpretation with regard to the pandemic,
Sweden is better served by the policies the Health authorities have introduced [20],
as predicated on the self-affine randomwalk approach being considered in this work.

It should be noted that as α approaches 0, the memory function given by Eq. (10)
becomes constant in time, i.e. m(t) → 1 as α → 0 when �(1 − α) = 1. A memory
function that is constant in time implies that the density field u is time invariant. This
is because, from Eq. (4),

τm(t) ⊗ ∂

∂t
u(r, t) = τu(r, t) ⊗ d

dt
m(t) = 0, if m(t) = 1∀t

and we are then left with the time-independent equation
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Fig. 5 Values of α for 100 randomly selected countries (left) and the associated 10-bin distribution
(right)

u(r) ⊗ p(r) + s(r) = u(r) (16)

From Eq. (11), it is clear that u(t) → 0 ∀t as α → 0 when the density field
ceases to evolve in time, its spatial distribution being determined by the solution to
Eq. (16). In this context, if p(r) = δn(r), then s(r) = 0. On the other hand, for a
Lévy distribution with approximated Characteristic Function (for Lévy Index γ )

P(k) = exp(− | k |γ ) ∼ 1− | k |γ , γ ∈ (0, 2)

we can write Eq. (16) in terms of the fractional Poisson equation

∇γ u(r) = s(r) (17)

where ∇γ u(r) ↔ − | k |γ U (k). The relationship between γ and the fractal dimen-
sion is given by [18]

γ = 3

2
n + 1 − D, r ∈ R

n

Thus, for example, when n = 2, Eq. (17) is the equation for a Mandelbrot surface
[18].
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5 The Bio-Dynamics Hypothesis

The Bio-dynamics Hypothesis is concerned with the connectivity between the
dynamical behaviour of bio-organisms in regard to their replication and growth and
the geometrical structures of the physical forms that result. It states that if the growth
of a bio-organism is self-affine, then the geometry of the organism will also be self-
affine.

In this section, we consider a similar model to that discussed in Sect. 4 but with
a focus on developing a parametric representation whose aim is to reflect the self-
affine structures of proteins. The reason for this is that understanding and interpreting
the structure (geometric configuration) of the spike protein on a coronavirus is the
key to developing a vaccine. This is because it is through the spike protein that the
virus attaches, fuses and gains entry to cells. Therefore, analysis of the spike protein
‘architecture’ coupled with its mechanics is vital in revealing information that can
prompt the discovery of countermeasures against the virus.

In this context, the basic principle for developing a vaccine is well known. If a
protein can be found that has the same structure as the spike protein and is introduced
into the body prior to infection, then anti-bodies will be generated by the body that
will destroy the virus by suppressing its ability to replicate through elimination of
the spike protein. On this basis, what is required is a search and/or fabrication of
proteins whose self-affine structure is the same as the spike protein.

5.1 Self-affine Structures of a Virus

It is well known that there is a correlation between the effect (in particular, its fatal-
ness) of a virus and its fractal geometry. This refers primarily, but not exclusively, to
the surface roughness of a virus and its metabolic rate. In turn, the surface roughness
is related to the structural complexity of the spike proteins and their density on the
surface of the virus. For a single near spherical cell, its metabolic rate, MR , scales
as MR ∼ r2 where r is the radius of the cell but for a virus, its metabolic rate scales
as MR ∼ r D where D ∈ (2, 3) is the fractal dimension of the surface and r is the
characteristics radius of the virus [21].

Figure6 shows a comparison of the simulated structures for the spike proteins
of the Covid-19 virus, the influenza virus and the Human Immunodeficiency Virus
(HIV). In each case, the spike protein is not one continuous feature but is composed
of specific protein strands which are colour coded. While the Covid-19 spike protein
displays structural similarities to the spike proteins of influenza virus and HIV, it is,
by comparison, the largest class I fusion protein known to date. Given that Covid-19
is new and there is no general immunity to it, this is why it is so relatively dangerous.

UseofEq. (17) tomodel such structures is not relevant. This is due to the following:
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Fig. 6 Comparison of the simulated structural complexity of the spike protein’s for coronavirus
(CoV S), the influenza virus and HIV [22]

• the equation assumes that the evolution process is time-independent;
• it is not compatible with modelling a self-affine field that is based on long contin-
uous strands of which proteins are an important example.

Instead, we consider a parametric self-affine model which is discussed in the follow-
ing section.

5.2 A Parametric Self-affine Model

For p(r) = δn(r), Eq. (5) reduces to

τ
∂

∂t
u(r, t) = n(t) ⊗ s(r, t)

Consider a solution to this equation based on an additive separation of variables when

u(r, t) = ux (t) + uy(t) + uz(t) and s(r, t) = sx (t) + sy(t) + sz(t).

The source function is taken to model a system characterised by a set of additive
spatial sources which may have independent stochastic properties. We are then inter-
ested in the evolution of a density field in a three-dimensional space that is taken to
be described by the parametric curve [ux (t), uy(t), uz(t)].

Following the solution method discussed in Sect. 4 for the memory function given
by Eq. (10), we can write the solution for each component of the parametric curve
as



On the Evolution Equation for Modelling the Covid-19 Pandemic 71

Fig. 7 Evolution of a three-dimensional parametric curve for (from left to right consecutively)
α = 0.8, α = 0.6, α = 0.4 and α = 0.2 obtained using Eq. (18)

⎡
⎣ux (t)
uy(t)
uz(t)

⎤
⎦ = 1

τ�(α)t1−α
⊗

⎡
⎣sx (t)
sy(t)
sz(t)

⎤
⎦ (18)

The Fourier space representation of this result is

⎡
⎣Ux (ω)

Uy(ω)

Uz(ω)

⎤
⎦ = 1

τ(iω)α

⎡
⎣Sx (ω)

Sy(ω)

Sz(ω)

⎤
⎦ , ω > 0 (19)

where the upper case functions of the angular frequency ω denote the Fourier trans-
forms of the corresponding lower case function of time. It is then clear that the
parametric curve is composed of elements that are characterised by the same value
of α. Although the source functions are uncorrelated, their power spectral density
functions are taken to be the same. The structure of the parametric curve is then
determined by the value of α which, in turn, is a measure of the influence of the
memory function in time. This is illustrated in Fig. 7 which shows parametric curves
for various values of α ∈ (0, 1) illustrating that the complexity of the curve increases
as the value of α decreases.

5.3 Discussion

If we can model the Covid-19 spike protein as a parametric curve with a known value
α based on Eq. (18), then it may be possible to use this value in the search for other
benign proteins that have a similar α value. Such proteins would then at least possess
the same structural complexity which is an important factor in the development of
any vaccine. One way to determine the value of α from protein models of the type
given in Fig. 6 is to extract data associated with the functions ux (t), uy(t) and uz(t)
(essentially the coordinate values of the structure obtained by moving along the
protein strand), evaluate α in each case and compute the mean value.
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6 Summary, Conclusions and Future Research

The material presented in this work has been developed to provide readers with an
overview of the ways in which Eq. (2) can be used as a frame work for investigating
epidemic and pandemic time series (and viral structures). In this context, a summary
of the material presented is now given followed by some conclusions and directions
for future research.

6.1 Summary

The evolution equation for a stochastic source given by Eq. (2) is a fundamental field
equation of statisticalmechanics. It is applicable in all topological dimensions and for
any system composed of random interactions (elastic scattering). In the application
of Eq. (2) to the evolution of an infectious disease, these interactions are taken to be
the transmission of a pathogen from one person to another. In this regard, the focus
of the work has been to develop time series models for the evolution of Covid-19
informed by the data that is currently available. For this purpose, and, using Eq. (4), a
memory function has been considered—Eq. (10)—that yields a self-affine model for
the time series. The reason for doing this is because it is known that biological and
bio-medical time series are self-affine which is entirely compatible with the fractal
geometry of nature [23]. Not surprisingly, therefore, this also appears to be the case
for Covid-19 pandemic time series data.

Two time-only dependent equations have been derived, namelyEq. (7) andEq. (8).
The former equation is based on assuming the PDF in Eq. (2) is a delta function and
corresponds to the case when τ << 1. The latter equation is based on an asymptotic
solution and is applicable for any PDF p(r) which approaches zero as r → ∞ and
valid for all values of τ . However, through an analysis of the transfer functions for
both equations as given in Sect. 4.2, it has been shown that the two equations have
an equivalence in terms of the relationship between α for each equation as given by
Eq. (14). This avoids having to resort to an iterative approach for solving Eq. (8).
Moreover, it provides a method of determining the parameter α for Eq. (8) based on
applying a recursion analysis using Eq. (7), i.e. given u(t), compute α.

6.2 Conclusions

The application of stochasticmodels avoids the indeterminacy associatedwith imple-
menting a deterministic model with many coefficients. On a global perspective, this
approach assumes that there are no intrinsic correlations between the dynamics of the
pandemic and its intervention and control. This is due to the multifaceted differences
that are being introduced by different governments through different policies at dif-
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ferent times in order to attempt to reduce the severity of the disease using ‘solutions’
that are not, as yet, fully proven (i.e. statistically significant), e.g. [25].

Themodels and results presented in this work are developments based exclusively
on the evolution equation—Eq. (2). In this context, the time seriesmodel compounded
in Eq. (11) is critically dependent on the memory function parameter α. From the
example time series data given in Fig. 1, it is clear that the stochastic characteristics
are non-ergodic (i.e. they changes significantly from one country to another) and that
α changes from one country to another. Thus, the growth of the pandemic in each
country is memory dependent. The distribution of α presented in Fig. 5 is informative
but not yet statistically significant due to the lack of data that is currently available.
Consequently, the results given in Fig. 5 need to be continually re-evaluated as the
Covid-19 pandemic evolves.

The value of α provides a measure on the dissipation of the pandemic. It has a
synergy with the reproduction number R associated with deterministic models which
is a way of rating the ability for an infection to spread—the number of people (on
average) that one infected personwill pass the virus on to. To extinguish an infectious
disease, we require that R < 1. To extinguish an infectious disease based on a self-
affine evolutionary model based on Eq. (8), we require that α → 0. This is because
u(t) approaches zero due to the scaling of Equations (11) and (12) by 1/�(α), i.e.
�(α) → ∞ as α → 0. However, it is arguable that this is not physically possible,
because it implies that the memory function is constant in time which in turn implies
that the system is time-independent and that there is no time evolution of the density
field.

On the basis of the evolution equation and the analysis used to derive a time-only-
dependent representation for the density field u(t), Equations (11) and (12) provide
basic stochastic time series models which have an intrinsic relationship. If | u(t) | is
taken to be a model for the infections over a uniform period of time (e.g. each day),
then the amplitude of this function is reduced as α → 0 and as τ → ∞. In terms of
the dynamics of a global pandemic, this result implies that the longer the memory
associated with a population maintaining a high value of τ is (giving a low infection
rate), the greater the rate at which | u(t) | reduces to zero, thereby extinguishing the
pandemic.

In the sameway thatα is a gauge on viral infection rates, in the context of the Fig. 6
and the Bio-dynamics Hypothesis, it also relates to the self-affine structures that are
prevalent in the spike protein. In both cases, the value of α determines the rate of
infection and the structure of the protein that is causing the disease. The interesting
question is whether there is a correlation between the two, i.e. the mean value of α

that is characteristic of the infection rate in a global context and the value or α that
is characteristic of the structural complexity of the spike protein.

The underlying principle is that the Covid-19 virus will fractionally diffuse in
the early stages of the pandemic exhibiting self-affine characteristics, and, as time
increases, the dynamicswill become increasingly characterisedby classical diffusion.
This is a consequence of the Central Limit Theoremwhen γ → 2 as t → ∞. Further,
as time increases, the value of α can be expected to approach zero for all countries
thereby giving the appearance of the pandemic becoming extinct, the final density
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field then being given by Eq. (17) for γ = 2, i.e. the time-independent diffusion
equation for a source.

In the context of this conceptual interpretation, the effect of attempting to control
the infection rates will merely delay the transition from fractional to classical dif-
fusion. Compared to the 1918 ‘Spanish flu’ pandemic, for example, which involved
the H1N1 virus, taking a few years to be extinguished at the cost of many tens of
millions lives [24], the current pandemic is likely to continue for a longer period
of time but at the same final cost. This is not due to a difference in the dynamical
behaviour of Covid-19 now compared to H1N1 in 1918, but the considerable dif-
ference in the moral imperatives of today compared to 100years ago. In this regard,
the failure of deterministic pandemic models is in part due to ‘interference’ of cen-
tral governments and their time varying policies which alter the dynamics of the
infection rate, one that is randomly inhomogeneous on a worldwide basis. Thus, a
stochastic approach to modelling the pandemic is, in part, necessitated by the moral
imperatives that modern governments are expect to adopt which injects random-
ness into the evolution of the disease when viewed on a global perspective [25]. On
the basis of the models developed and the data analysed, this randomness appears
to be self-affine. In this context, the models presented reflect the inconsistencies
of implementing a lock-down and substantiates, on a theoretical level at least, the
importance of evidence-based medicine rather than highly sensitive deterministic
modelling based on assumptions and many unknowns [26] as briefly discussed in
the introduction.

By way of an analogy, consider an ink drop which is introduced to the surface
of some water that is contained in a vessel where it is assumed that the ink is the
same density as the water and that the water is at a constant temperature and is
homogeneous throughout the container. The ink will flow into the water producing
complex patterns while spreading away from the point on the surface at which it has
been introduced. These complex patterns represent the combined effects of each ink
molecule undertaking a random walk. As time increases, the ink will diffuse into
the water and eventually become equally distributed throughout, a process that is
irreversible. A lock down is then analogous to draining the container by introducing
a channel at the bottomof the vessel, for example, at the time the ink is first introduced
in order to try and eradicate its presence. The effect of this is to drain some of the ink
but at the expense of a falling water level. The difference between the initial and final
water levels is then analogous to the difference between the economic prosperity of
a country before and after lock down, especially in regard to the younger and more
healthy component of the population who are inherently less vulnerable to the effects
of infection. The economic effects of this may be destined to be significant [27]. In
this context, the objective to suppress the pandemic through intermittent lock-downs,
while waiting for an effective vaccine to be developed is, while laudable, not feasible
and may lead to significant long-term damage, especially to those who are at the
forefront of wealth creation in a society.
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6.3 Future Research

Within the context of the material presented, example suggestions for future work
include the following:

• Simulation of Covid-19 random walk fields using Eq. (12) for distributions in the
values of the infection rate τ ;

• evaluation of distributions for α using different data associated with the Covid-19
pandemic;

• evaluation of the time evolution of α as more data becomes available;
• evaluation of α using more advanced regression methods such as singular value
decomposition which typically requires extensive data sets;

• simulation of spike proteins based on Eq. (18) when the value of α varies for each
component of the parametric curve;

• computation of α for different continuous strands of proteins fromwhich the spike
protein is composed based on Eq. (18);

• analysis of solutions toEq. (5) using time series data predicatedon spatial locations,
i.e. the geographical location of a country relative to a common origin such as
Wuhan in China, for example (where the Covid-19 virus is considered to have
emerged) and the location of isolated pockets of infections with each country as
and when such data becomes available.
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