
MNRAS 510, 1964–1977 (2022) https://doi.org/10.1093/mnras/stab3578 
Advance Access publication 2021 December 13 

Ultralarge-scale approximations and galaxy clustering: Debiasing 

constraints on cosmological parameters 

Matteo Martinelli , 1 ‹ Roohi Dalal , 2 Fereshteh Majidi, 3 , 4 Yashar Akrami , 5 , 6 Stefano Camera 

7 , 8 , 9 , 10 

and Elena Sellentin 

11 

1 Instituto de F ́ısica Te ́orica, Universidad Aut ́onoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain 
2 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA 

3 Department of Physics and Chemistry, Alzahra University, Vanak Village Street, Tehran, 1993893973, Iran 
4 Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, V ancouver , BC V6T 1Z1, Canada 
5 Laboratoire de Physique de l’ ́Ecole Normale Sup ́erieure, Universite PSL, CNRS, Sorbonne Universit ́e, F-75005 Paris, France 
6 Observatoire de Paris, Universit ́e PSL, Sorbonne Universit ́e, LERMA, F-75014 Paris, France 
7 Dipartimento di Fisica, Universit ̀a degli Studi di Torino, via P. Giuria 1, I-10125 Torino, Italy 
8 INFN – Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I-10125 Torino, Italy 
9 INAF – Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Torino, strada Osservatorio 20, I-10025 Pino Torinese, Italy 
10 Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535, South Africa 
11 Leiden Observatory, Leiden University, Huygens Laboratory, Niels Bohrweg 2, NL-2333 CA, Leiden, the Netherlands 

Accepted 2021 December 3. Received 2021 November 23; in original form 2021 August 13 

A B S T R A C T 

Upcoming galaxy surv e ys will allow us to probe the growth of the cosmic large-scale structure with impro v ed sensitivity 

compared to current missions, and will also map larger areas of the sky. This means that in addition to the increased precision 

in observations, future surv e ys will also access the ultralarge-scale regime, where commonly neglected effects such as lensing, 
redshift-space distortions, and relativistic corrections become important for calculating correlation functions of galaxy positions. 
At the same time, several approximations usually made in these calculations such as the Limber approximation break down at 
those scales. The need to abandon these approximations and simplifying assumptions at large scales creates severe issues for 
parameter estimation methods. On the one hand, exact calculations of theoretical angular power spectra become computationally 

e xpensiv e, and the need to perform them thousands of times to reconstruct posterior probability distributions for cosmological 
parameters makes the approach unfeasible. On the other hand, neglecting relativistic effects and relying on approximations may 

significantly bias the estimates of cosmological parameters. In this work, we quantify this bias and investigate how an incomplete 
modelling of various effects on ultralarge scales could lead to false detections of new physics beyond the standard � CDM model. 
Furthermore, we propose a simple debiasing method that allows us to reco v er true cosmologies without running the full parameter 
estimation pipeline with exact theoretical calculations. This method can therefore provide a f ast w ay of obtaining accurate values 
of cosmological parameters and estimates of exact posterior probability distributions from ultralarge-scale observations. 

Key words: methods: statistical – cosmology: observations – cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

n recent years, the development of cosmic microwave background
bservations, led by surv e ys such as the Wilkinson Microwave
nisotropy Probe (WMAP; Hinshaw et al. 2013 ), Planck (Planck
ollaboration I, VI 2020a , b ), the South Pole Telescope (SPT;
arlstrom et al. 2011 ), and the Atacama Cosmology Telescope (ACT;
iola et al. 2020 ), has brought cosmology into the precision era.
he new frontier for cosmological observations is to now reach
 similar precision in surv e ys of the cosmic large-scale structure.
bservations of the large-scale structure can provide information
n the matter distribution in the Universe and on the growth of
rimordial perturbations with time. This is achieved for example by
bserving the lensing effect of intervening matter on background
 E-mail: matteo.martinelli@inaf.it 

(
 

b  

Pub
alaxies (cosmic shear) or by measuring the correlation function of
he positions of galaxies (galaxy clustering). The former has been the

ain focus of the Kilo-Degree Survey (KiDS) collaboration, which
as provided constraints on cosmological parameters both for the
tandard � CDM model and for some extensions (K ̈ohlinger et al.
017 ). The latter has been explored to exquisite precision by several
bservational collaborations, such as the two-degree Field Galaxy
edshift Surv e y (Cole et al. 2005 ), the six-degree Field Galaxy
urv e y (Beutler et al. 2011 ), WiggleZ (Blake et al. 2011 ; Parkinson
t al. 2012 ), and the Sloan Digital Sky Survey (SDSS; Eisenstein
t al. 2005 ; Perci v al et al. 2010 ; Anderson et al. 2012 ; Alam et al.
017 ). Experiments like the Dark Energy Surv e y (DES) hav e recently
rovided state-of-the-art measurements of cosmological parameters
sing both shear and clustering from photometric measurements
DES Collaboration 2021 ). 

In the near future, observations of the large-scale structure will
e further impro v ed by new missions, either space-borne such as
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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1 Note that several different symbols are used in the literature to denote the 
magnification bias and – as we shall see later on – the evolution bias, e.g. α, 
Q , and s for the former, and b e and f evo for the latter (see also Maartens et al. 
2021 ). Here, ho we ver, we adopt a more uniform notation, with b lin , b mag , 
and b evo , respectively, denoting the linear galaxy bias, the magnification bias, 
and the evolution bias. For the first two, the rationale behind our notation is 
that the y respectiv ely are what modulates the matter density fluctuations and 
lensing convergence. 
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uclid (Laureijs et al. 2011 ; Amendola et al. 2013 , 2018 ; Euclid
ollaboration 2020 ), the Roman Space Telescope (Spergel et al. 
015 ), and the Spectro-Photometer for the History of the Universe, 
poch of Reionization, and Ices Explorer (SPHEREx) (Dor ́e et al. 
014 , 2018 ), or ground-based such as the Dark Energy Spectro-
copic Instrument (DESI; DESI Collaboration 2016a , b ), the Rubin
bservatory Le gac y Surv e y of Space and Time (LSST; LSST Science
ollaboration 2009 ; LSST Dark Energy Science Collaboration 2018 ; 

vezi ́c et al. 2019 ), and the SKA Observatory (SKAO; Abdalla et al.
015 ; Brown et al. 2015 ; Bull et al. 2015 ; Camera et al. 2015a ;
accanelli et al. 2015 ; Santos et al. 2015 ; SKA Cosmology Science
orking Group 2020 ). These future surv e ys will indeed impro v e

he sensitivity of the measurements, and, in addition, will make 
t possible to perform observations on large volumes of the sky. 

ith such observations, it will be possible to access, for the first
ime, ultralarge scales when measuring the correlation function of 
alaxy positions and shear. While this ability to access such large 
cales will allow us to better constrain cosmological models and test
undamental theories such as general relativity (Baker & Bull 2015 ; 
ANT AT A Collaboration 2021 ), it will also pose new challenges to
ur ability to theoretically model the observables involved. 
In particular, the galaxy correlation function at very large scales re-

eives contributions from lensing, redshift-space distortions (RSD), 
nd relati vistic ef fects (Yoo 2010 ; Bonvin & Durrer 2011 ; Challinor
 Lewis 2011 ; Bertacca, Maartens & Clarkson 2014 ), which are
ostly negligible for the scales probed by current surv e ys (see e.g.
lonso et al. 2015 ; Fonseca et al. 2015 ; Yoo & Seljak 2015 ). The
odelling problem presented by such contributions is not as severe 

s the one of modelling non-linear effects at small scales, where one
eeds to rely on model-dependent numerical simulations (see e.g. 
ose et al. 2021 ; Chartier et al. 2021 ; Chartier & Wandelt 2021 ;
artinelli et al. 2021 ; Safi & Farhang 2021 ). Ho we ver, in order to

implify the modelling of large-scale ef fects, se veral approximations 
re commonly made in computing theoretical predictions for galaxy 
umber counts, such as the Limber (LoVerde & Afshordi 2008 ) 
nd the flat-sky (Matthewson & Durrer 2021 ) approximations. 
uch simplifications hold for the scales probed by current surv e ys
Kilbinger et al. 2017 ), but they may fail when larger scales will be
ccessed by future surv e ys. 

Calculations that include large-scale effects and do not rely on 
pproximations are feasible, and codes commonly used to compute 
heoretical predictions, such as CAMB (Lewis, Challinor & Lasenby 
000 ; Howlett et al. 2012 ) and CLASS (Blas, Lesgourgues &
ram 2011 ), allow us to obtain ‘exact’ galaxy clustering power 
pectra. Ho we ver, the computational time required for such exact 
alculations is significantly longer, causing parameter estimation 
ipelines to become unfeasible, as they require calculating tens of 
housands of spectra to reconstruct posterior probability distributions 
or cosmological parameters. 

Sev eral attempts hav e been made to o v ercome this problem. F or
nstance, fast Fourier transform (FFT) or logarithmic FFT (FFTLog) 

ethods can be exploited to accelerate the computation of the 
heoretical predictions (Assassi, Simonovi ́c & Zaldarriaga 2017 ; 
ampagne, Neveu & Plaszczynski 2017 ; Grasshorn Gebhardt & 

eong 2018 ). Alternatively, approximations can be made to reduce 
he dimensionality of the integration, namely either assuming that the 
bserved patch of sky is flat, and thus performing a two-dimensional 
ourier transform on the sky (Datta, Choudhury & Bharadwaj 2007 ; 
hite & Padmanabhan 2017 ; Jalilvand et al. 2020 ; Matthewson &
urrer 2021 ), or exploiting the behaviour of spherical Bessel func- 

ions at large angular multipoles (Limber 1953 , 1954 ; Kaiser 1992 ).
In this work, we investigate how applying these commonly 

sed approximations and neglecting lensing, RSD and relativistic 
ontributions at large scales can bias the estimation of cosmological 
arameters, and possibly lead to false detections of non-standard 
osmological models. Such an analysis has been of interest for some
ime (see e.g. Camera et al. 2015b ; Camera, Maartens & Santos
015d ; Villa, Di Dio & Lepori 2018 ; Thiele, Duncan & Alonso 2020 ),
ut we investigate it here considering all the large-scale effects and
pproximations at the same time, while relying on a full Markov chain
onte Carlo (MCMC) pipeline for parameter estimation, rather than 

sing Fisher matrices. Note that other studies (e.g. Cardona et al.
016 ; Tanidis & Camera 2019 ; Tanidis, Camera & Parkinson 2020 )
id approach the problem from the MCMC point of view, but they
ll, in one way or another, had to simplify the problem in a way
hat either made them differ from a benchmark analysis, or assumed
ome of the aforementioned approximations. 

Additionally, we propose a simple debiasing method to reco v er
he true values of cosmological parameters without the need for 
xact calculations of the power spectra. Such a method will allow
s to analyse future data sets in a manner that a v oids computational
roblems, but ensures that we accurately obtain the correct best- 
tting values of cosmological parameters and estimates of their 
osterior distributions. 
The paper is structured as follows. We review in Section 2 the the-

retical modelling of galaxy number count correlations, presenting 
oth the exact computation and the approximated one. In Section 3,
he experimental setup used throughout the paper is presented, while 
n Section 4 we describe the cosmological models considered in this
aper and their impacts on galaxy number counts. In Section 5, we
resent our analysis pipeline and introduce a debiasing method able to 
ignificantly reduce the bias on cosmological parameters introduced 
y incorrect modelling of the observables. We present our results in
ection 6 and draw our conclusions in Section 7. 

 G A L A X Y  NUMBER  C O U N T S  A N D  

A R M O N I C - S PAC E  C O R R E L AT I O N  

U N C T I O N S  

bserved fluctuations in galaxy number counts are primarily 
aused by underlying inhomogeneities in the matter density field 
n cosmological scales and, for galaxies, are a biased tracer of
he cosmic large-scale structure. Ho we ver, there is a score of
econdary effects that also contribute to the observed signal (Yoo 
010 ; Bonvin & Durrer 2011 ; Challinor & Lewis 2011 ). The most
mportant of them are the well-known redshift-space distortions, 
hich represent the dominant term on sub-Hubble scales, and 
eak-lensing magnification, important for deep surv e ys and wide 

edshift bins. Additionally, there is a more complicated set of 
elativistic terms that arise from radial and transverse perturbations 
long the photon path from the source to the observer. 

Thus, we can write the observed galaxy number count fluctuation 
eld in real space and up to first order in cosmological perturbation

heory as (see e.g. Ghosh, Durrer & Sellentin 2018 ) 1 

 g = b lin δ − 1 
∂ 2 ‖ V − b mag κ + � loc + � int . (1) 
MNRAS 510, 1964–1977 (2022) 
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Note that hereafter we shall use units such that c = 1.) To understand
etter what the expression above means, we shall now break it up in
ll its terms: 

(i) The first term in equation (1) sees the linear galaxy bias, b lin ,
ultiplying matter density fluctuations in the comoving-synchronous

auge, δ. 
(ii) The second term is linear RSD, with ∂ � the spatial deri v ati ve

long the line-of-sight direction, ˆ r , and V the peculiar velocity
otential. 
(iii) The third term is the lensing magnification contribution,

ourced by the integrated matter density along the line of sight,
.e. the weak-lensing convergence κ , modulated by the so-called

agnification bias, b mag , which respectively take the forms 

( r ) = 

∫ r 

0 
d x ( r − x ) 

x 

r 
∇ 

2 
⊥ 

ϒ( ̂ r , r = x) , (2) 

 mag ( z) = 2 

[ 

1 − ∂ ln ̄n g ( z; F > F cut ) 

∂ ln F 

∣∣∣∣
F cut 

] 

, (3) 

ith r ( z) the radial comoving distance to redshift z such that d r =
 z / H ( z ) and H ( z) = (1 + z) H( z), ∇ 

2 
⊥ 

the Laplacian on the transverse
creen space, ϒ = ( 
 + �)/2 the Weyl potential, where 
 and � 

re the two Bardeen potentials of the perturbed metric, and n̄ g the
ean redshift-space comoving number density of galaxies, which

s a function of redshift and flux F (equi v alently luminosity, or
agnitude). Here, F cut represents the flux value that a galaxy should

ave in order to be detected by the adopted instrument. 
(iv) The penultimate term in equation (1) gathers all the local

ontributions at the source, such as Sachs–Wolfe and Doppler terms,
nd reads 

 loc = (3 − b evo ) H V + A ∂ ‖ V − b mag 
 + (1 − A ) � + 


 

′ 

H 

, (4) 

ith 

 evo ( z) = − ∂ ln ̄n g ( z) 

∂ ln (1 + z) 
, (5) 

sually referred to as the evolution bias, 1 

 ≡ b evo + b mag − 2 − H 

′ 

H 

2 
− b mag 

Hr 
, (6) 

nd a prime denoting deri v ation with respect to conformal time. 
(v) The last term, on the other hand, collects all non-local

ontributions such as time-delay and integrated Sachs–Wolfe type
erms and reads 

 int = 2 
b mag 

r 

∫ r 

0 
d x ϒ − 2 A 

∫ r 

0 
d x ϒ 

′ . (7) 

.1 The exact expression 

he exact linear harmonic-space angular power spectrum of the
bserved galaxy number count fluctuations between two (infinites-
mally thin) redshift slices at z and z 

′ 
, C 

Ex 
� ( z , z ′ ), is then obtained

y expanding equation (1) in spherical harmonics, and taking the
nsemble average 

� g ,�m 

( z ) � 

∗
g ,� ′ m 

′ ( z ′ ) 
〉 ≡ δK 

�� ′ δ
K 
mm 

′ C 

Ex 
� ( z , z ′ ) , (8) 

ith δK the Kronecker delta symbol. This leads to the expression
‘Ex’ meaning ‘exact’) 

 

Ex 
� ( z , z ′ ) = 4 π

∫ 
d ln k W 

g 
� ( k; z) W 

g 
� ( k ; z 

′ ) P ζ ( k ) , (9) 
NRAS 510, 1964–1977 (2022) 
ith W 

g 
� the kernel of galaxy clustering, encompassing contributions

rom all terms present in equation (1), and P ζ ( k) = A s k 
n s −1 the

ower spectrum of primordial curvature perturbations, A s and n s ,
espectively, being its amplitude and spectral index. 

For a full expression for W 

g 
� , we can write 

 

g 
� = W 

g , den 
� + W 

g , vel 
� + W 

g , len 
� + W 

g , rel 
� , (10) 

ith W 

g , vel 
� = W 

g , RSD 
� + W 

g , Dop 
� the term related to galaxies’ veloc-

ties, where (see e.g. Di Dio et al. 2013 ) 

 

g , den 
� ( k; z) = b lin ( k, z) T δ( k, z) j � [ kr( z) ] , (11) 

 

g , RSD 
� ( k; z ) = 

k 

H( z ) 
T V ( k, z ) j ′′ � [ kr( z ) ] , (12) 

 

g , Dop 
� ( k; z) = 

{
[ b evo ( z) − 3 ] 

H( z) 

k 
j � [ kr( z) ] 

−A ( z) j ′ � [ kr( z) ] 

}
T V ( k, z) , (13) 

 

g , len 
� ( k; z) = � ( � + 1) b mag ( z) 

×
∫ r( z) 

0 
d x 

r( z) − x 

r( z) x 
T ϒ ( k, r = x) j � ( kx) , (14) 

 

g , rel 
� ( k; z) = 

{
[ 1 − A ( z) ] T � 

( k, z) − 2 b mag ( z ) T 
 

( k, z ) 

+ 

1 

H( z) 
T 
 

′ ( k , z) 

}
j � [ k r( z) ] 

+ 2 
b mag ( z) 

r( z) 

∫ r( z) 

0 
d x T ϒ ( k, r = x ) j � ( kx ) 

− 2 A ( z) 
∫ r( z) 

0 
d x T ϒ ′ ( k, r = x ) j � ( kx ) . (15) 

n the equations abo v e, T X denotes the transfer function describing
he evolution of the random variable X and T X ( k , z) ≡ T X [ k , r ( z)]. Note
hat, with a slight abuse of notation, a prime applied to a spherical
essel function denotes a deri v ati ve with respect to its argument. 
In harmonic-space analyses, it is customary to subdivide the

bserved source population into redshift bins. This is done, for
nstance, to reduce the dimensionality of the data vector – and
onsequently the covariance matrix – with the aim of reducing,
n turn, the computational complexity of the problem. Otherwise,
edshift information for the observed galaxies might be too poor to
llow us to pin them down in the radial direction, as is the case with
hotometric redshift estimation. In this case, galaxies are usually
inned into O(1) − O(10) bins spanning the observed redshift range.
hatever the reason, in practice this corresponds to having 

 

Ex 
ij� = 4 π

∫ 
d ln k W 

g 
i� ( k ) W 

g 
j� ( k ) P ζ ( k ) , (16) 

here 

 

g 
i� ( k) = 

∫ 
d z W 

g 
� ( k; z) n i ( z) , (17) 

ith n i ( z) the galaxy redshift distribution in the i th redshift bin,
ormalized to unit area. 

.2 Widely used approximations 

he computation of harmonic-space power spectra has to be per-
ormed following the triple integral of equation (16) and the equations
iving the kernel W 

g 
i� . However, such an integration is numerically

umbersome, especially because of the presence of spherical Bessel
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Figure 1. Ratio of the approximated C � to the exact C 

Ex 
� of equation (16). 

The labels of the different curves correspond to the contributions that enter 
the window function in equation (10). None of the spectra considered here 
use the Limber approximation, except the ‘Ap’ spectrum, which corresponds 
to the fully approximated C 

Ap 
� of equation (19). The spectra shown here refer 

to the autocorrelation in a redshift bin with 0.67 < z < 0.75, using the surv e y 
specifications discussed in Section 3. 
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unctions – highly oscillatory functions whose amplitude and period 
ary significantly with the argument of the function. As a con- 
equence, numerical integration has to be performed with highly 
daptive methods at the cost of computation speed. Over the years, 
arious algorithms have been proposed with the aim of speeding up 
he computation of harmonic-space power spectra. Mostly, they rely 
n FFT/FFTLog methods (see e.g. Assassi et al. 2017 ; Campagne 
t al. 2017 ; Grasshorn Gebhardt & Jeong 2018 ). 

On the other hand, the full computation is not al w ays necessary,
nd approximations can be made to speed up the numerical e v al-
ation, e.g. by applying the Limber or the flat-sky approximations 
often erroneously thought to be the same, see e.g. Matthewson & 

urrer 2021 ). Here, we shall focus on the former, which is by far
he most widely employed. It relies on the following property of
pherical Bessel functions, 

 � ( x) −→ 

� 	1 

√ 

π

2 � + 1 
δD 

(
� + 

1 

2 
− x 

)
, (18) 

here δD is a Dirac delta. 2 By performing the substitution of equation 
18) into equation (16), which contains j � through the W 

g 
i� ( k), we can

f fecti vely get rid of two integrations, thus boosting significantly the
peed of the computation. 

Moreo v er, the relativ e importance of the different terms in equation
10) depends on various surv e y-dependent factors. F or instance, 
SD are mostly washed out for broad redshift bins, whereas, on the
ontrary, lensing magnification fa v ours them. Similarly, the Doppler 
ontribution decays quickly as the redshift of the shell grows, whilst
ntegrated terms like lensing gain in weight. Lastly, the importance of
he various effects also varies with the scales of interest, as can be seen
y the H/k factors in equation (11) to equation (15). Moreo v er, note
hat at first order in cosmological perturbation theory, the Einstein 
quations fix V ∼ δ/ k and 
 ∼ � ∼ δ/ k 2 . All combined, this makes
 

g , rel 
� important only on very large scales. 
For these reasons, galaxy clustering in harmonic space is cus- 

omarily restricted to Newtonian density fluctuations alone, leading 
o the well-known expression for the approximated angular spectra 
‘Ap’ standing for ‘approximated’) 

 

Ap 
ij� = 

∫ 
d z 

[ H ( z ) b lin ( z ) ] 
2 n i ( z ) n j ( z ) 

r 2 ( z) 
P lin 

[
� + 1 / 2 

r( z) 
, z 

]
, (19) 

here P lin ( k , z) is the linear matter power spectrum, and for now we
ave assumed that linear galaxy bias is only redshift-dependent. Let 
s emphasize that this approximation, and in particular the neglection 
f RSD, is oft-times common in harmonic-space analyses of galaxy 
lustering (see e.g. Granett et al. 2012 ; van Uitert et al. 2018 ;
ES Collaboration et al. 2021 ), albeit with noticeable exceptions 

Padmanabhan et al. 2007 ; Loureiro et al. 2019 ; Joachimi et al.
021 ; Tanidis & Camera 2021 ). Oppositely, real- and Fourier-space 
nalyses do customarily account for RSD. 

The actual accuracy of such an approximation, ho we ver, cannot 
e estimated a priori, since it strongly depends on the integrand of
quation (19). In particular, equation (19) is known to agree well with
he exact expression of equation (16) if the kernel of the integral is
road in redshift. Moreo v er, the Limber approximation works better 
t low redshift than at high redshift, because the higher the redshift,
he larger the scale subtended by a given angular separation; in other
 Note that the + 1/2 term comes from the relation between a spherical Bessel 
unction of order � , j � , and the ordinary Bessel function of order L = � + 1/2, 
 L . 

e  

f  

i
C  

s  
ords, the minimum multipole for which the Limber approximation 
grees well with the exact solution increases with redshift. 

In Fig. 1 , we highlight the contributions of the different terms to
he final spectra by showing the ratio of approximated spectra to the
xact ones. We consider here the autocorrelation spectra in a redshift
in with 0.67 < z < 0.75, using the surv e y specifications we later
iscuss in Section 3. None of the spectra shown in the figure use the
imber approximation, except the ‘Ap’ spectrum, which corresponds 

o equation (19). We notice how removing different terms makes the
heoretical prediction mo v e a way from the e xact one, although only
t very large scales and not in a dramatic way, even when only the
ensity term of equation (11) is kept. Ho we ver, once the Limber
pproximation is used, the predictions significantly depart from the 
xact spectrum over a wide range of multipoles. 

 SURV EY  SPECI FI CATI ONS  

n the coming decade, several planned surveys of the cosmic large-
cale structure will provide us with observations of the galaxy 
istribution with unprecedented sensitivity at very large scales. 
t is therefore crucial to assess how the common approximations 
escribed in Section 2 will impact the accuracy of the results we will
e able to obtain. Therefore, in this paper we adopt the specifications
f a very deep and wide galaxy clustering survey with high redshift
ccuracy. We emphasize that we are not interested in forecasts for
 specific experiment, but rather in assessing whether and how 

uch various approximations affect the final science output. For this 
eason, we shall focus on an idealized surv e y, loosely inspired by the
nvisaged future construction phase of the SKAO. Specifically, we 
onsider an HI-galaxy redshift surv e y, assuming that the instrument
ill be able to provide us with spectroscopic measurements of the
alaxies’ redshifts through the detection of the HI emission line in
he galaxy spectra. Therefore, for the purposes of the harmonic-space 
omographic studies we focus on in this paper, we shall consider the
rror on such redshift measurements to be negligible. 

Here, we follow the prescription and fitting functions of Yahya 
t al. ( 2015 ) to characterize the source galaxy distribution as a
unction of both redshift and flux limit. The latter will be particularly
mportant in determining the magnification bias of the sample. 
alculations in Yahya et al. ( 2015 ) were based on the S 3 -SAX

imulations by Obreschkow & Rawlings ( 2009 ) and assumed that
MNRAS 510, 1964–1977 (2022) 
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Table 1. Surv e y specifications and fiducial cosmology used in the present work to obtain the mock data set 
and experimental noise. 

Surv e y specifications 
N gal f sky z min z max c 1 c 2 c 3 c 4 c 5 

9.4 × 10 8 0.7 0.001 1.1 6.32 1.74 5.42 0.55 0.78 

Fiducial cosmology 
ω b ω c h A s × 10 9 n s 

∑ 

m ν [eV] w f NL 

0.022 45 0.120 56 0.67 2.126 0.96 0.06 −1 0 
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Figure 2. Upper panel: Galaxy distribution as described by equation (20; 
in black) with the limits of the equipopulated redshift bins considered in the 
present paper (in colour). Lower panel: trends in redshift for the linear galaxy 
bias of equation (21; blue curve), the magnification bias of equation (3; orange 
curve), and the evolution bias of equation (5; green curve). The intersection 
between the horizontal dashed and vertical dotted black lines shows where 
the linear galaxy bias crosses unity. 
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4 Note that � CDM also requires the reionization optical depth τ as a free 
parameter. Ho we ver, we do not vary τ in our analysis as we do not expect the 
large-scale observables to constrain this quantity. 
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ny galaxy with an integrated line flux above a given signal-to-noise
atio threshold would be detected. The fitting formulae adopted here
re 

d N gal 

d z 
= 10 c 1 z c 2 exp ( −c 3 z ) deg −2 , (20) 

 lin ( z) = c 4 exp ( c 5 z) , (21) 

here N gal is the total number of galaxies in the entire redshift range
f the surv e y, and parameters c i can be found in Yahya et al. ( 2015 )
or a wide range of flux thresholds, from 0 to 200 μJy . We show
n Table 1 values of c i used in the present work, corresponding to
hose used in Sprenger et al. ( 2019 ) and obtained in Bull ( 2016 )
s a result of fitting these functions to the expected galaxy number
ensity, given the survey design. 
Given the galaxy distribution of equation (20), we focus on the

edshift range 0.001 < z < 1.1 with N gal given in Table 1 , and divide it
nto N bin = 15 redshift bins assuming that each one contains the same
umber of galaxies (see the upper panel of Fig. 2 ). In the lower panel
f Fig. 2 , we show the redshift evolution of the linear galaxy bias,
he magnification bias and the evolution bias giv en, respectiv ely, by
quations (21), (3), and (5), for the surv e y under consideration. 

Using these surv e y specifications, we create a simulated data set for
alaxy clustering observations; we calculate the exact angular power
NRAS 510, 1964–1977 (2022) 
pectra C 

Ex 
� , described in Section 2, in a fiducial cosmology and we

dd to these the noise computed using the surv e y specifications.
or the rest of this paper we use the calculations of the exact
nd approximated power spectra as implemented in CAMB 3 (Lewis
t al. 2000 ; Howlett et al. 2012 ). We assume a � CDM cosmology
ith fiducial values of parameters given in Table 1 , where ω b and
 c are the baryon and cold dark matter physical energy densities,

espectively, h is the reduced present-day Hubble expansion rate,
 s and n s are, respectively, the amplitude and spectral index of the
rimordial curvature power spectrum, and 

∑ 

m ν is the sum of the
eutrino masses. 

 CASE  STUDIES  

e study four representative cosmological models in order to
emonstrate how the approximations of Section 2.2 can bias the
stimation of cosmological parameters using a next-generation
urv e y able to access ultralarge scales, as described in Section 3,
nd how the method we present in this paper debiases the constraints
hile keeping the computational cost of the parameter estimation
rocedure significantly lower than that of an exact analysis. These
our models are the standard � CDM model and three of its minimal
xtensions, where either the dark energy equation of state w or
he sum of the neutrino masses 

∑ 

m ν or the local primordial non-
aussianity (PNG) parameter f NL is allowed to vary as an additional

ree parameter. We denote these extensions by wCDM, � CDM + m ν ,
nd � CDM + f NL , respectively. 

.1 Standard model and its simple extensions 

e specify the standard � CDM model by the five free parameters
 b , ω c , h , A s , and n s . 4 Following Planck Collaboration VI ( 2020b ),
e fix the value of 

∑ 

m ν to 0.06 eV for � CDM. The parameters { ω b ,
 c , h , A s , n s } affect the angular power spectra of the observed galaxy
umber count fluctuations differently and on different angular scales.
ere we are interested in ultralarge scales, which are expected to be
articularly sensitive to the parameters that quantify cosmic initial
onditions, i.e. A s and n s . 

In order to illustrate the large-scale effects of the parameters, we
how, as an example, in the upper left hand panel of Fig. 3 the impact
f varying the scalar spectral index n s on the power spectrum at
ngular scales larger than � = 400 computed at redshift bins 5, 10,
nd 15 (corresponding to redshift ranges 0.28 < z < 0.32, 0.49 < z <

.54, and 0.86 < z < 1.04, respectively) as given in the upper panel of
ig. 2 . For each redshift bin, the corresponding galaxy number count

art/stab3578_f2.eps
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Figure 3. Effects of cosmological parameters on the angular power spectrum of observed galaxy number count fluctuations, C � , on large scales. The four panels 
depict the effects of: the primordial scalar spectral index n s in � CDM (upper left panel); the dark energy equation of state w in wCDM (upper right panel); the 
sum of the neutrino masses 

∑ 

m ν in � CDM + m ν , with values in eV (lower left panel); and the local primordial non-Gaussianity f NL in � CDM + f NL (lower 
right panel). All the power spectra are exact, i.e. no approximations are made in their computations, and they are shown in comparison with the fiducial � CDM 

spectra with n s = 0.96, w = −1, 
∑ 

m ν = 0.06 eV, and f NL = 0. Each panel contains three sets of spectra computed for the three redshift bins 5, 10, and 15, 
corresponding to low, medium, and high redshifts (from top to bottom in each panel). The redshift range of each bin is indicated in the respective plot in the 
upper left panel. 
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ower spectra for three values of n s = 0.92, n s = 0.96, and n s = 1 are
ho wn relati ve to the spectrum for n s = 0.96, which we use as our
ducial value in the rest of this paper. Note that these spectra are all
 xact, i.e. the y are computed without making any approximations. As
he figure shows, in all the redshift bins, the lower the value of n s , the

ore enhanced the power spectra at ultralarge scales, namely scales 
ith � � O(100), while we see the opposite effect at smaller scales.
his is because the smaller the value of n s , the steeper (or more ‘red-

ilted’) the primordial power spectrum, resulting in larger amplitudes 
f fluctuations at extremely large scales. This steeper spectrum will 
hen lead to suppression of amplitudes at scales smaller than some 
pi vot’ scale. Note, ho we ver, that the enhancement or suppression
n large scales is not physical, as it depends on the scale used as a
ivot – namely, fixing either A s or σ 8 (amplitude of the linear power 
pectrum on the scale of 8 h 

−1 Mpc ) as a fundamental parameter. 
The figure for n s already shows the importance of correctly 

omputing the angular power spectra for accurately estimating the 
osmological parameters using ultralarge-scale information. As the 
gure sho ws, e v en changing n s to the e xtreme values of 0.92 and 1,
oth of which having already been ruled out by the current constraint
 s ≈ 0.965 ± 0.0042 (Planck Collaboration VI 2020b ), changes the 
ower spectra by O(10 per cent ). On the other hand, as we will see
n Section 6, the approximations of Section 2.2 may easily result in
 O(10 per cent ) errors in the computation of the spectra on large

cales, which will then lead to inaccurate, or biased, estimates of
arameters like n s . 
An inaccurate estimation of a cosmological parameter can also 

esult in a false detection of new physics when there is none, or in
o detection when there is. In order to demonstrate this problem,
e present in the upper right and lower left panels of Fig. 3 the

ffects of the two important non-standard cosmological parameters, 
 and 

∑ 

m ν , on the power spectrum at large scales for wCDM and
 CDM + m ν , the two simple extensions of � CDM that we introduced

arlier. The panels again depict the spectra for the three redshift bins
, 10, and 15, with the additional parameters w and 

∑ 

m ν of the
wo extensions set to { −1.2, −1, −0.8 } and { 0.003, 0.06, 0.3 } ,
espectively. Note that throughout this paper, we al w ays use w = −1
nd 

∑ 

m ν = 0.06 as the fiducial values for these parameters. 
MNRAS 510, 1964–1977 (2022) 
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We notice that changing the value of w has a few large-scale
ffects. First of all, setting w to a value smaller or larger than −1 does
ot affect the spectra similarly in different redshift bins. Focusing
rst on the w = −1.2 case, which corresponds to a phantom dark
nergy, we see that the spectra are all suppressed at ultralarge scales
ompared to the standard w = −1 case, and by increasing the bin’s
edshift, not only does the range of the suppressed power extend to
maller scales, but also the higher the redshift, the more suppressed
he spectra (on all scales). The effect is the opposite for the w =

0.8 case, and increasing the bin’s redshift results in more enhanced
pectra compared to the baseline w = −1. The w �= −1 enhancement
r suppression of power and its redshift dependence can be explained
or smaller scales by the fact that the linear growth rate of the
arge-scale structure, f , is significantly affected by w, especially at
ow redshifts, where dark energy becomes more important (see e.g.
mendola & Tsujikawa 2010 ). At any given redshift z, a larger
 makes the dark energy component more important compared to

he matter component, and since the growth rate f ( z) increases by
ncreasing the dark matter component, it decreases by increasing w.
his is exactly what we see in Fig. 3 for the three values of w = −1.2,
 = −1, and w = −0.8. We also see that, as expected, the differences
etween the three spectra at smaller scales are significantly reduced
hen we increase the bin’s redshift. The dependence of the power

pectrum on the value of w is, however, much more involved for
ery large scales, as the spectrum on those scales is determined by a
ombination of different w-dependent effects, such as the integrated
achs–Wolfe effect. Finally, in all the three bins of the upper right
anel of Fig. 3 , the oscillatory features in the ratios C � /C 

fid 
� are a

onsequence of the fact that the baryon acoustic oscillations shift
owards smaller scales with increasing redshift for both w = −1.2
nd w = −0.8. 

When considering the sum of the neutrino masses, we see that
ncreasing 

∑ 

m ν results in the suppression of power on all scales and
n all redshift bins, although this suppression is significantly stronger
t smaller scales (or higher multipoles). There are several reasons
or the small-scale reduction of the power spectra in the presence of
assive neutrinos (see e.g. Lesgourgues & Pastor 2012 ), the most

mportant of which is the absence of neutrino perturbations in the
otal power spectrum and a slower growth rate of matter perturbations
t late times. On extremely large scales, ho we ver, neutrino free-
treaming can be ignored (see e.g. Lesgourgues & Pastor 2012 ) and
eutrino perturbations are therefore indistinguishable from matter
erturbations. The power spectra then depend only on the total
atter + neutrino density fraction today and on the primordial

ower spectrum. The small suppression of the angular power spectra
t ultralarge scales, as seen in Fig. 3 , is therefore because of the
ontribution of massive neutrinos to the total density parameter �m 

.

.2 Primordial non-Gaussianity and scale-dependent bias 

n important extension of the standard � CDM model for our studies
f ultralarge scales is � CDM + f NL , where the parameter f NL is added
o the model in order to capture the effects of a non-zero local
rimordial non-Gaussianity. It has been shown (Dalal et al. 2008 ;
atarrese & Verde 2008 ; Slosar et al. 2008 ) that a local PNG modifies

he Gaussian bias by contributing a scale-dependent piece of the form 

b( z, k) = 3[ b lin ( z) − 1] 
δc �m 

H 

2 
0 

k 2 T ( k ) D ( z) 
f NL , (22) 

here �m 

is the present-day matter density parameter, H 0 is the value
f the Hubble expansion rate today, T ( k ) is the matter transfer function
with T → 1 as k → 0), D ( z) is the linear growth factor normalized
NRAS 510, 1964–1977 (2022) 
o (1 + z) −1 in the matter-dominated Universe, and δc ∼ 1.68 is
he (linear) critical matter density threshold for spherical collapse.
he appearance of the k 2 factor in the denominator of equation (22)

mmediately tells us that ultralarge scales are the natural choice for
lacing constraints on f NL using this scale-dependent bias, as the
ignal becomes stronger when k → 0. 

The lower right panel of Fig. 3 shows the effects of non-zero values
f f NL on the power spectrum at large scales – note that similar to
he previous cases, the spectra are exact, i.e. no approximations
re made in their computations. We first notice that, as expected,
 non-zero f NL only affects the ultralarge scales substantially, by
nhancing or suppressing the power spectra, and that this happens in
ll the redshift bins shown in the figure. This again emphasizes the
mportance of accurately and precisely measuring the power spectra
t ultralarge scales, as even the unrealistically large values of f NL =
20 (see Planck Collaboration VI 2020c for the current observational

onstraints on f NL ) shown in the figure affect the spectra by only
 5 per cent . 
The figure also shows that a ne gativ e (positiv e) f NL enhances

suppresses) the spectra for the two low-redshift bins 5 and 10,
hile the effect is the opposite for the high-redshift bin 15. Here,
e explain the reason for this surprising but important feature. For

hat, let us investigate the redshift dependence of equation (22) for
he full bias. The quantity b lin is redshift-dependent and is given by
quation (21) for the surv e y we consider in this paper. As can be seen
n the lower panel of Fig. 2 , the quantity b lin − 1 is ne gativ e for z �
.75 and positive for z � 0.75, which means that a negative (positive)
 NL enhances the bias at low (high) redshifts and suppresses it at high
lo w) redshifts. No w looking at the upper panel of Fig. 2 , we see that
he two upper bins of the lower right panel of Fig. 3 (bins 5 and 10)
ontain redshifts that are lower than 0.75, while the lower bin (bin
5) includes redshifts higher than 0.75. 
It is, ho we ver, important to note that this is the case only if one

ssumes a b lin − 1 factor in equation (22), whose validity has been
uestioned in the literature (see e.g. Barreira 2020 and references
herein). For this reason, we modify equation (22) as 

b( z, k) = 3 f NL [ b lin ( z) − p] δc 
�m 

H 

2 
0 

k 2 T ( k ) D ( z) 
, (23) 

here p is now a free parameter to be determined by cosmological
imulations. It is argued by Barreira ( 2020 ) that p = 1 for gravity-
nly dynamics and when universality of the halo mass function
s assumed, while other values of p provide better descriptions of
bserved galaxies where both of these assumptions are violated.
epending on the specific analysis and modelling, different values of
 have been obtained, e.g. Slosar et al. ( 2008 ) and Pillepich, Porciani
 Hahn ( 2010 ) showed that p = 1.6 provides a better description

f host halo mergers, while Barreira et al. ( 2020 ) showed that p =
.55 better describes IllustrisTNG-simulated stellar-mass-selected
alaxies. 

 PA RAMETER  ESTIMATION  M E T H O D O L O G Y  

n this paper, we are interested in estimating the impact of large-
cale effects and approximations on the estimation of cosmological
arameters. In order to do so, we fit the mock data set obtained by
he exact C 

Ex 
� spectra as described in Section 3 using the C 

Ap 
� spectra

hich make use of the several common approximations discussed in
ection 2.2. 
Throughout this work we rely on CAMB (Lewis et al. 2000 ; Howlett

t al. 2012 ) to compute the exact and approximated power spectra.
e use a modified version of the code, following Camera, Santos &
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Figure 4. Effect of debiasing when different � 0 points in the parameter space 
are used to compute the debiasing term α( � 

0 ). Here the autocorrelation in the 
eighth redshift bin is shown as a typical example. α( � 

0 ) is computed at the 
fiducial set of parameters, � 

fid , and at 500 other points in the parameter space, 
randomly sampled from a Gaussian distribution centred at � 

fid with a variance 
of 10 per cent for each parameter. The black solid curve shows the fiducial 
C 

Ex 
� ( � 

fid ) spectrum, while the grey band shows the errors corresponding to 
the experimental setup considered in the paper. For each of the 500 computed 
α( � 

0 ), the debiasing term is applied to the C 

Ap 
� ( � 

fid ) spectrum. Assuming 
that the resulting spectra also follow a Gaussian distribution around the 
C 

Ap 
� ( � 

fid ) + α( � 

fid ) spectra, the orange and red areas show the 1 σ and 
2 σ uncertainty regions, respectively. 
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aartens ( 2015c ), when we consider the primordial non-Gaussianity 
arameter, f NL . We implement in the public code COBAYA 5 (Torrado 
 Lewis 2020 ) a new likelihood module which enables us to obtain

rom CAMB the approximated spectra C 

Ap 
� and compare them with 

he mock data set. Such an analysis matches the approach commonly 
sed for parameter estimation with galaxy number count data, where 
 

Ap 
� is computed at each step in the MCMC rather than C 

Ex 
� , as the

omputation of the latter is extremely time consuming and therefore 
nfeasible to repeat O(10 4 ) times. 
For each point � in the sampled parameter space, we compute the 

2 using the approach presented in Audren et al. ( 2013 ), i.e. 

χ2 ( � ) = 

∑ 

� 

(2 � + 1) f sky 

(
d mix 

� ( � ) 

d th � ( � ) 
+ ln 

d th � ( � ) 

d obs 
� 

− N bin 

)
, (24) 

here N bin is the number of bins, and 

 

th 
� ( � ) = det 

[
˜ C 

Ap 
ij� ( � ) 

]
, (25) 

 

obs 
� = det 

[
˜ C 

Ex 
ij� ( � 

fid ) 
]
. (26) 

he tilde indicates that the used spectra contain an observational 
oise N ij� = δK 

ij /n i , with n i the number of galaxies in the i th bin
nd δK 

ij the Kronecker delta, i.e. ˜ C ij� = C ij� + N ij� . The quantity
 

mix 
� ( � ) in equation (24) is constructed from d th � ( � ) by replacing,
ne after each other, the theoretical spectra with the corresponding 
bservational ones (for details, see Audren et al. 2013 ). 
Note that equation (24) allows one to compute the difference 

etween the χ2 at each point in the parameter space and its minimum
 alue, with �χ2 v anishing when computed using the fiducial v alues
f our free parameters. This is the quantity that we compute at each
tep of our MCMC, i.e. a constant rescaling of the χ2 by an offset,
hich therefore correctly samples both the peak and the shape of the
osterior, as it does not change the dependency of the χ2 on the free
arameters. 
For currently available observations, which are not able to surv e y

xtremely large volumes of the Universe and therefore do not explore 
he ultralarge-scale regime, the approximated spectra generally 

imic the true power spectrum. Thus, the approximations made do 
ot significantly affect the results. However, we expect future surveys 
uch as the HI-galaxy redshift surv e y for which we generated the
ock data set in Section 3, to provide data at scales where lensing,
SD, relativistic effects, and the Limber approximation significantly 

mpact the power spectra. Consequently, using the different approx- 
mations presented in Section 2.2 in fitting the models to the data
ill likely lead to shifts in the inferred cosmological parameters with 

espect to the fiducial values used to generate the data set. In this
aper, we quantify the significance of these shifts, in units of σ , as 

( � ) = 

| � − � 

fid | 
σ� 

, (27) 

here � is a generic parameter of the full set � estimated in our
nalysis, σ� 

is the Gaussian error we obtain on � , and � 

fid is the
ducial value of � used to generate the mock data set. 
We apply this pipeline to the models described in Section 4, 

ith the baseline � CDM model described by the set of five free
arameters � = { ω b , ω c , h, A s , n s } . When analysing an extended
odel, we add one extra free parameter to this set: the dark energy

quation of state w, the sum of the neutrino masses 
∑ 

m ν , or the
ocal primordial non-Gaussianity parameter f NL . We adopt flat priors 
n all these parameters. 
 https://github.com/CobayaSampler/cobaya 

w  

w  

�  
Note that here we consider an optimistic setting in which the linear
alaxy bias b lin ( z) is perfectly known. Adding nuisance parameters
ccounting for the uncertainty on this function and marginalizing 
 v er them would enlarge the errors on cosmological parameters and
educe the statistical significance of the shifts we find, but would not
ualitatively change the effects we are interested in. Moreo v er, as we
re interested in the largest scales, in our analysis we only consider
he data up to the multipole � = 400. Adding smaller scales to the
nalysis could reduce the significance of the shifts, but would not
hange our results qualitatively. 

.1 Debiasing constraints on cosmological parameters 

s we will show in Section 6, using approximated spectra, C 

Ap 
� ,

n the MCMC analysis results in significant shifts on cosmological 
arameters. To mitigate this, we propose a method for debiasing the
arameter estimates while still allowing for the use of the quickly
omputed C 

Ap 
� . This method is based on adding a correction to the

 � ’s used in the likelihood e v aluation as 

 

Ap 
� ( � ) → C 

Ap 
� ( � ) + 

[ 
C 

Ex 
� ( � 

0 ) − C 

Ap 
� ( � 

0 ) 
] 
, (28) 

here � 

0 refers to a specific set of the cosmological parameters. We
efine the debiasing term α( � 

0 ) as 

( � 

0 ) ≡ C 

Ex 
� ( � 

0 ) − C 

Ap 
� ( � 

0 ) . (29) 

e use � 

0 = � 

fid for most of the results shown below, but discuss
n Section 5.2 how we can use a maximum likelihood estimate of � 

0 

hen working with actual data for which � 

fid does not exist. In Fig. 4
e show the dependence of this debiasing method on the choice of
 

0 ; we compute the debiasing term at � 

fid and at 500 other points of
MNRAS 510, 1964–1977 (2022) 
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Table 2. Maximum likelihood (ML) parameter set obtained by minimizing 
the χ2 when C 

Ex 
� is used to fit the data set described in Section 3. The values 

are obtained through the BOBYQA minimization algorithm implemented in 
Cobaya . 

� Fiducial value ML (or peak) value 

ω b 0 .022 445 0 .022 485 
ω c 0 .1206 0 .1209 
h 0 .67 0 .67 
A s × 10 −9 2 .126 05 2 .11 
n s 0 .96 0 .96 
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6 The convergence criteria used by Cobaya are that the Gelman–Rubin R -1 
on the means be < 0.01 and that on the standard deviations be < 0.2. 
7 https:// github.com/cmbant/ getdist
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he parameter space, randomly sampled from a Gaussian distribution
entred at � 

fid with a variance on each parameter corresponding
o 10 per cent of its fiducial value. These debiasing terms are then
pplied to C 

Ap 
� ( � 

fid ). Assuming that the resulting spectra also follow
 Gaussian distribution around the C 

Ap 
� + α( � 

fid ) spectra, we show
he corresponding 1 σ and 2 σ uncertainty regions. The figure shows
hat although the results we present below are based on computing
( � 

0 ) using � 

fid , which would not be known in the case of actual
ata, our results would also hold for other choices of � 

0 if they were
easonably close to � 

fid . This method of debiasing cosmological
arameter estimates works precisely because the debiasing term
( � 

0 ) is not strongly dependent on the choice of � 

0 and can therefore
ccount for the differences between the exact and approximated
pectra o v er the full range of parameter space that the MCMC
xplores. Since α( � 

0 ) only needs to be computed at a single set of
arameter values, rather than each step in the MCMC, it allows one
o obtain unbiased results without being computationally e xpensiv e,
nlike using C 

Ex 
� which makes the analysis unfeasible. 

We therefore use, at each sampled point � , the χ2 expression of
quation (24), but with the substitution 

˜ 
 

Ap 
ij� ( � ) → 

˜ C 

Ap 
ij� ( � ) + α( � 

0 ) . (30) 

.2 Debiasing with maximum likelihood 

hile in this paper we work with mock data sets, and therefore � 

fid is
nown, this will not be the case when analysing real data. In order to
se our approach in a realistic setting, we need to find a point in the
arameter space that approximates the fiducial cosmology, which
orresponds to the peak of the multi v ariate posterior probability
istribution for the parameters. This can be achieved by analysing the
ock data set built with C 

Ex 
� using the correct theoretical predictions,

ut without attempting to reconstruct the full shape of the posterior
istribution. One can use maximization methods to find the peak
f the distribution, and since these methods only aim to find the
aximum likelihood (or best-fitting) point in the parameter space,

hey require a significantly smaller number of iterations with respect
o MCMC methods. 

Here, we use the maximization pipeline of Cobaya , which relies
n the BOBYQA algorithm (Cartis et al. 2018a ; Cartis, Roberts &
heridan-Methven 2018b ), to fit the C 

Ex 
� spectra to our mock data

et, and we find the maximum likelihood parameter set presented
n Table 2 . The maximum likelihood point ( � 

peak ) found with this
ethod is very close to the actual fiducial point used to generate the

ata set and would therefore be suitable for computing the debiasing
erm α (see Section 5.1). Although we use the fiducial parameter set
 

fid to compute the debiasing term in the rest of this paper, we have
erified that there would be no significant changes in our results if
 

peak were chosen instead (see Section 6.1). 
NRAS 510, 1964–1977 (2022) 
We find that the maximization approach is much less computa-
ionally e xpensiv e compared to running a full MCMC with the exact
pectra. A single iteration of our likelihood code using the exact
pectra takes ∼150 s (compared to ∼5 s with the approximated spec-
ra). The number of accepted iterations before reaching convergence 6 

ith the approximated spectra is 37 500. If we assume this to be
he minimum number of iterations needed, the MCMC with the
xact spectra would take at least 65 d (and likely much longer when
aking into account the rejected steps). In contrast, the likelihood

aximization took under 1 month running on a workstation with
any other background processes, and the MCMC run that followed

with the approximated spectra) took only 2 d, demonstrating the
omputational feasibility of our approach. 

We want to stress, ho we ver, that this minimization approach might
ail should the posterior distribution be complicated; the presence of
ultiple peaks or very flat posteriors might bias the estimate of

he maximum likelihood point in the parameter space and therefore
ossibly hinder the feasibility of this approach. 

 RESULTS  A N D  DI SCUSSI ON  

n this section, we present the results of our analysis, highlighting
o w neglecting ef fects that are rele v ant at very large scales can result
n significant biases in the estimation of cosmological parameters,
otentially leading to false detections of non-standard physics. We
plit our results in two sub-sections, the first focusing on � CDM
nd its simple extensions � CDM + m ν and wCDM, and the second
iscussing the results obtained when a scale-dependent bias gener-
ted by primordial non-Gaussianity is included in the analysis. All
he MCMC samples obtained using the methodology described in
he previous section are analysed using the public code GETDIST 7 

Lewis 2019 ). 

.1 � CDM and its simple extensions 

n Table 3 , we present the results obtained by analysing our mock
ata set, generated with C 

Ex 
� spectra for a � CDM fiducial cosmology,

sing C 

Ap 
� spectra for the three assumed cosmologies � CDM,

 CDM + m ν , and wCDM. In the first case, we find that the obtained
onstraints on cosmological parameters are significantly shifted with
espect to their fiducial values, despite using for the analysis the same
osmological model as the one assumed in generating the mock data
et. With the exception of A s , which affects the amplitude of the
pectra, the other parameters are all shifted by more than 2 σ , with
 s being the most affected parameter ( S = 4.9 σ ), as a result of using
pproximations to achieve a reasonable computation time for the
CMC analysis. When we allow for simple extensions of � CDM,
e see that such an effect leads to significant false detections of
epartures from the standard model. With the sum of the neutrino
asses 

∑ 

m ν added as an extra free parameter, we indeed find a
ignificant detection of a non-vanishing value, where 

∑ 

m ν = 0 eV
s excluded with more than 6 σ significance and the estimated value is
hifted from the fiducial minimal value 

∑ 

m ν = 0.06 eV by S = 6.2 σ ;
his implies that an analysis of data sensitive to large-scale effects
ould provide a false detection of the neutrino masses if one used

he approximations considered here. The same effect can be seen
f one allows for dark energy with an equation-of-state parameter

https://github.com/cmbant/getdist
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T able 3. T op table: marginalized constraints on the sampled parameters � and values of the shift estimator S ( � ) obtained by analysing the fiducial data set 
with the approximated C 

Ap 
� spectra for the standard � CDM model and its simple extensions, � CDM + m ν , and wCDM, considered in the present work. The last 

column of the table shows the minimum �χ2 values obtained for the different cosmologies, which, given equation (24), should vanish for an unbiased analysis. 
Bottom table: same as the top table, but applying the debiasing term α( � 

fid ) to the theoretical predictions that are then compared with the data. 

Cosmological parameters �χ2 
min 

ω b ω c h A s × 10 9 n s 
∑ 

m ν [eV] w 

� 

fid 0.22445 0.1206 0.67 2.12605 0.96 0.06 −1 

Biased results � CDM � 0 . 0163 + 0 . 0016 
−0 . 0018 0.1098 ± 0.0046 0.616 ± 0.018 2 . 176 + 0 . 068 

−0 . 081 0.9948 ± 0.0071 – – 4972 
S( � ) [ σ ] 3.6 2.3 3.0 0.7 4.9 – –

+ m ν � 0 . 0160 + 0 . 0015 
−0 . 0018 0 . 1143 + 0 . 0044 

−0 . 0052 0 . 615 + 0 . 017 
−0 . 019 2.290 ± 0.082 0.9872 ± 0.0074 0.327 ± 0.043 – 4925 

S( � ) [ σ ] 3.8 1.3 3.0 2.0 3.7 6.2 –

wCDM � 0 . 0156 + 0 . 0013 
−0 . 0016 0.1014 ± 0.0039 0.600 ± 0.015 2 . 398 + 0 . 079 

−0 . 088 1.0494 ± 0.0096 – −0.886 ± 0.013 4912 
S( � ) [ σ ] 4.7 4.9 4.7 3.2 9.3 – 8.7 

Debiased results � CDM � 0 . 0233 + 0 . 0021 
−0 . 0031 0 . 1227 + 0 . 0053 

−0 . 0074 0 . 677 + 0 . 019 
−0 . 026 2.104 ± 0.078 0 . 9573 + 0 . 0088 

−0 . 0074 – – 4.02 
S( � ) [ σ ] 0.31 0.33 0.30 0.28 0.34 – –

+ m ν � 0 . 0235 + 0 . 0022 
−0 . 0032 0 . 1238 + 0 . 0055 

−0 . 0078 0 . 679 + 0 . 020 
−0 . 027 2.113 ± 0.091 0 . 9563 + 0 . 0094 

−0 . 0080 < 0.115 – 4.11 
S( � ) [ σ ] 0.39 0.46 0.39 0.15 0.41 0.50 –

wCDM � 0 . 0233 + 0 . 0021 
−0 . 0032 0 . 1228 + 0 . 0054 

−0 . 0078 0 . 677 + 0 . 019 
−0 . 027 2.103 ± 0.087 0 . 957 + 0 . 012 

−0 . 010 – −1 . 001 + 0 . 015 
−0 . 013 0.07 

S( � ) [ σ ] 0.30 0.31 0.29 0.27 0.28 – 0.07 
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hat deviates from the cosmological constant value ( w = −1). In
his case, the free parameter w is shifted from the fiducial value
y S = 8.7 σ , resulting in a significant detection of a non-standard
ehaviour, which is driven only by the use of the approximated C 

Ap 
� 

n the parameter estimation pipeline. Also in these extended cases, 
he estimated values of the standard cosmological parameters are 
hifted with respect to the fiducial ones. This highlights how these 
imple extensions alone are not able to mimic the C 

Ex 
� spectra, as

hifts in the values of the standard parameters are also necessary 
or fitting the C 

Ex 
� to the data when C 

Ap 
� are being used. The new

egeneracies introduced by extensions of the � CDM model explain 
he changes in values of S with respect to the standard model. 

We also show in Table 3 the minimum value of the �χ2 found by
nalysing the posterior distribution reconstructed with the MCMC 

 �χ2 
min ). The decrease in the values of �χ2 

min for the extended models
ith respect to � CDM shows that a false detection of the extensions

llows the approximated spectra to be in better agreement with the 
ata. Ho we ver, gi ven that we expect from equation (24) to obtain
 �χ2 

min close to zero if the theoretical spectra match the data, the
 alues sho wn in Table 3 highlight ho w e ven these significant shifts
n the C 

Ap 
� spectra are not able to reproduce the cosmology used

o generate the data. Notice that here we are not suggesting that
he reduction in �χ2 

min is pointing towards a statistical preference 
or one model o v er the other; such a comparison would require
sing Bayesian model comparison techniques also accounting for the 
umber of free parameters of a giv en model. Moreo v er, the �χ2 

min 
alues are estimates that might be slightly different from the real 
inimum value, as it is not guaranteed that the MCMC is able to

erfectly sample the peak point in the parameter space. Thus, with 
uch small differences between different models, a more accurate 
omputation of �χ2 

min would be needed if one wanted to perform 

odel comparison. 
In Fig. 5 , we show the 68 per cent and 95 per cent confidence level

ontours on a few representative parameters for the cases described 
bo v e. The colour-filled contours show the results of the analysis
erformed with C 

Ap 
� , highlighting the deviation of the estimated 

alues of the parameters from the fiducial values (shown with black 
ashed lines). The empty contours instead show the results obtained 
hen the debiasing term described in Section 5.1 is added to the

pectra, which are then compared to the mock data set. These results
ho w ho w the method we propose is able to debias the results and
ow it allows us to reco v er the correct values for the parameters,
or both the standard � CDM cosmology and its extensions, thus
 v oiding false detections of non-standard cosmologies and improving 
he goodness of fit with a χ2 now of O(1). 

In order to see in more detail the biasing effect of the approxi-
ations included in the C 

Ap 
� , we show in Fig. 6 the impact of the

iases on the angular power spectra for a representative redshift bin
utocorrelation, highlighting how the approximated C 

Ap 
� spectrum 

green) significantly departs from the expected C 

Ex 
� spectrum (black) 

hen the fiducial values of the cosmological parameters are used 
o obtain both. We also include, with a red dashed curve, the
 

Ap 
� spectrum obtained using the biased values of the cosmological 
arameters reported in Table 3 , showing how in this case the C 

Ap 
� 

t the shifted best-fitting cosmology are better able to reproduce the
ducial C 

Ex 
� , thus producing a better fit to the data. 

While in Fig. 5 we only show a sub-set of the free parameters of
ur models, the debiasing procedure is ef fecti ve for all cosmological
arameters. In Fig. 7 , we show the constraints obtained on all the
ree parameters of our � CDM analysis, obtained by both comparing
he C 

Ap 
� to the mock data set (red, filled contours) and applying the

ebiasing method of Section 5.1, using the debiasing term computed 
t both the fiducial values, α( � 

fid ) (yellow, filled contours), and the
eak values found in Section 5.2, α( � 

peak ) (purple, empty contours).
e notice how in the first case all the parameters are shifted with

espect to their expected values, with the most significant shifts on n s ,
 b , and h , while when we apply the debiasing approach the fiducial
alues are reco v ered for all the parameters, with no significant
ifferences between the two cases of α( � 

fid ) and α( � 

peak ). Even
hough the results shown in Fig. 7 correspond to the � CDM model,
hey are qualitatively similar for all the considered cosmologies. 

The posterior probability distributions of the parameters reco v ered 
fter debiasing the MCMC results do not necessarily coincide with 
hose that would be obtained by a full analysis. We can, ho we ver,
onsider these as reasonable estimates, as Fig. 4 shows that the
ebiasing term does not depend strongly on the � 

0 point at which
t is computed, as long as α( � 

0 ) is sufficiently close to � 

fid . Thus,
ather than computing α( � 

0 ) at each point in the parameter space,
e can approximate α( � 

0 ) with α( � 

peak ) (or α( � 

fid ) in the case of
he results shown here). This applies only in the vicinity of the peak
MNRAS 510, 1964–1977 (2022) 
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Figure 5. 68 per cent and 95 per cent confidence level contours obtained by fitting the approximated C 

Ap 
� spectra to the data set built using the exact C 

Ex 
� 

spectra (colour-filled contours). The violet contours show the result when a � CDM model is assumed, while the green and orange contours correspond instead 
to � CDM + m ν and wCDM cosmologies, respectively. The empty contours show the results of the analysis when the debiasing term described in Section 5.1 is 
included. The black dashed lines show the fiducial values of the cosmological parameters. 
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� (green solid curve) obtained assuming the fiducial values 

for the cosmological parameters. The red dashed curve shows the C 
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� 

obtained for the biased parameter estimation of Table 3 . The grey area shows 
the errors corresponding to the experimental setup used throughout the paper. 
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approximated spectra C 

Ap 
� are used to fit the model to the mock data set. 

The yellow, filled contours show the results obtained when the debiasing 
term α( � 

fid ) is included, and the purple, empty contours correspond to the 
debiasing term α( � 

peak ) computed at the estimated maximum likelihood 
point � 

peak . 
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f the distribution, and the estimation of the tails suffers from an
rror that propagates into the confidence intervals shown in Figs 5
nd 7 . We leave a quantification of this error for future work. 

.2 Primordial non-Gaussianity 

n this sub-section, we focus on the results when f NL is included as
 free parameter, thus allowing for a non-vanishing local primordial
on-Gaussianity; this affects the galaxy clustering spectra through
he scale-dependent bias as described in Section 4.2. As a first case,
e use the same experimental setup we used in Section 6.1, and
se the standard expression of equation (22) for our theoretical
redictions for the scale-dependent bias. In this case, which we
efer to as ‘baseline’, when we analyse the mock data set using the
pproximated C 

Ap 
� we find results that are similar to the � CDM case

f Section 6.1, with approximately the same shifts for the standard
arameters and no bias for f NL (see Table 4 ). This may seem to be a
urprising result, as the impact of f NL on the theoretical predictions is
ignificant at very large scales (see Fig. 3 ), where the approximations
ncluded in C 

Ap 
� fail. One would therefore expect that a biased value
NRAS 510, 1964–1977 (2022) 
or this parameter would help with fitting the C 

Ex 
� spectra of the

ock data set, and that a false non-vanishing f NL would be detected.
o we ver, gi ven equation (22) that we rely upon, the scale-dependent
ias depends not only on f NL , but also on the b lin − 1 factor. As shown
n Fig. 2 and discussed in Section 4.2, our choice of the linear galaxy
ias implies that b lin − 1 changes sign at z ≈ 0.75; the impact of
 NL on the C 

Ap 
� spectra is therefore the opposite for the redshift bins

eyond this redshift threshold with respect to the lower redshift ones.
uch an effect leads to a cancellation of the impact of the primordial
on-Gaussianity on the goodness of fit, and therefore the standard
ase of f NL = 0 is still preferred. 

In order to ensure that this indeed is the reason for the lack of shift
n the reco v ered f NL value, we run our parameter estimation pipeline

art/stab3578_f5.eps
art/stab3578_f6.eps
art/stab3578_f7.eps
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T able 4. T op table: marginalized constraints on the sampled parameters � and values of the shift estimator S ( � ) obtained by analysing the fiducial data set with 
the approximated C 

Ap 
� spectra for the three cases of � CDM + f NL considered in the present work. Bottom table: same as the top one, but applying the debiasing 

term α( � 

fid ) to the theoretical predictions that are then compared with the data. 

Cosmological parameters �χ2 
min 

ω b ω c h A s × 10 9 n s f NL 

� 

fid 0.224 45 0.1206 0.67 2.12605 0.96 0 

Biased results baseline � 0 . 0164 + 0 . 0016 
−0 . 0019 0 . 1101 + 0 . 0044 

−0 . 0050 0.617 ± 0.018 2.170 ± 0.077 0.9945 ± 0.0070 −0.8 ± 3.9 4985 
S( � ) [ σ ] 3.4 2.2 2.9 0.6 4.9 0.2 

z cut � 0 . 0219 + 0 . 0024 
−0 . 0035 0 . 1300 + 0 . 0064 

−0 . 0089 0 . 679 + 0 . 023 
−0 . 031 1.839 ± 0.084 0 . 9955 + 0 . 0093 

−0 . 0081 −85 + 13 
−12 1175 

S( � ) [ σ ] 0.2 1.2 0.3 3.4 4.0 6.9 

p = 0.5 � 0 . 0169 + 0 . 0017 
−0 . 0021 0 . 1143 + 0 . 0048 

−0 . 0056 0.620 ± 0.020 2.069 ± 0.077 1.0047 ± 0.0075 66.5 ± 7.2 4755 
S( � ) [ σ ] 2.9 1.2 2.6 0.7 6.0 9.2 

Debiased results baseline � 0 . 0235 + 0 . 0022 
−0 . 0033 0 . 1230 + 0 . 0054 

−0 . 0079 0 . 678 + 0 . 020 
−0 . 028 2 . 101 + 0 . 087 

−0 . 077 0 . 9573 + 0 . 0086 
−0 . 0076 0 ± 10 17.8 

S( � ) [ σ ] 0.34 0.35 0.33 0.30 0.33 0.04 

z cut � 0 . 0235 + 0 . 0025 
−0 . 0038 0 . 1232 + 0 . 0063 

−0 . 0091 0 . 679 + 0 . 023 
−0 . 032 2.101 ± 0.096 0 . 9573 + 0 . 0094 

−0 . 0083 −1 ± 12 17.9 
S( � ) [ σ ] 0.31 0.32 0.30 0.26 0.30 0.11 

p = 0.5 � 0 . 0234 + 0 . 0022 
−0 . 0033 0 . 1229 + 0 . 0055 

−0 . 0080 0 . 678 + 0 . 020 
−0 . 028 2 . 103 + 0 . 088 

−0 . 079 0 . 9575 + 0 . 0088 
−0 . 0077 0.1 ± 5.5 17.9 

S( � ) [ σ ] 0.31 0.32 0.30 0.27 0.30 0.03 
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Figure 8. 68 per cent and 95 per cent confidence level contours obtained 
by fitting the approximated C 

Ap 
� spectra, with a free f NL parameter, to the 

data set built using the exact C 

Ex 
� spectra (colour-filled contours). The red 

and yellow contours show the results obtained with the scale-dependent bias 
of equation (22), with our baseline settings and with removing the last two 
redshift bins, respectively. The violet contour shows instead the case where 
the scale-dependent bias is computed following equation (23) with p = 0.5. 
The empty contours show the results of the analysis when the debiasing term 

described in Section 5.1 is included. The black dashed lines show the values 
of the fiducial cosmological parameters. 
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y removing the redshift bins above z ≈ 0.75. We refer to this case
s ‘ z cut’. The results are shown in Table 4 , where it can be seen
ow removing the higher redshift bins eliminates the cancellation 
ffect described abo v e; now we find significant biases on f NL and A s ,
ith S ( f NL ) = 6.9 σ and S ( A s ) = 3.4 σ , respectively, for the shifts with

espect to the fiducial values. The shifts on the other free parameters
re reduced with respect to the baseline case. The combined effect 
f f NL and A s allows the C 

Ap 
� to fit the mock data set, as the global

ffect is boosting the power spectra at large scales. 
On the other hand, as we discussed in Section 4.2, the modulating

actor b lin ( z) − 1 in equation (22) is not the only possibility for
escribing the scale-dependent bias. We have repeated our analysis, 
ollowing the more general equation (23), by setting p = 0.5, which
nsures that the b lin ( z) − p factor does not change sign in our redshift
ange, given our choice of the linear galaxy bias. In the last two
olumns of Table 4 we report the results we find in this case, where
e see again a significant false detection of a non-vanishing f NL , with
 ( f NL ) = 9.2 σ , while the other parameters are less shifted from their
ducial values compared to the baseline case, with the exception of
 s . In Fig. 8 , we also notice how the shift on f NL has an opposite sign
n this p = 0.5 case with respect to the z cut case, where the analysis
refers a ne gativ e value of f NL . This is due to the fact that the b lin −
 factor is now always positive, and one needs an f NL > 0 in order
o achieve the boost in the C 

Ap 
� needed to fit the model to the mock

ata set. 
Finally, we apply the debiasing procedure of Section 5.1 to the

hree cases described and show the results in Fig. 8 . As the figure
hows, applying the debiasing correction allows us to reco v er a
anishing f NL . The debiased contours are different from each other
ere, which was not the case in Section 6.1; this is due to the different
trategies applied to account for the effects of f NL in our analysis. 

 C O N C L U S I O N S  

he continual impro v ement in galaxy surv e ys will soon unlock
he largest scales in the sky for cosmological studies. While the
xpected angular correlations at smaller scales are well understood 
nd efficiently modelled (up to the non-linear regime), calculations 
f power spectra commonly make use of approximations aimed 
t reducing the computational efforts needed to obtain theoretical 
redictions of the spectra. This is a necessary requirement for such
alculations if one wants to exploit MCMC methods for performing 
arameter estimation analyses. Such approximations, ho we ver, break 
own at very large scales, where effects including lensing, galaxy 
elocities, and relativistic corrections become relevant. 

In this paper, we hav e inv estigated the impact of approximations
hat neglect such large-scale effects on a parameter estimation 
nalysis. We have produced a mock data set for a next-generation
urv e y, with specifications based on those envisaged for the SKAO,
hich will be able to explore the angular correlation of galaxies at
ery large scales through the full treatment described in Section 2.1.
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e have then analysed this data set by applying the commonly
sed approximations described in Section 2.2, where the large-scale
orrections due to lensing, velocities, and relativistic effects have
een neglected, and the Limber approximation has been employed.
e have found that this analysis produces significantly biased results,
ith parameter estimates being shifted up to ∼5 σ when assuming a
inimal 5-parameter � CDM cosmology, and with false detections

f non-standard cosmologies when simple extensions of the standard
odel are considered. 
We have also explored the impact of the approximations on a
ore complex extension of the � CDM model, where we have

llowed for a non-vanishing local primordial non-Gaussianity by
ncluding f NL as a free parameter in our analysis. This contributes to
 scale-dependent term to the galaxy bias which is rele v ant at large
cales. We expected estimates of this parameter to be significantly
iased, as a non-zero f NL would help the approximated spectra to
imic those used in creating the data set. Ho we v er, we hav e found

hat in our baseline setting, such an effect cannot be seen due to
 cancellation between the low- and high-redshift bins. Given our
hoice of the linear galaxy bias (see Section 3), the commonly used
cale-dependent term changes sign at z ≈ 0.75 and therefore the
ffect of a non-vanishing f NL on the o v erall goodness of fit cancels
ut between low- and high-redshift bins. We have confirmed this
xplanation by cutting out all bins at z > 0.75, and we have found,
ith this setting, a significant false detection of a non-vanishing and
e gativ e f NL . We have also performed our analysis for a case where
he scale-dependent piece of the bias depends differently on the linear
ias term (equation 23). We have found in this case a 9.2 σ shift in the
stimated value of f NL , opposite in sign with respect to the previous
ase, highlighting how different modellings of the scale-dependent
erm can affect the final results. 

In this work, not only have we assessed the impact of the
pproximations on the estimation of cosmological parameters, but
e have also proposed a simple method to obtain debiased results that

an approximate those that one would obtain by taking into account
ll the effects. We have described this method in Section 5.1 and
ointed out how the computation of the debiasing term α( � 

0 ) does
ot depend strongly on the choice of the parameter set � 

0 where the
omputation is performed, as long as it is close to the true cosmology.
ndeed, our advantage in using this method relies on the fact that, in
ur forecasts, the fiducial cosmology has been kno wn. Ho we ver, we
ave pointed out that in a realistic setting, with an unknown fiducial
osmology, one could rely on minimization algorithms to identify the
est-fitting point in the parameter space. Such a minimization would
e significantly less computationally e xpensiv e than a full parameter
stimation pipeline and could therefore be performed using the exact
pectra. We have tested the feasibility of such an approach, and
e found in Section 5.2 that the debiased cosmological parameter

onstraints found using an estimate for the peak of the multi v ariate
istribution are almost exactly the same as those found using the
ducial point. Thus, this method can be applied to real data, where

he fiducial point is unknown. 
We have applied the debiasing method to all the cases we have

nvestigated, and we have found that it indeed allows us to reco v er
he expected values for the free parameters of our analyses. This

ethod could therefore be used in real data analysis when unexpected
etections of non-standard behaviour are seen. Additionally, while
ot providing a fully correct parameter estimation, our method
llows one to obtain accurate values for cosmological parameters and
stimates of their corresponding posterior probability distributions.

hile the reco v ered distributions are reasonable estimates of the ones
 B  

NRAS 510, 1964–1977 (2022) 
btained through a full analysis, we leave a quantitative assessment
f the errors on their shapes for future work. 
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