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ABSTRACT
The study explored the impact of Land Use and Land Cover
(LULC) change dynamics in relation to the condition and status of
an unprotected wetland located in the arid-tropical parts of the
Limpopo Province, South Africa. The long-term Landsat archival
data series was used to map and quantify the impacts of LULC
change on the wetland over a period of 36 years (1983–2019). A
multi-source satellite image analysis was performed, using the
support vector machine (SVM) algorithm and advanced spatially-
explicit geographic information system tools. Landsat data series
covering the entire study area was used to assess, map and moni-
tor LULC change that occurred over-time. Post-classification maps
for the Maungani wetland area were analysed to provide a quan-
titative assessment and a detailed overview of the rate of change.
The generated wetland detection maps for four temporal phases
(i.e., 1983–1992, 1992–2001, 2002–2010) were analysed. This study
found that the spatial extent of the wetland area declined
severely during the period under study with 728 300ha. The find-
ings of this work provide critical insights and baseline information
about the state of unprotected wetlands in the rural parts. This
information is useful for the development of tailor-made wetland
management strategies and a possible rehabilitation framework
for unprotected wetland ecosystems.
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1. Introduction

Most wetlands are located adjacent to Lakes or fountains and are characterised by hydric
soils that experience wet saturation conditions, either during the rainy season, and all
year round (Adeli et al. 2020; Tiner et al. 2015). Although wetlands occupy approximately
6% of the earth’s surface, they are among the most productive and ecologically diverse
ecosystems globally. In their natural condition, wetlands support many environmental and
socio-economic services to the neighbouring communities, which are, to some extent,
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largely controlled by the variations in inundation and soil saturation patterns (Dubeau
et al. 2017; Thamaga et al. 2021). These ecosystems play a critical role by controlling
floods, moderating micro-climates, maintaining and improving the water quality and pro-
tecting against erosion (Calhoun et al. 2017; Chandler et al. 2017; Materu et al. 2018). In
sub-Saharan Africa, wetlands provide a basis for human livelihoods of many communities
living around these ecosystems (Horwitz and Finlayson 2011; Rebelo et al. 2010). For
example, communities around the Yala Swamp in Western Kenya were found to depend
on it for drinking, cooking and washing, while 86% of the population relied on it for the
building materials that are gathered from the wetland, such as clay, sand, wood and
papyrus (Schuyt 2005). It was noted that in areas with a strong seasonal and interannual
hydro-climatic variability, wetland inundation provides suitable conditions for perennial
crop production particularly in arid-tropical environments. Most arid-tropical regions
experience erratic rainfall patterns, which lead to crop failure, and hence, there has been a
shift towards the utilisation of wetlands, which are characterised by fertile soils and opti-
mal moisture conditions for the sustenance of rural livelihoods.

Despite these benefits, wetlands in the arid-tropical regions remain the most fragile
and frequently threatened ecosystems, by both natural and anthropogenic processes.
Natural processes, such as global warming, discharge patterns, precipitation changes and
extreme weather conditions expedite wetland degradation (Malak and Hilarides 2016;
Mohammadimanesh et al. 2018; Singh et al. 2016). In sub-Saharan Africa, for example,
the rising water scarcity, as well as prolonged and severe droughts, serve as major threats
to wetland ecosystems. Unprotected wetlands are increasingly vulnerable to changes in
the population patterns and are frequently affected by the LULC processes. The conver-
sion of wetlands to agricultural land threatens the eco-hydrological functions of wetlands,
particularly when large-scale drainage alterations occur (Chen et al. 2020;
Mohammadimanesh et al. 2018). According to Symeonakis and Drake (2004), the degrad-
ation of upland fields and the increasing change in rainfall due to climate variation,
pushes farmers to cultivate crops in wetland areas, where water is readily-available for
crop irrigation. The conversion of wetlands, particularly small wetlands, into agricultural
land and settlements, is expected to occur on flat terrains or in areas with a gentle slope,
as they are largely suitable for crop cultivation and the construction of infrastructure.
When land is transformed, small patches of wetlands are likely to disappear in the con-
verted area, depending on the rate of conversion. Siachalou et al. (2014) highlighted that
the conversion of land to agricultural fields and settlement spaces for development, limits
the geographical scale of wetland areas, while complicating their ecological functions. A
study conducted by Van Asselen et al. (2013) revealed that development, economic
growth and population density are the main causes of wetland transformation and the
most frequently observed factors that perpetuate the degradation process. This is consist-
ent with studies by Lambin and Meyfroidt (2010), Nkonya et al. (2016) and IPBES (2018),
who noted that the over-exploitation of natural resources and unregulated infrastructure
development placed much pressure on wetland ecosystems, due to the unsustainable util-
isation of wetland ecosystems, leading to a great loss of ecological functions. These threats
disrupt the ecohydrological stability of wetlands and have major consequences, such as an
increase in wetland degradation which contributes to the destruction of wetland ecosys-
tems. The rate of wetland degradation in arid-tropical areas therefore require accurate,
continuous and up-to-date information about the extent and status of the condition of
wetlands, particularly unprotected wetland systems, to help comprehend the spatio-tem-
poral pattern of the existing land use and land cover activities in the proximity of wet-
land systems.
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Details on the spatio-temporal extent of unprotected wetlands, as well as their status,
remain scanty, especially on a localised scale in Sub-Saharan Africa (Lee et al. 2001). As a
result, quantifying wetland conversion patterns and land cover classification, over a
smaller to a larger spatial scale is critical for understanding their distribution and health
status. Due to their remoteness, vastness, and their highly dynamic nature, field-based
measurements for the continuous monitoring of wetlands remain impractical, especially
in data-scarce environments. These methods are further costly, time-consuming, labour-
intensive and they lack spatial representation, given the size of the wetland (Adeli et al.
2020; Gallant 2015). Furthermore, Adam and Mutanga (2009) and Lin et al. (2018) have
indicated that sampling errors have proved to be a major drawback when collecting wet-
land data, commonly due to their inaccessible location. Therefore, given the inaccessibility
of in-situ wetland data, there is a pressing need to establish suitable and reliable tools that
have the appropriate spatial and temporal scales and monitoring capabilities.

Remote sensing remains the critical alternative tool for addressing the challenging task
involved with ground-based methods. It renders an operational, repeatable and integrated
mapping framework that screens the spatial degree and condition of wetlands across small
to larger landscapes (Lin et al. 2018). Remote sensing satellite imagery enables access to
the historical and up-to-date information that is needed to characterize wetland ecosys-
tems; it provides an inventory for monitoring and evaluating the impacts of LULC
changes on unprotected wetlands, and it is also a practical and cost-effective means of
doing so (Robertson et al. 2015). Satellite mapping helps to identify baseline information
on ecosystem health of wetlands, to diagnose the threats and pressures to wetlands, to
monitor any changes in their magnitude and state to inform enhanced decision-making
and management strategies.

Thus far, several studies have used various satellite datasets for wetland characteriza-
tion, as well as for monitoring, mapping and assessing the associated LULC changes over
time, at varying spatial and temporal resolutions (Lin et al. 2018; Munishi and Jewitt
2019). Satellite imagery, such as Landsat, ASTER, SPOT, AVHRR and MODIS, provide
long-term spatial data archives for ecological assessment, monitoring and management
purposes (Muavhi and Mavhungu 2020). These images have been used in various studies,
for example, on LULC change, wetland monitoring and extent mapping, biomass estima-
tion and mapping, soil moisture applications, inundation mapping and water level moni-
toring (Basu et al. 2021; Chatziantoniou et al. 2017; Connolly 2018; Ligate et al. 2018;
Mudereri et al., 2019; Munishi and Jewitt 2019; Slagter et al. 2020; Yirsaw et al. 2017),
amongst others. In the above-mentioned studies, several techniques such as maximum
likelihood, support vector machine, artificial neural network, CART, random forest,
object-based image analysis and decision tree were applied to assess wetland changes. On
the other hand, Mansaray et al. (2019) compared support vector machine and random
forest to map paddy rice in China. The results showed that SVM outperformed RF by
achieving overall classification accuracies of 90.80% and 89.20%. Goodin et al. (2015) used
Landsat 8 and SVM classifier to assess six land cover classes. The results obtained from
their study achieved a relative overall accuracy of 88%. In addition, Hettiarachchi et al.
(2015) used Landsat images to map wetland degradation, and the findings revealed that
urbanization, industrialization and the expansion of agriculture were the major threats
influencing wetland degradation. In contrast, Bassi et al. (2014) found that the loss of the
spatial extent of wetlands in India was due to the rapid population growth in the remote
areas. The performance of SVM in detecting and classifying wetlands achieved higher
accuracies and this provide an effective and promising method for identification and clas-
sification of small wetlands.

GEOCARTO INTERNATIONAL 3



In this study, we therefore hypothesized that, determining the past and present status
of unprotected wetlands could help and guide environmental managers in their efforts to
conserve wetland areas in a sustainable manner. Previous studies related to wetland moni-
toring, mapping and assessment have only focused on large wetlands that are designated
under the Ramsar Convention, and they neglect unprotected wetlands (non-Ramsar),
which are also of global importance. Thus, this study aimed at investigating the impacts
of LULC change dynamics on the condition and status of the unprotected Maungani wet-
land, using the Landsat data series, as well as geospatial techniques, such as statistical ana-
lysis and Support Vector Machines (SVM), and to measure the LULC changes that
affected the Maungani wetland during the 1983 to 2019 period (36 years). We therefore
assume that the findings of this study will enhance the capacity and knowledge of envir-
onmental managers, policymakers, and local governments, in order to minimize the
human footprint on unprotected wetlands in semi-arid tropical areas, particularly in sub-
Saharan Africa.

2. Materials and methods

2.1. Study area description

The research was carried-out in Maungani wetland, which is found in the Luvumbu qua-
ternary catchment, Limpopo Province in South Africa. The wetland area is situated
between 30�26’300’ E, 22�59’050’ S and 30�25’450’ E, 22�58’450’ S (Figure 1) and occupies
an aerial extent of approximately 2 490 700 ha. The Maungani wetland lies adjacent to the
Dzindzi River, a tributary of Levuvhu River (Adekola, 2007). Rainfall and temperature are
influenced by the Soutpansberg Mountain range. Temperature of the region extends
among 18 �C and 37� C, with the mean annual precipitation ranging from 7mm to
642mm each year. Vegetation distribution is strongly influenced by altitudinal gradient,
with mixed vegetation types occurring on the highest elevations with Acacia-Themeda
bush on the plains. Several seasonal streams exist, and these quickly dry as the dry season
sets. The wetland is characterised by stamp lands, as well as marshy vegetation. Further, it
is dominated by Thelypteris interrupta, Phragmites australis and Eichinochloa pyramidalis

Figure 1. Map of the Maungani wetland in the Limpopo province of South Africa.
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plant species, amongst others. The main economic activities in the area are agriculture,
livestock rearing and small-scale farming activities. Maungani wetland is home to approxi-
mately 618 462 people living in the surrounding communities (STATSSA 2011). The
major land cover types in the selected study site include wetland vegetation, water, other
vegetation, built-up, agricultural land and bare land.

2.2. Field data collection

The data used in this study were collected from the 03rd–10th of October 2019 (Figure
1). This period was selected because of its suitability to detect, to discriminate, and there-
after to distinguish, the wetland from other vegetation species in the area. During the field
data collection, the Trimble hand-held Global Position Systems (GPS) at submeter accur-
acy were used to record LULC feature coordinates within the Maungani wetland. A total
of 350 sample points (50 per land cover class) were randomly collected, and they are
detailed in Table 1. In addition, these data were used to validate the LULC classification
and evaluate the precision of classified images. The sample locations of LULC were cre-
ated, using Hwath’s analysis in a GIS environment and they were then imported into the
Trimble GPS, in order to navigate us to the specified spots.

2.3. Satellite image acquisition and pre-processing

Field data that coincide with remote sensing satellite data (Landsat 5 TM and 8 OLI: see
Table 2) were attained and used to investigate the LULC, as well as change dynamics of
the Maungani wetland for 36-years. Landsat satellite images were selected because they
have sufficient long archival data, they are freely accessible and because of their reported
performance in other land cover classifications and wetland analysis studies (Fashae et al.
2020; Jin et al. 2017). For this study, five scenes of cloudless Landsat 5 TM and one
Landsat 8 OLI satellite imagery time-series data, dating from 1983 to 2019, with 9-year
intervals, covered the study area, and they were acquired from the United States
Geological Survey (USGS) data portal (http://glovis.usgs.gov).

Preceding to the classification process, Landsat images were imported into the ENVI
software (Harris Geospatial Solutions, Herndon, VA, USA, version 5.3). The Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercube (FLAASH) radiative transfer model for

Table 1. Description of LULC types identified and used in the study.

LULC class Description of LULC classes

Agriculture Agricultural or cultivated lands and farmlands.
Built-up Built-up comprises all developed land, including

residential, commercial, and socio-economic
infrastructure.

Bare land This is the area without or with little vegetation cover.
Forest Land covered with relatively tall tree with at least 20%

canopy mainly dominated by shrub lands,
forest nursery.

Other vegetation Mixed grassland, vegetation lands, vegetation on
customary land. This class also consist of
unmanaged land areas that are not characterised in
any of the above classes.

Water River, streams, and waterbodies.
Wetland Area is covered with by water and hydrophytic

vegetation in either rivers, streams, lakes,
or catchments.
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atmospheric corrections was applied to images during the study period to remove impur-
ities (Mushore et al. 2016). Images were orthorectified and geometrically corrected by
using ground control points (GCPs). Selected bands from Landsat images (Tables 3 and
4) were also used. Bands: 1 (coastal aerosol), 6 and 7 (thermal band), 9 (water vapour), 8
(panchromatic), 9 (SWIR – cirrus), 10 (LWIR-1) and 11 (LWIR-2) were excluded from
the analysis, due to their spatial resolution (60 and 120m) and their relevance relating to
the detection of atmospheric features (Drusch et al. 2012; Hagolle et al. 2015). The spec-
tral bands have been considered to be inapplicable in vegetation monitoring (Immitzer
et al. 2016). The Blue, Green, Red, NIR and SWIR 1 and 2 bands were used in this study.

3.4. Image classification

The Support Vector Machine (SVM) classifier embedded in ENVI 5.3 was used to assess
the impacts of LULC changes affecting the Maungani wetland for the years 1983, 1992,
2001, 2010 and 2019. The SVM is a supervised, non-parametric statistical machine learn-
ing technique that has been shown to be suitable for image classification challenges with
larger dimensionality (Licciardi et al. 2009). Comparative studies assessed the performance
of supervised classifiers and found that SVM classifier produced higher accuracy results
than other supervised classifiers such as Maximum Likelihood, Mahalanobis Distance,
Minimum Distance, Spectral Angle mapper, Random Forest (Jia et al. 2014; Muavhi
2020). The SVM Classifier appear to be advantageous in the presence of heterogeneous
classes for which only few training data are used than other machine learning classifiers
which require additional training dataset as the input dimensionality increases (Muavhi
2020; Yu et al. 2013). It locates the optimal hyper-plane between two classes to separate
them in a new high-dimensional feature space by taking into account only the training
samples that lie on the margin of the class distributions known as support vectors. The
SVM, is a method produced to solve pattern recognition and nonlinear function estimat-
ing problem (Sahu et al. 2015). SVM was implemented using the Radial Basis Function
(RBF) kernel characterised by default gamma of 0.33, penalty parameter of 100.00, pyra-
mid level was set at 0 and classification probability threshold was also 0. Although its per-
formance was tested on large scale mapping, using SVM in this study will provide a clear
view on the rate of small wetland status.

2.5. Classification accuracy assessment

The derived LULC change maps for the years 1983, 1992, 2001, 2010 and 2019 were
assessed for classification accuracy assessment. The field data samples were divided into
70% training (245 points) and 30% testing (105 points). The principle behind separating
data into 70%/30% is because they represented a large training data set, while the remain-
ing data was preserved to compute accuracy statistics (Adelabu et al. 2014; Adjorlolo
et al. 2013). An error matrix was used to assess the accuracy of the classification process
(the overall, user and producer accuracy) relative to the reference data. Further, the error

Table 2. Details of acquired satellite data.

Satellite Sensor ID Date Image acquisition Source

Landsat 4 TM 1983 LT04_L1TP_169076_19830903_20170220_01 USGS website
Landsat 5 TM 1992 LT05_L1TP_169076_19921030_20170120_01 USGS website

TM 2001 LT05_L1TP_169076_20010917_20161210_01 USGS website
TM 2010 LT05_L1TP_169076_20101106_20161015_01 USGS website

Landsat 8 OLI 2019 LC08_L1TP_169076_201911005_20200110_01 USGS website
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matrix provided a comprehensive evaluation of the agreement, omission and commission
amongst the classification results and training data, with evidence on how the classifica-
tion errors occurred (Pontius and Millones 2011).

2.6. Change detection analysis and post classification

Existing LULC classes occupying Maungani wetland were evaluated for the study period
and expressed it as the amount of the entire study area. This empowered the assessment
and estimation of the LULC changes, within the timeframe between 1983–1992,
1992–2001, 2001–2010, 2010–2019 and 1983–2019. The post classification comparison was
used as the change detection technique. This approach is a comparative analysis of satel-
lite images belonging to different times classified as independently from each other.
Advantage of this method is that it gives information about the magnitude and direction
of change. Although both images come from the same sensor, spectral differences are
expected to occur in the same LULC classes due to changes in atmospheric conditions,
sun angle, etc. even if the time interval is very small in multi-time data (Munyati 2000).
Based on the post classification comparison technique, the change is identified based on
pixel-by-pixel basis by overlapping LULC maps belong to different dates obtained by the
classification technique. At the end of the process, the number of areas which have under-
gone change and which class has changed can be identified. Overall change detection
maps between 1983 and 2019 were produced to show the LULC conversion. This type of
analysis is very much useful in identifying the various changes in the LULC classes, such
as an increase in built-up and high rate of decrease in wetland extent. Figure 2 shows a
summarised methodological flowchart.

Table 3. 2015–2019 Landsat 8 OLI band specification used for 2019.

Band name Centre of electromagnetic region (m) GSD(m)

1. Coastal/Aerosol 0.433–0.453 30
2. Blue 0.452–0.512 30
3. Green 0.533–0.590 30
4. Red 0.636–0.673 30
5. NIR 0.851–1.879 30
6. SWIR 2 1 1.566–1.651 30
7. SWIR 2 2 2.107–2.294 30
8. Panchromatic 0.500–0.680 15
9. Cirrus 1.360–1.390 30
10. LWIR-1 10.6–11.2 100
11. LWIR-2 11.5–12.5 100
�NIR –Near Infra-red, SWIR – Shorter Wave Infrared, LWIR – Lower Wave Infrared. Six bands highlighted in bold
were used in the study for analysis.

Table 4. Landsat 5 TM band specification used for the year 1983 and 2010.

Band name Centre of electromagnetic region (m) GSD (m)

1. Blue 0.45–0.52 30
2. Green 0.52–0.60 30
3. Red 0.63–0.69 30
4. NIR 0.76–0.90 30
5. SWIR 2 1 1.55–1.75 30
6. SWIR 2 2 2.03–2.35 30
7. Thermal 10.40–12.50 120
�NIR – Near Infrared, SWIR – Shorter Wave Infrared. The bolded bands were used in the study and band that is not
written in bold is not used for analysis.
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Figure 2. Flow chart showing the methodology.
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3. Results

3.1. Satellite derived wetland LULC change (1983–2019)

Derived maps were produced, using SVM, in order to understand the rate of conversion
for the periods between 1983 and 2019 (see Figure 3). It was observed that in 1983 the
wetland, other vegetation, bare land and agriculture dominated the entire study area.
Wetland areas were found in all directions, other vegetation occupied the larger part in
the south, and agriculture occupied the western parts of the wetland. In 1992, a consider-
able portion of agriculture had been converted to forest. Although the wetland covered a
larger area in 2001, part of its areal extent was replaced mainly by vegetation or bush
encroachment. During 2010 and 2019, there was a sharp increase in the built-up area,
which replaced a large portion of the wetland area. In 2010, the area under agriculture
increased, when compared to the year 2002, particularly on the western side of the study
area. Overall, the maps showed a decline in wetland coverage, which was replaced by
built-up areas.

Figure 3. Spatial distributional pattern of identified LULC change maps for: (a) 1983, (b) 1992, (c) 2001, (d) 2010 and
(e) 2019.
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3.2. Spatio-temporal change analysis of wetland area overtime

The spatio-temporal change analysis of the wetland area has been presented in Figure 4
and Table 5. During the study period, five (5) thematic maps were derived by using the
SVM classifier to assess the change dynamics of the Maungani wetland area for the years
1983, 1992, 2001, 2010 and 2019. This wetland experienced significant change due to
anthropogenic activities. In the year 1983, the wetland was the dominant land feature
type, covering 43.10% (10 734 900 ha) of the total area, followed by other vegetation that
covered 668 400 ha (26.84%). It was also observed that in the western part of the study
site, agricultural land occupied an area of about 201 900 ha (8.11%), and in the eastern
part, the concentration of built-up areas was 79 100 ha (3.17%). It can be observed from
the map that the wetland area decreased by 108 200 ha, to 965 300 ha (38.76%), in 1992,
when compared with areal coverage in 1983. Overall, there was an increase in areas with
vegetation, in bare land and built-up areas, which covered an area of 680 400 ha (27.32%),
286 800 ha (11.52%) and 90 100 ha (3.62%), respectively. On average, the wetland shrunk
greatly, with much of the area being replaced by bushy vegetation (27.32%) in the south
towards the eastern part of the study site and bare land (13.97%). It was observed that
more than 50% of the wetland area was lost to other land cover classes from 2001, with
944 100 ha (37.90%) of the wetland remaining. Other vegetation covered 685 100 ha,
mainly in the east and south of the study site (27.51%), with bare land covering 389
300 ha (15.63%) and a consistent increase in built-up areas, which occupied approximately
121 400 ha (8.87%) of the wetland. In the year 2010, the wetland area remained at 750
900 ha (30.15%), with an increase in the vegetation and built-up areas occupying major
parts of the wetland, with an aerial extent of 511 700 ha (20.54%) and 402 000 ha
(16.14%), respectively. In addition, during the year 2019, the results revealed that the wet-
land was impacted by other LULC changes. Only 345 100 ha (13.85%) of the wetland
remained unaffected. When compared to the year 1983, the Maungani wetland lost
approximately 728 300 ha in 2019. This observation was further confirmed by the results
in Figure 4, which show the trends of the wetland change and other LULC changes that
occurred within the study area. The overall classification during the study period
(1983–2019) showed that the wetland area lost 728 300 ha of its spatial extent to
vegetation covered areas with 375 400 ha (15.07%), and built-up areas with 934
300 ha (37.51%).

3.3. Accuracy assessment derived from thematic maps

Based on ground-truth data and Google Earth imagery, the derived satellite images of the
wetland area were validated. Between 1983 and 2019, the SVM classifier achieved higher

Figure 4. Time series variation of LULC change and wetland dynamics from 1983 to 2019.
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overall classification accuracies, ranging from 77.55% to 92.24% (see Table 6). During the
years 1983, 1992, 2001, 2010 and 2019, the overall classification accuracies achieved were
87.76%, 77.55%, 92.24%, 91.43% and 83.67%, respectively, which indicate that there was
agreement between the reality on the ground and the satellite-derived images. However,

Table 5. Summary of LULC areal coverage between 1983 and 2019 (area in ha).

LULC types

Total change in area

1983 1992 2001 2010 2019

Area % Area % Area % Area % Area %

Agriculture 201 900 8.11 286 800 11.51 175 100 7.03 406 400 16.32 373 700 15
Bareland 352 100 14.13 348 100 13.98 389 300 15.63 207 000 8.31 289 000 11.60
Built up 79 100 3.17 90 100 3.62 121 400 8.87 402 000 16.14 934 300 37.51
Forest 115 800 4.65 115 000 4.62 153 700 6.17 208 800 8.38 171 400 6.89
Other vegetation 668 400 26.84 680 400 27.32 685 100 27.51 511 700 20.54 375 400 15.07
Water 100 0.0004 5 000 0.20 22 100 0.89 40 400 0.16 18 900 0.08
Wetland 1 073 500 43.10 965 300 38.75 944 100 37.90 750 900 30.15 345 100 13.85

Figure 5. Commission, omission error depicted in (a) 1983, (b) 1992, (c) 2001, (d) 2010 and (e) 2019.
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in this study, the accuracies of the producers and users generating LULC maps were satis-
factory and ranged from 42.86% to 100%, respectively. The commission, agreement, and
omission errors (see Figure 5) were found to be the lowest for the year 2001 and ranged
between 0% and 3%.

Table 6: Derived LULC classification accuracies: Overall accuracy (OA), Producer accuracy (PA) and User accuracy
(UA) between the year (a) 1983, (b) 1992, (c) 2001, (d) 2010 and (e) 2019.

1983 [a] Agriculture Bareland Forest Other vegetation Water Wetland built up Total UA (%)

Agriculture 23 0 1 0 0 11 0 35 65.71
Bareland 0 35 0 0 0 0 0 35 100
Forest 0 0 31 0 4 0 0 35 88.57
Other vegetation 0 0 0 32 0 2 1 35 91.43
Water 0 0 0 0 35 0 0 35 100
Wetland 5 0 0 0 0 30 0 35 85.71
built up 0 2 0 2 2 0 29 35 82.86
Total 28 37 32 34 41 43 30 245 87.76
PA (%) 82.14 94.59 96.88 94.12 85.37 69.77 96.67

1992 [b] Agriculture Bareland Built up Forest Other vegetation Water Wetland Total UA (%)

Agriculture 24 0 0 2 1 3 5 35 68.57
Bareland 0 32 0 0 3 0 0 35 91.43
Built up 0 8 24 0 3 0 0 35 68.57
Forest 4 0 0 29 0 2 0 35 82.86
Other vegetation 0 0 2 0 32 0 1 35 91.43
Water 0 1 0 4 0 26 4 35 74.29
Wetland 4 0 0 0 1 7 23 35 65.71
Total 32 41 26 35 40 38 33 245 77.55
PA (%) 75 78.05 92.31 82.86 80 68.42 69.79

2001 [c] Agriculture Bareland Built up Forest Other vegetation Water Wetland Total UA (%)

Agriculture 31 0 0 4 0 0 0 35 88.57
Bareland 0 34 0 0 0 0 1 35 97.14
Built up 0 0 34 0 1 0 0 35 97.14
Forest 2 0 0 28 0 5 0 35 80
Other vegetation 0 0 0 0 35 0 0 35 100
Water 0 0 0 1 0 34 0 35 97.14
Wetland 1 0 0 0 4 0 30 35 85.71
Total 34 34 34 33 40 39 31 245 92.24
PA (%) 91.18 100 100 84.85 87.50 87.18 96.77

2010 [d] Agriculture Bareland Built up Forest Water Wetland Other vegetation Total UA (%)

Agriculture 34 0 0 0 0 1 0 35 97.14
Bareland 0 31 0 1 1 0 2 35 88.57
Built up 0 3 32 0 0 0 0 35 91.43
Forest 0 0 0 35 0 0 0 35 100
Water 0 0 0 1 34 0 0 35 97.14
Wetland 1 1 0 0 0 30 3 35 85.71
Other vegetation 0 0 0 0 0 7 28 35 80
Total 35 35 32 37 35 38 33 245 91.43
PA (%) 97.14 88.57 100 94.59 97.14 78.95 84.85

2019 [e] Agriculture Bareland Built up Forest Other Vegetation Water Wetland Total UA (%)

Agriculture 15 0 0 0 0 20 0 35 42.86
Bareland 0 32 0 0 3 0 0 35 91.43
Built up 0 2 30 1 1 1 0 35 85.71
Forest 0 0 0 32 0 3 0 35 91.43
Other Vegetation 0 0 0 0 35 0 0 35 100
Water 9 0 0 0 0 26 0 35 74.29
Wetland 0 0 0 0 0 0 35 35 100
Total 24 34 30 33 39 50 35 245 83.67
PA (%) 62.50 94.12 100 96.97 89.74 52 100
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3.4. Land use land cover change detection

The spatial information in Figure 6 and Table 7 for the period under study revealed that
both gains and losses occurred within the boundary of Maungani wetland boundary. The
net-changes, as a result of gains or losses for each LULC type between the years
1983–1992, 1992–2001, 2001–2010 and 2010–2019, are depicted in Figure 6. It was real-
ised that much of the wetland was lost (108 200 ha) between 1983 and 1991, while the
agriculture and built-up areas increased by 78 000 ha and 11 100 ha, respectively. Between
1991 and 2001, the agriculture and wetland areas lost 118 200 ha and 71 900 ha, respect-
ively, while the built-up areas (31 300 ha) and bare lands (41 200 ha) gained in their spa-
tial extent. Between 2001 and 2010, the wetland (193 200 ha), bare lands (173 400 ha) and
other vegetation (182 300 ha) lost the most spatial extent, whereas between 2001 and
2010, the built-up areas (280 600 ha) and agriculture (231 300 ha) gained a larger propor-
tion. Furthermore, the wetland (405 800 ha) and other vegetation (136 300 ha) suffered
the greatest declines between 2010 and 2019. The built-up and agricultural areas covered
an aerial extent of 532 400 ha and 82 000 ha, respectively. The wetland lost an aerial
extent of about 728 400 ha between 1983 and 2019. The built-up area was found to be the
most dominant feature class, occupying 855 300 ha of the total area. In the same period,
other vegetation (393 000 ha) lost its spatial coverage over the same time-frame, while
agriculture gained coverage by 171 800 ha and 855 300 ha, respectively.

Table 7. LULC change transition between land cover classes 1983 to 2019.

Initial state (1983)/
Final state (2019)

Transition of change between LULC classes

Agriculture Barelands Built up Forest Other vegetation Water Wetland

Agriculture 171 800 21 700 296 700 257 900 �294 700 373 700 �699 700
Bareland 87 100 �63 100 209 900 173 200 �379 500 288 900 �784 500
Built up 732 500 582 300 855 300 818 500 265 900 934300 �139 100
Forest �30 500 �180 700 92 300 55 600 �497 100 171400 �902 000
Other vegetation 173 500 23 300 296 300 259 600 �293 000 375400 �698 000
Water �2 000 �350 200 �77 200 �113 900 �666 500 11900 �1 071 500
Wetland 143 200 �69 800 266 000 229 300 �323 300 345100 �728 300

Figure 6. Total area and amount of LULC change (Net change: Gains/losses) on wetland area between 1983
and 2019.
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Table 7 demonstrates the percentage loss of wetlands to other LULC types between
1983 and 2019. The spatial extent of wetlands has experienced a massive modification,
compared to other LULC types, during the period of study. Over the period of 36 years,
728 300 ha of the wetland area was lost. The majority of the wetland was lost to 784
500 ha of built-up areas and 22.97% of agricultural land. The spatial extent of the
Maungani wetland has declined over the years, compared to other LULC types. In Figure
7, it can be observed that there has been a major transformation in the wetland between
1983 and 2019, due to the rapid population growth and anthropogenic activities. In
Figure 8, it can be observed that the wetland (2 550.19 ha), other vegetation (4 190.47 ha)

Figure 7. Overall land use land cover conversion during monitoring period (1983 to 2019).
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and bare land (1 949.67 ha) were largely converted to built-up areas. The LULC cover
transition replaced the wetland area, particularly in the low-lying areas. Pockets of wet-
land were also converted into other LULC classes.

4. Discussion

The present study investigated the impacts of LULC change dynamics on the unprotected
Maungani wetland, which is in the semi-arid tropical regions of the Limpopo Province,
South Africa. The freely available Landsat satellite data and Support Vector Machine
enabled the study of the wetlands and LULC changes between 1983 and 2019 (a 36-
year period).

4.1. Wetland dynamics in relation to other LULC changes between 1983 and 2019

The findings obtained from the study showed that the Maungani wetland has been sub-
jected to continuous decline over the last 36 years (1983–2019). The wetland shrunk by
74.94% between 1983 and 2019. On the other hand, the built-up areas continuously
expanded into the wetland area, and it was confirmed that 10.40% of wetland was lost to
these areas. The loss of wetland to built-up areas is mainly attributed to population
growth in the area, which increases demand for land for residential purposes or economic
development in the vicinity of Maungani. In agreement with the 2011 census data, the
national population, which includes the Maungani local community, was reported to have
increased to 51.8 million in 2011 (STATSSA 2011). Other studies have also shown that
the built-up areas are one of the major threats to unprotected wetland ecosystems. Wang
et al. (2012), for example, revealed that urbanisation and the influx of migrants have

Figure 8. Area of Maungani wetland ecosystem converted into other LULC between 1983 and 2019.
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resulted in a sharp decline in regional ecological land in China. The ecological value of
wetland ecosystems that occur in areas with a rapid population growth and economic
development is lower, as in the Maungani area; however, a similar effect has been
observed in other countries such as Ethiopia and Zimbabwe (Dubeau et al. 2017;
Marambanyika et al. 2017). As depicted by the 1983 image, the population growth rate
was low to the south and to the east of the wetland, when compared to high influx in the
built-up areas in 2019, which shows the influence of the rapid population growth.

On the other hand, the least areal coverage of wetland was converted to forest, bare
land and other vegetation, from 2000 to 2019, with 3.41%, 8.60% and 9.24%, respectively.
During the study period, it was also observed that there was a gradual increase in the
deterioration of the wetland near the built-up area south-east of it, when compared to
other areas of the study. The increase in infrastructural development in the built-up area
fuelled the loss of the spatial extent of the wetland. This is due to the flat terrain, because
when the wetland gets dry, people occupy and develop the land. The drying of the land is
associated with the decreased precipitation pattern and increased climatic conditions, as a
result of climate change, which puts pressure on the extent of the wetland. Furthermore,
human interference worsened the ecological condition of the Maungani wetland. Despite
the high loss of its spatial extent, the wetland gained 2.37% from other vegetation and
0.92% from water. The wetland lost its major cover and other land cover types, such as
water (37.08%), forest (33.99%), cultivated land (25.16%), as well as bare land (26.15%).
In 2015, it was observed that there was an increase in the development of settlements to
the south-east of the wetland, when compared to other portion of the study. Bare land
dominated the north-east of the study area and, in 2019, a large portion of this area was
converted to a built-up area. Urban development has a major influence on wetland
shrinkage. Similar trends were observed in other parts of the continent. Studies by Sithole
and Goredema (2013), Mhlanga et al. (2014) and Chikodzi and Mufori (2018) showed
that human activities transformed the wetland hydrology in parts of the Harare metropol-
itan district in Zimbabwe, reducing their spatial extent, as these ecosystems were replaced
by buildings or developments that affected the wetland retention, and eventually led to a
loss of habitat for the aquatic species. In South Africa, Phethi and Gumbo (2019) found
that poverty and population growth were the driving forces behind wetland mismanage-
ment. They revealed that the cultivation of crops, road construction and built-up develop-
ment, during the period from 1978 to 2004, were the main activities that contributed to
the deterioration of the Makhitha wetland, located in the Limpopo Province. Climate
change, built-up areas and agricultural activities were found to be the major factors that
replace the extent of wetlands.

4.2. Long-time wetland monitoring using Landsat data

Mapping the spatial patterns of wetland areas over time is critical for detecting and moni-
toring the LULC changes and for understanding their effects on the integrity and eco-
logical functioning of the wetland. The use of a freely accessible, accurate and reliable
remote sensing dataset i.e., Landsat, with a 30-m spatial resolution, has enabled the map-
ping of the spatial extent of LULC in unprotected wetlands that are surrounded by rural
communities. This will enable researchers and other wetland managers to investigate the
spatial transformation of wetland over particular time periods (i.e., 1983–2019). Our
approach supplements the wetland characterization systems that have demonstrated the
use of multi-temporal mapping of wetland areas for understanding the pattern of LULC
changes degrading wetland ecosystems (G�omez-Rodr�ıguez et al. 2010; Knight et al. 2013;
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Rover et al. 2011). Gabrielsen et al. (2016) employed a time-series approach in their ana-
lysis, which resulted in temporal wetland predictions regarding the probability of wetland
inundation, and it successfully characterises wetlands as ephemeral inclines. Their strategy
effectively used high- and moderate-resolution data to measure the likelihood of wetland
inundation and the prospect that wetlands may be wet over time. Multi-temporal
approaches derived by Gabrielsen et al. (2016) produced lower prediction errors of Rapid
Eye 3.1–15% and Landsat 0.3–1.5% in the Northern Great Plains of the USA.

The Landsat data series has shown its capabilities for depicting and accurately mapping
complex wetland areas and the surrounding LULC dynamics. The information depicted
by Landsat images is critical for aquatic and wetland management and decision-making,
especially in regions that have a restricted network system of field observation frameworks
in place (Thamaga and Dube 2019). The findings of this study are consistent with previ-
ous investigations, and they underscore the precision and strength of using Landsat data
for long-term mapping in wetland-related studies, LULC quantification, biomass estima-
tion, crop and fire mapping, aquatic plant species and urban development (Dube et al.
2018; Dube and Mutanga 2015; Rampheri et al. 2022). Jin et al. (2017) demonstrated the
unique strength and superiority of Landsat missions, as well as their practical viability in
accurately mapping, detecting and monitoring the spatio-temporal changes for wetland
assessment over-time. Although the imagery has been used in larger areas, particularly the
wetlands recognised by the Ramsar Convention (Mozumder and Tripathi 2014), its appli-
cation in small and unprotected wetlands serving the surrounding communities remains
limited and under-studied. This demonstrated the ability of Landsat to map wetland con-
ditions, using publicly available data, especially in data-scarce regions, such as in the
semi-arid tropical regions of the sub-Saharan Africa. In addition, this would greatly assist
in accurately deriving, monitoring, and reporting on the health condition and rate of deg-
radation of wetlands.

Although the study provides an insightful overview of the state of unprotected wet-
lands in the arid-tropical regions of sub-Saharan Africa, the understanding of these eco-
systems could be better depicted through the integration of multi-source data, including
the perceptions of indigenous communities as well as seasonal dynamics. In addition,
considering that wetland LULC characterisation was done by using broadband and spatial
resolution satellite data, some inherent changes could have been missed. The 30-m spatial
resolution of Landsat is associated with spectral mixing, which results in its poor discrim-
ination ability. In this regard, spatially explicit methodologies that focus on analysing
changes in the soil moisture, different types of vegetation or indices, as well high-reso-
lution data must be explored. More so, there is a need to include climatic and soil data,
so as to determine whether these changes are solely linked to anthropogenic activities. For
example, the study showed that there was also an increase in vegetation (bush encroach-
ment) in the wetland and that this may be due to climate variability and climate change
(Bhaga et al. 2020). A review study by Bhaga et al. (2020) demonstrated that climate vari-
ability and recurrent droughts have caused remarkable strain on water resources in most
regions across the globe, with the arid and semi-arid areas being the hardest hit and that
this is likely to have an effect on the wetland conditions. This assertion is further
strengthened by the work of Gxokwe et al. (2020), who noted that wetlands are degrading
at a rapid rate globally, due to the environmental changes. Lastly, it was assumed that the
provision of information on the accuracy of individual maps is likely to be insufficient,
and hence there is a need for further studies to consider accuracy assessment of land use
change, by using stratified estimation (Olofsson et al., 2023; Olofsson et al. 2014). Robust
and transparent statistical approaches for assessing accuracy and estimating the areas of
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change are critical for ensuring the integrity of land change information. It is therefore
imperative to adopt the holistic monitoring of wetlands, as well as an assessment frame-
work that includes climate and environmental data, etc., in the long-term mapping and
modelling of wetland changes and their possible degradation.

4.3. Implications for wetland conservation and LULC management

The complexities of wetland ecohydrological processes necessitate a profound interpret-
ation of LULC transition, as these changes influence the spatial extent of wetlands, their
diversity, the waterflow, and ultimately, the proliferation of alien plant species. According
to the findings of this study, the extent of the wetland ecosystem area is diminishing rap-
idly. This information provides the requisite baseline information required by environ-
mental and wetland managers to devise sustainable intervention measures and strategies
to curb the further deterioration of ecohydrological systems from the possible threats
emanating from both anthropogenic and natural causes. These necessitate responsive
management strategies to stop or reverse the rate of degradation or loss of wetlands, espe-
cially unprotected wetlands that have been overlooked in policy formulation. Increased
management strategies, with an emphasis on wetland rehabilitation and restoration, are
not backed up by adequate integrated data collection, reliable information and reviews.
Uncertainty over the previous policy outcomes for LULC change and wetlands, as well as
recent attempts to strengthen their protection, pose critical concerns about their ecological
significance. Ecosystem managers need to strengthen their implementation policies to
conserve wetland ecosystems, and to minimise the rate of their shrinkage, the extension
of urban landscape patterns must be regulated.

4. Conclusions

This work explored the impacts of LULC change on wetland ecosystems in the Maungani
wetland, which is located in the semi-arid tropical regions of South Africa. The integrated
time-series Landsat data and Support Vector Machine algorithm were used to depict and
model the historical LULC, and wetland change for a period of 36 years (1983–2019) to
overcome the degradation and to contribute towards the sustainable management of these
wetland ecosystems. There has been a widespread conversion of wetlands during the
period of study. Based on our findings, the following conclusions were drawn.

� The Maungani wetland has undergone significant changes in terms of the LULC
change dynamics over the years (1983 to 2019).

� Derived thematic maps show that the degraded wetland size has been largely replaced
by built-up areas.

� The Maungani wetland has shrunk dramatically from 1 073 500 ha (43.10%) in 1983
to 345 100 ha (13.85%) in 2019.

Overall, the findings of this study demonstrated the usefulness of historical and arch-
ival Landsat data series in quantifying the impact of LULC change on semi-arid wetlands.
The Landsat data-series offers the novel, accessible and up-to-date information that is
required for the accurate monitoring and quantifying the human footprint on wetlands
and this information is useful for improved management of small wetlands, which provide
livelihoods to rural communities. It was noted that Maungani wetland has been experi-
encing a steady deterioration over the past 36 years. The derived remotely-sensed LULC
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for Maungani provides the requisite baseline information for further wetland modelling
and developing a spatial explicit remotely-sensed framework for wetland monitoring in
semi-arid areas. There is however a need to test this approach in other regions with simi-
lar climatic conditions to test its transferability and determine its operability.
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