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Abstract
We define and discuss the notions of additivity and idempotency for neighbourhood and
interior operators.We thenpropose anorder-theoretic descriptionof the notionof convergence
that was introduced byD.Holgate and J. Šlapal with the help of these two properties. Thiswill
provide a rather convenient setting in which compactness and completeness can be studied
via neighbourhood operators. We prove, among other things, a Frolík-type theorem with the
introduction of reflecting morphisms.
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1 Introduction

The theory of categorical neighbourhood operators traces its roots back to the introduction
of closure operators on categories equipped with a factorisation system by Dikranjan and
Giuli [12]. Several authors went on to develop the theory of closure operators in the fol-
lowing decades.1 Among the most interesting problems that have arisen is the depiction of
epimorphisms in topological categories [11,13,14]. The effort to capture the notion of con-
vergence in the presence of a categorical closure operator led to the introduction of the notion
of a neighbourhood in a category. This can be seen in two steps: first neighbourhoods were
defined from closure operators as seen in [19], and then as a primitive notion as is done in [24].
Some earlier development on the subject includes [25,32,33], where neighbourhood spaces
are studied. However, we would like to mention two independent studies that could arguably
be considered as forerunners of the study of neighbourhoods on categories: the work of Ȧ.

1 Dikranjan and Tholen [15] and Castellini [4] give a detailed account of the topic.
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Császár on syntopogenous structures [10] and that of D. Doitchinov on supertopological
spaces [16,17].2

Independently, S. Vorster introduced interior operators in [37] with the motivation that,
in the absence of complement in the subobject lattices, they will provide an (order-theoretic)
dual notion to that of closure operators. There follows a few studies on the structure of
interior operators [5–7,29]. It was shown in [22] that interior operations and neighbourhood
operations on a given poset relate each other via a Galois connection that reduces to an
equivalence between interior operations and so-called left-adjoint neighbourhood operations.
This correspondence interacts well with the adjunction that is induced by taking images
and pre-images of subobjects and consequently it is easily preserved when we extend the
operations to the ambient category, bringing the two theories together.

The present paper resumes the work in [23] and discusses the notions of additivity and
idempotency of neighbourhood operators and their eventual applications to convergence. As
the presence (or absence) of these two properties more or less affects the preservation of
the convergence of filters or/and rasters through various constructions, they will determine
two distinct subcategories, one reflective and the other coreflective. Our notion of a neigh-
bourhood operator departs from the previous ones in that it does not rely on the presence
of a factorisation system. Thus for each object X , we assign a poset PX on which a neigh-
bourhood operation is defined and then concentrate on Galois correspondences between such
posets.When P = Sub(−) is the subobject functor, thenwe are in the presence of categorical
neighbourhood operators in the sense of [24]. As is shown in [23], this formalism presents
various advantages. In particular, it allows one to incorporate various examples that are not
captured in a framework that is constrained by the presence of a factorisation system. Though
we mainly follow the concepts from the available literature on interior and neighbourhood
operators, our approach has been largely influenced by the lax method [28] that is being used
to describe convergence.

The structure of the paper is as follows. The categorical setting will be discussed in the
preliminaries. The notions of additivity and idempotency are presented in Sect. 3 along with
their interaction with Galois connections. The coreflective and reflective subcategories that
arise from this interaction will be summed up in a diagram and illustrated with an example
in Proposition 6. Before we discuss the notion of convergence, we wish to give in Sect. 4
a description of the initial structures with respect to a neighbourhood operator. It is in this
section that the close interaction between interior and neighbourhood operations through the
introduction of right Kan extension becomes essential. We shall also give a brief equivalence
between closed maps with respect to a closure operator and those closed maps with respect
to a neighbourhood operator when the subobject lattices are Boolean. As a consequence, the
stably closed maps that one obtains in each case are exactly the same. Proper maps, which are
precisely the stably closed maps for topological spaces, were initially defined by Bourbaki
via ultrafilters [3] and hence, under certain conditions, the result in this section allows one
to study convergence in parallel with the topology that is induced by stably closed maps in
the sense of [35]. In other words, this allows a discussion of convergence with respect to a
closure operator but on a morphism level, or more formally on a slice category. Though this
section is independent, its rather modest role is important in providing this link.

The last section shall be devoted to convergence. Continuity can be construed as preser-
vation of convergence. However, for the convergence (of filters or rasters) to be preserved
under certain constructions (such as the formation of products), one needs to reflect them.

2 See also [2,26,27,36,38].
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We thus define the notion of reflecting morphisms and present a few properties about the
stability of these morphisms under the formation of pullback and product.

2 Preliminaries

[22] If Q is a partially ordered set (poset), then an interior operation on Q is a monotone
map i : Q → Q such that i ≤ 1Q . A neighbourhood operation on Q is a monotone map
ν : Q → U(Q) with ↑� ν, where:

– U(Q) = {A ⊆ Q | A is upward closed} endowed with the reverse set inclusion � ;
– ↑: Q → U(Q) is given by ↑ (x) = {y | x ≤ y} for each x ∈ Q.

Given two monotone maps f : P → Q and g : P → R, the right Kan extension
Rang( f ) : R → Q of f along g is defined as follows: for any other monotone map
h : R → Q, the inequalities h ≤ Rang( f ) and hg ≤ f are equivalent. In particular
Rang( f ).g ≤ f . Such a right Kan extension exists when Q is complete, and is explicitly
given by Rang( f )(x) = inf{ f (a) | c ≤ g(a)} for each x ∈ R. We mention the following
useful properties:

– For any monotone map h, Ranh(Rang( f )) = Ranhg( f ) when the composition hg
makes sense;

– If r is a right adjoint map, i.e. commutes with infima, then r Rang( f ) = Rang(r f ).3

Now, since U(Q) is complete, with the meet denoted by � (set-union), any interior operation
i on Q gives rise to a neighbourhood operation given by the right Kan extension Rani (↑)

where:

Rani (↑)(x) = �{↑ (a) | x ≤ i(a)} = {b | x ≤ i(b)} for all x ∈ Q.

Trivially we have ↑= Ran1Q (↑). When Q is complete and and ν admits a left adjoint
j : U(Q) → Q, then the composition j ↑ becomes an interior operation on Q [22]. If
I nt(Q) denotes the set of interior operations on Q and Nbh(Q) that of neighbourhood
operations on Q, both ordered pointwise, then the above processes provide an equivalence
that are part of a Galois connection [22]:

I nt(Q)op
Ran−(↑)

⊥ Nbh(Q).
I

The neighbourhood operations that are equivalent to interior operations are called left-adjoint
neighbourhood operations, and in this case x ≤ i(y) if and only if y ∈ Rani (↑)(x).

For the remainder of the paper, C will denote a finitely complete (and possibly small
complete) category and P : Cop → Pos a pseudo-functor to the 2-category of complete
posets that are small. P assigns to each morphism f : X → Y a map f ◦ : PY → PX that
we refer to as a pre-image. Depending on whether f ◦ commutes with joins and/or meets, it
will admit a left-adjoint f◦—that we shall refer to as image—and/or a right-adjoint f∗. Now,
we consider the “upset functor” U : Pos → Pos that assigns to each map h : Q → R the
map given by U(h)(U ) = {b ∈ R | h(a) ≤ b for some a ∈ U }. Each morphism f : X → Y
will then give the following Galois connections:4

U( f◦) � U( f ◦) � U( f∗),

3 For further properties, see [30].
4 We have adopted this notation, unlike in [22, Section 2], as we shall deal with more than one endofunctor.
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so that ↑ becomes a natural transformation from 1Pos to U .
Definition 1 [23] A neighbourhood operator ν (on C, with respect to P) is lax natural trans-
formation ν : P → UP such that each νX is a neighbourhood operation on PX , for each
X ∈ C.

Thus for each morphism f : X → Y , we have U( f◦)νX � νY f◦ or equivalently νX f ◦ �
U( f ◦)νY . If each νX is a left-adjoint neighbourhood operation, then it determines an interior
operator i on C; in this case f ◦iY ≤ iX f ◦ [22]. The category of objects of the form (X , νX )

together with the morphisms from C shall be denoted by C[ν]. If ν is left-adjoint and i is the
interior associated to ν, then we also write C[i].

AWord on Atoms The notion of convergence contemplated in [24] eventually requires the
use of atomswhich, for a given poset Q, are determined byparticularmaps inPos({⊥,�}, Q).
For this reason and because most of the examples used to illustrate this notion are concrete
categories over sets (with the notable exceptions of locales/frames [23] and sieves [29]) it is
reasonable to directly deal with points x : 1 → X and their images x◦ : P1 → PX , for a
given object X ∈ C. Also we shall assume that |P1| = 2.

Example 1 To avoid repetition, we shall only cite examples that are recent and refer the reader
to [5–7,21,23,24] for further illustrations.

1. Among the neighbourhood operators that are used in [18, Section 4], we point out the
following ones:

– The neighbourhood operator ν1 on Top: where B ∈ ν(A) if and only if cl(A) ⊆
int(B).

– The coarse neighbourhood operator ν2 on Set (with the presence of large scale
structures): where B ∈ ν(A) if and only if A ⊆ B and for any uniformly bounded
cover U of X , st(A,U) ⊆ B

⋃
K for some weakly bounded set K . “ν-continuous

maps” are precisely the slowly oscillating maps.
– The hybrid neighbourhood operator ν3 on Top (with the presence of large scale

structures): where B ∈ ν(A) if and only if cl(A) ⊆ int(B) and B is a coarse
neighbourhood of A. “ν-continuous maps” are precisely the continuous and slowly
oscillating maps.

2. [23, Example 4] Consider the functor O : Locop → Pos that assigns to each locale X
its frame of formal open sets OX and to each locale map f : X → Y the corresponding
frame homomorphism f ◦ : OY → OX . We have two particular neighbourhood (or
interior) operators with respect to O: a ≺ b (rather below) and a ≺≺ b (way below) for
all a, b ∈ OX .

3. [10,21] The topogenous orders are neighbourhood operators on Set.
4. [2,16,17,36] A supertopology on a set X is a pair (M,V), where M ⊆ P(X) is a

collection of subsets and V : M → P(P(X)) a function such that:

(a) {{x} | x ∈ X} ⊆ M;
(b) if A ∈ M and U ∈ V(A), then A ⊆ U ;
(c) if A ∈ M andU ∈ V(A), then there is V ∈ V(A) such thatU ∈ V(B) for all B ∈ M

with B ⊆ V .

Each such a supertopology gives a left-adjoint neighbourhood operation νs with respect
to the powerset functor P defined by

νs(A) =
⋂

{V({x}) | x ∈ A} =
⋂

{V(M) | M ⊆ A and M ∈ M}.
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Conversely, each left-adjoint neighbourhoodoperation on a set X induces a supertopology
by restricting it toM ⊆ P(X). We note that these two processes are inverse to each other
and can be also understood via left Kan extensions. This however goes beyond the scope
of this paper.

3 Additivity and Idempotency

Hereafter we consider a complete lattice Q, that is Q ∈ Pos, and letF(Q) be the set of filters
(including the degenerated filter) on Q, equipped with the reverse inclusion denoted by � .
The inclusion e : F(Q) → U(Q) admits a right adjoint ρ : U(Q) → F(Q), so that eρ � 1
and ρe = 1. Here, ρ takes the upset generated by the finite meets from the members of an
upset. Clearly ↑= eρ ↑� eρν so that eρν is a neighbourhood operation on Q.

Lemma 1 Let i be an interior operation on Q and let ν be the neighbourhood operation
associated to i . The following are equivalent [24, Theorem 2 (a)]:

1. i is additive: i(x ∧ y) = i(x) ∧ i(y) for all x, y ∈ Q.
2. eρν = ν; in which case we shall say that ν is additive.

Consider the underlying set of Q (that we shall denote with the same letter for convenience)
and the powerset monad (P, η, μ) on Set. Let uQ be the inclusion map from U(Q) to P(Q).
Since the set-union of upsets is an upset, the operationμ restricts to μ̄Q : P(U(Q)) → U(Q)

so that the following diagram commutes (seen in Set):

P(U(Q))

P(uQ)

μ̄Q U(Q)

uQ

P(P(Q))
μQ

P(Q)

Now, consider the Kleisli composition (uQν) ◦ (uQν) = μQP(uQν)(uQν). We define

ν ∗ ν = μ̄QP(ν)(uQν),

so that ν∗ν is the (necessarily) uniquemap such that (uQν)◦(uQν) = uQ(ν∗ν). A pointwise
computation of ν ∗ ν shows that for each x ∈ Q, we have

(ν ∗ ν)(x) =
⋃

{ν(y) | y ∈ ν(x)}.
Composition of two different neighbourhood operations are computed in a similar fashion.
It is straightforward to see that:

Lemma 2 For any complete lattice Q, ν∗ν is a neighbourhood operation on Q with ν � ν∗ν.
Furthermore, the map (−) ∗ (−) : Nbh(Q) × Nbh(Q) → Nbh(Q) is associative and is
monotone in each variable.

Lemma 3 If eρν = ν, then eρ(ν ∗ ν) = ν ∗ ν.

Definition 2 We say that ν is idempotent if ν ∗ ν = ν.

Example 2 1. Idempotency is equivalent to the condition (N4) in [18]:

(a) A topological space is normal if and only if ν1 is idempotent.
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708 A. Razafindrakoto

(b) Anhybrid large scale space is hybrid large scale-normal if andonly if ν3 is idempotent.

2. In a locale, ≺ interpolates if and only if it is idempotent as a neighbourhood operator. In
this case, it coincides with ≺≺.

3. A neighbourhood space (X ,N ) [24] is a supratopological space if and only if N is
idempotent.

4. A pretopological space is a topological space if and only if the neighbourhood operator
obtained from the “pre-open” sets is idempotent.

5. A topogenous order � on a set is interpolative if and only if the neighbourhood operator
associated to it is idempotent [21].

6. The neighbourhood operation νs induced by a supertopology is always idempotent,
thanks to the third axiom in the definition.

7. Completeness of the poset Q may dramatically affect idempotency: consider the set of
natural N with the neighbourhood operation given by ν(n) = {n2, n2 + 1, n2 + 2, . . . }
for each n ∈ N. For any n, k ∈ N, we have νk(n) �= ν(n).

If ν is a left-adjoint neighbourhood operation and i its associated interior operation, then for
all x ∈ Q:

(ν ∗ ν)(x) =
⋃

{ν(y) | x ≤ i(y)}
= {z ∈ Q | x ≤ (i ◦ i)(z)}
= Rani◦i (↑)(x)

= Rani (Rani (↑))(x)

= Rani (ν)(x).

Thus ν ∗ ν = Rani◦i (↑) = Rani (ν). This shows the following observation:

Lemma 4 The interior operation i is idempotent, i.e. i ◦ i = i , if and only if ν is idempotent
[24, Theorem 2(b)].

Proposition 1 Aneighbourhood operation on Q is idempotent if and only if for anyA ⊇ ν(p)
and any Bx ⊇ ν(x), where p, x ∈ Q, one has ν(p) ⊆ ⋃

a∈A
⋂

x≤aBx .

Proof Assume that the necessary condition stated in the proposition is true and let q ∈ ν(p).
LetA = ν(p) and Bx = ν(x) for any x ∈ Q. By assumption, there is a ∈ ν(p) such that for
all x ≤ a, q ∈ ν(x). But then

q ∈
⋂

x≤a

ν(x) = ν(a).

Thus q ∈ ⋃{ν(a) | a ∈ ν(p)} = (ν ∗ ν)(p). The reverse inclusion is always true.
Conversely, letA ⊇ ν(p) andBx ⊇ ν(x), for each x ∈ Q. Let q ∈ ν(p). By idempotency,

there is r ∈ ν(p) such that q ∈ ν(r). On the other hand, there is a ∈ A such that a ≤ r .
Thus, for all x ≤ a:

Bx ⊇ ν(x) ⊇ ν(a) ⊇ ν(r).

Therefore, there is a ∈ A such that for all x ≤ a, q ∈ Bx . ��
The above proposition is in fact the expression of condition (Top) in [31, Proposition 2.1] and
condition (F4) in [1, Proposition 17] in terms of neighbourhood structures. Now, consider
the following iteration:
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ν0 =↑
να+1 = να ∗ ν (where α + 1 is a successor ordinal)

νβ = �α<βνα (where β is a limit ordinal)

Taking into account the fact that Q is a set, that is small, there is a smallest ordinal ∞ such
that ν∞+1 = ν∞.

Lemma 5 For a neighbourhood operation ν on Q:

1. eρν is additive and ν∞ is idempotent.
2. eρν and ν∞ are left-adjoint whenever ν is.

Proof The first statement is trivial. Suppose that ν is a left-adjoint neighbourhood operation,
that is ν = Rani (↑) for some interior operator i . Since Ran−(↑) preserves joins and compo-
sitions, we have ν∞ = Rani∞(↑), where i∞ is the interior operation obtained after iteration
of i . On the other hand, let î = ∧{k ≥ i | k is additive}. It is clear that î is additive as well.
Let ν̂ = Ranî (↑). ν̂ is additive by Lemma 1. We have ρν = ρν̂ and so ν̂ = eρν̂ = eρν. ��
Lemma 6 eρν ∗ eρν is additive.

Proof From Lemma 3 we have eρ(eρν ∗ eρν) = eρν ∗ eρν. ��
Proposition 2 Let ν be a neighbourhood operation.

1. If ν is idempotent, then so is eρν.
2. If ν is additive, then so is ν∞.

Proof 1. Since eρν ∗ eρν � ν ∗ ν = ν, we have eρ(eρν ∗ eρν) � eρν. On the other
hand, since eρν � eρν ∗ eρν, we have eρν = eρeρν � eρ(eρν ∗ eρν). By Lemma 6,
eρν = eρ(eρν ∗ eρν) = eρν ∗ eρν.

2. Since ν∞ is idempotent, so is eρν∞. And since ν = eρν � eρν∞, we have ν∞ �
eρν∞. ��

We shall now extend ν∞ and eρν with respect to P : Cop → Pos.

Lemma 7 Let f : X → Y be a morphism in C. We have:

1. uPXU( f ◦) � P( f ◦)uPY ;
2. If h, g : Q → U(Q) such that h � g, then μ̄QP(h) � μ̄QP(g);
3. μ̄PXP(U( f ◦)) = U( f ◦)μ̄PY .

Proof The first statement is trivial. 2. For any A ⊆ Q, we have

μ̄QP(h)(A) = {z | (∃a ∈ A), z ∈ h(a)}
� {z | (∃a ∈ A), z ∈ g(a)} = μ̄QP(g)(A).

3. The algebras of the powerset monad are precisely the sup-lattices. The poset U(PX) with
set-inclusion and equipped with the operation set-union μ̄PX : P(U(PX)) → U(PX), is a
sup-lattice and U( f ◦) : U(PY ) → U(PY ) is a sup-lattice homomorphism. ��
Proposition 3 Given any morphism f : X → Y in C, if νY is idempotent, then so is the
neighbourhood operation U( f ◦)νY f◦ : PX → U(PX).
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710 A. Razafindrakoto

Proof First we note that U( f ◦)νY f◦ � (U( f ◦)νY f◦) ∗ (U( f ◦)νY f◦). Now

(U( f ◦)νY f◦) ∗ (U( f ◦)νY f◦) = μ̄PXP(U( f ◦)νY f◦)uPXU( f ◦)νY f◦
� μ̄PXP(U( f ◦)νY f◦)P( f ◦)uPY νY f◦ (Lemma 7.1)

= μ̄PXP(U( f ◦)νY f◦ f ◦)uPY νY f◦
� μ̄PXP(U( f ◦)νY )uPY νY f◦ (Lemma 7.2)

= U( f ◦)μ̄PYP(νY )uPY νY f◦ (Lemma 7.3)

= U( f ◦)(νY ∗ νY ) f◦
= U( f ◦)νY f◦.

Thus we have equality. ��
Let ν∞ be the family of maps defined by (ν∞)X = (νX )∞ for all X ∈ C.

Lemma 8 ν∞ is a neighbourhood operator on C.

Proof For any morphism f : X → Y , we have νX f ◦ � U( f ◦)νY � U( f ◦)ν∞
Y , or

equivalently νX � U( f ◦)ν∞
Y f◦. Now, since U( f ◦)ν∞

Y f◦ is idempotent (Proposition 3), we
have ν∞

X � U( f ◦)ν∞
Y f◦. ��

Proposition 4 C[ν∞] is a full reflective subcategory of C[ν].
Proof The unit of the reflector fromC[ν] toC[ν∞] is given by (X , νX ) �→ (X , ν∞

X ) for each
object X in C. ��
Next, for each pseudofunctor P : Cop → Pos, let F(PX) be the collection of filters on
PX . For each morphism f : X → Y in C, F ∈ F(PX) and G ∈ F(PY ), we have
U( f◦)(F) ∈ F(PX) and U( f ◦)(G) ∈ F(PY ). Thus we have two monotone maps F( f◦) :
F(PX) → F(PY ) and F( f ◦) : F(PY ) → F(PX). Extending the inclusion e and its right
adjoint ρ for all objects X ∈ C in an obvious way, we have a pseudofunctor F : Pos → Pos
such that eYF( f◦) = U( f◦)eX and U( f ◦)eY = eXF( f ◦). It follows that

Lemma 9 For any morphism f : X → Y in C:

1. F( f ◦)ρY = ρXU( f ◦).
2. F( f◦) = ρYU( f◦)eX and F( f ◦) = ρXU( f ◦)eY .
3. F( f◦) � F( f ◦).

Proof 1. Since eYF( f◦) = U( f◦)eX , both F( f ◦)ρY and ρXU( f ◦) are right adjoint to
U( f◦)eX .

2. Follows from the identities eYF( f◦) = U( f◦)eX and U( f ◦)eY = eXF( f ◦) by compos-
ing with ρY and ρX respectively on the left.

3. F( f◦)F( f ◦) = ρYU( f◦)eXρXU( f ◦)eY � ρYU( f◦)U( f ◦)eY � ρY eY = 1. On the
other hand, since eYρYU( f◦)eX = eYρY eYF( f◦) = eYF( f◦) = U( f◦)eX , it follows
that F( f ◦)F( f◦) = ρXU( f ◦)U( f◦)eX � ρXeX = 1.

��
Let ν̂ be the family of maps defined by ν̂X = eXρXνX for all X ∈ C.

Lemma 10 ν̂ is a neighbourhood operator on C.
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Proof For any f : X → Y in C, we have:

ν̂XU( f ◦) = eXρXνXU( f ◦) � eXρXU( f ◦)νY = eXF( f ◦)ρY νY = U( f ◦)ν̂Y .

��

Proposition 5 C[ν̂] is a full coreflective subcategory of C[ν].

Proof The co-unit of the coreflector is clearly given by (X , ν̂X ) �→ (X , νX ) for each object
X in C. ��

Corollary 1 Let ν be a left-adjoint neighbourhood operator and i its associated interior
operator. Then i∞ and î , where i∞X = (iX )∞ and îX = ( ˆiX ) for each object X, are interior

operators on C. Furthermore, C[i∞] is a full reflective subcategory of C[i] and C[î] is a full
coreflective subcategory of C[i].

Proof Follows from Lemma 5.2. ��

The following embeddings illustrate the above:

C[ν]

C[ν∞] C[i]

C[ν̂] C[i∞]

C[ν̂∞] C[î]

C[î∞]

Proposition 6 LetC = Set and P = Sub(−). Let ν be a left-adjoint neighbourhood operator
on Set. Then

1. Set[ν] is equivalent to the category Neigh of neighbourhood spaces [24,25].
2. Set[ν] is equivalent to the category PrTop of pretopological spaces [1,31] if and only if

ν is additive.
3. Set[ν] is equivalent to the category SuTop of supratopological spaces [24,25] if and only

if ν is idempotent [24,25].
4. Set[ν] is equivalent to the category Top of topological spaces [1,24,31] if and only if ν

is additive and idempotent.
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712 A. Razafindrakoto

We then have the following known embeddings, where ‘r’ stands for full reflection and ‘c’
for full coreflection:

Neigh

PreTop

c

SuTop

r

Top

r c

Example 3 The neighbourhood operation νs is additive (by definition) and idempotent. Thus,
this neighbourhoodoperation actually is a topology.The fact that a topology always lies beside
a supertopology has already been mentioned in Doitchinov’s paper [17].

4 Initial Structures

Aswe are mostly concerned with finite limits and products in general, an optimal way to look
at these is to consider inverse limits [3,8,9,15]. Thus the limit that we are discussing here
should be construed as an inverse limit of finite limits. Given a small diagram D : I → C
and a limit cone 〈 f 〉 : ΔX → D, the neighbourhood operation:

ν〈 f 〉 = �IU( f ◦
i )νDi fi ◦,

where � is the meet on Pos(PX ,U(PX)), provides C[ν] with an initial structure and makes
C[ν] topological over C [23]. The initial structures on C[ν̂] and C[ν∞] are then given by
eXρXν〈 f 〉 and ν〈 f 〉 respectively.

We now assume that pre-images commute with joins and let i = I(ν). The embedding
C[i] → C[ν] admits a coreflector provided by

(X , RanI(νX )(↑X )) → (X , νX ).

The corresponding initial structure with respect to i is given by [23, Section 4]:

I(ν〈 f 〉) = I(�IU( f ◦
i )νDi fi ◦)

=
∨

I

I(U( f ◦
i )νDi fi ◦)

=
∨

I

f ◦
i iDi fi∗ .

We shall denote i〈 f 〉 = ∨
I f ◦

i iDi fi∗ .

Lemma 11 let f : X → Y be a morphism in C.

1. If i is additive, then f ◦iY f∗, as an interior operation on PX, is also additive.
2. If i is idempotent, then f ◦iY f∗ is idempotent.
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Proof The second statement is given by Proposition 3. Now,

eXρXU( f ◦)RaniY (↑Y ) f◦ = eXρXU( f ◦)eYρY RaniY (↑Y ) f◦
= eXF( f ◦)ρY RaniY (↑Y ) f◦
= U( f )eYρY RaniY (↑Y ) f◦
= U( f ◦)RaniY (↑Y ) f◦.

From Lemma 1, f ◦iY f∗ = I(U( f ◦)RaniY (↑Y ) f◦) is additive. ��
Remark 1 In the proof above, one can just point out that f ◦iY f∗ preserves binary meets once
iY does. The proof above applies to neighbourhood operation in general and circumvents the
existence of the right adjoint f∗.

Proposition 7 Consider a cone 〈 f 〉 : ΔX → D on a diagram D : I → C.

1. If i is additive and PX is a frame, then i〈 f 〉 is additive.
2. If i is idempotent, then so is i〈 f 〉.

Proof Idempotency of i〈 f 〉 is clear. Now, since PX is a frame, i〈 f 〉 preserves finite meets as
well. ��
Proposition 8 Let 〈 f 〉 : ΔX → D be a limit on a diagram D : I → C and let ν be a
left-adjoint neighbourhood operator on C.

1. If ν is additive, then (X , νX ) is the limit inC[ν̂] if and only if νX = eXρX RanI(ν〈 f 〉)(↑X );
2. If ν is idempotent, then (X , νX ) is the limit inC[ν∞] if and only if νX = RanI(ν〈 f 〉)(↑X ).

Corollary 2 If ν is additive and idempotent, then (X , νX ) is the limit in C[ν] if and only if
νX = eXρX RanI(ν〈 f 〉)(↑X ).

Corollary 3 Let x : 1 → X be a point. If ν is idempotent, then νX x◦ = ν〈 f 〉x◦. If ν is additive,
then νX x◦ = eXρXν〈 f 〉x◦.

Proof By adjunction RanI(ν〈 f 〉)(↑X ) � ν〈 f 〉 holds. Let U : P1 → U(PX) be a monotone
map such that RanI(ν〈 f 〉)(↑X )x◦ � U , or x◦ ≤ (∨

I f ◦
i jDi fi ∗

)
U , where νDi � jDi . There is

i ∈ I such that x◦ ≤ f ◦
i jDi fi ∗U , or equivalently f ◦

i νDi fi ◦x◦ � U . Therefore ν〈 f 〉x◦ � U
and we have equality. If ν is additive, then νX x◦ = eXρX RanI(ν〈 f 〉)(↑X )x◦ = eXρXν〈 f 〉x◦.

��

5 Remark on ClosedMaps

When the subobject lattices areBoolean algebras, then closure and interior operators uniquely
determine each other. However, it is not trivial to see that closed maps with respect to each
of these operators are identical in such a setting. We wish to briefly show that this is indeed
the case and that furthermore this identity does not assume additivity or idempotency. In
this particular section, we assume that C is endowed with an (E,M)-factorisation system
and that each subobject lattice Sub(X) is Boolean for each object X . We shall also assume
the Frobenius reciprocity law in this section, that is for any subobjects p and n, and any
morphism f we have f◦(p ∧ f ◦(n)) = f◦(p) ∧ n.

Definition 3 [24] We say that an interior operator i is compatible with a closure operator c
if for any m ∈ Sub(X) and X ∈ C, iX (m) = cX (m), where () is the complement map.
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In what follows, c is a fixed closure operator, i the interior operator compatible with c and
ν the left-adjoint neighbourhood operator associated to i . Let us recall that a morphism
f : X → Y is c-closed [15] if for any m ∈ Sub(X), f◦(cX (m)) = cY ( f◦(m)) and that it is
ν-closed [23] if (U( f ◦))νY (p) = (νX f ◦)(p) for each p ∈ Sub(Y ).

Proposition 9 If f : X → Y is c-closed, then it is ν-closed.

Proof We must show that for all n ∈ Sub(Y ), νX ( f ◦(n)) ⊆ U( f ◦)(νY (n)). Let p ∈
νX ( f ◦(n)). Then f ◦(n) ≤ iX (p) = cX (p). Therefore cX (p) ∧ f ◦(n) = 0X and so
f◦(cX (p)) ∧ n = 0Y . Since f is c-closed, this amounts to n ∧ cY ( f◦(p)) = 0Y . It follows
that n ≤ cY ( f◦(p)) ≤ iY ( f◦(p)). But then f◦(p) ∈ νY (n) and f ◦( f◦(p)) ∈ U( f ◦)(νY (n)).
Since f ◦( f◦(p)) ≤ p, we have p ∈ U( f ◦)(νY (n)). Thus f is ν-closed. ��
Proposition 10 If f : X → Y is ν-closed, then it is c-closed.

Proof Let m ∈ Sub(X) and p ∈ Sub(X) such that p ∧ f◦(cX (m)) = 0Y . Then f ◦(p) ∧
iX (m) = 0X or equivalently f ◦(p) ≤ iX (m). Thus m ∈ νX ( f ◦(p)) = U( f ◦)(νY (p)) and
so there is q ∈ νY (p) such that f ◦(q) ≤ m. We then have p ∧ cY (q) = p ∧ iY (q) = 0Y .
Now, since f ◦(q) ≤ m, we have m ≤ f ◦(q) = f ◦(q) or equivalently f◦(m) ≤ q. Hence
p ∧ cY ( f◦(m)) = 0Y . Since p is arbitrary, we have cY ( f◦(m)) ≤ f◦(cX (m)), as desired. ��
Note that the existence of the right a adjoint for each pre-image was not necessary here. The
collection of maps which are ν-closed is denoted by K(ν) [23].

Proposition 11 Let f : X → Y be a morphism such that f ◦ commutes with joins. Suppose
that ν is a left-adjoint neighbourhood operator and that Sub(−) has enough points. Then f
is ν-closed if and only if for any point y : 1 → Y we have U( f ◦)νY y◦ = νX f ◦y◦.

Proof The necessary condition is clear. Now, letm : M → Y be a subobject withm = ∨{y :
1 → Y | y ≤ m}. Then

(U( f ◦)νY )(m) = (U( f ◦)νY )
(∨

y
)

= U( f ◦)(� νY (y))

= � U( f ◦)νY (y)

= � νX f ◦(y)

= νX

(∨
f ◦(y)

)

= νX f ◦(m),

where � is the join (pointwise set intersection) on Pos(PY ,U(PX)). ��

6 Convergence

The idea of convergence developed here mainly follows [24,34]. Among the most important
classes of maps that are relevant to the study of convergence are arguably those that preserve
and reflect convergence. For the remainder of the section, we shall assume that ν is left-adjoint
and pre-images commute with joins.

We now add another parameter and consider a subfunctor s : S ⇒ U in such a way that
for any morphism f : X → Y , sYS( f◦) = U( f◦)sX . Thus we look at C together with a
neighbourhood operator ν and an appropriate choice of S:
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Example 4 1. IfC = Top, then we consider S = U , whereU (PX) = {ultrafilters on PX}
or S = F .

2. IfC = Unif with the uniform neighbourhood operator [18,21], then we consider S = C ,
where C (PX) = {Cauchy filters on PX} and/or S = U .

3. For the categories that are similar to Neigh, PrTop and SuTop, we consider S = U ,F ,
but also S = R, where R(PX) = {rasters on PX} [24].

The following proposition indicates that, in the current setting, one can use neighbourhood
operators to deal with limits in general.

Proposition 12 Any convergence structure π ⊆ T (−) × (−) in the sense of [33] on C gives
rise to a neighbourhood operator ν as follows

νπ
X x◦ = �{eXφ | (φ, x) ∈ πX } for any X ∈ C and any point x .

On the other hand, any neighbourhood operator on C gives rise to a convergence structure
πν by declaring (φ, x) ∈ πν

X whenever eXφ � νX x◦. We always have νπν = ν and if π is
a limit structure, then πνπ = π .

Next, we look at the description of closed maps with respect to neighbourhood operators.

Proposition 13 Let ν be a left-adjoint neighbourhood operator. For a morphism f : X → Y
in C, the following are equivalent:

(i) f is ν-closed;
(ii) νX f ◦ = RaniY (U( f ◦) ↑Y );
(iii) For any monotone maps h : P1 → PX and φ : P1 → U(PY ), the relations U( f◦)φ �

νY h and φ � νX f ◦h are equivalent.

Proof (ii) implies (i): Since U( f ◦) is a right adjoint, U( f ◦)νY is a right Kan extension of
U( f ◦) ↑Y along iY . The result follows from universality. (i) implies (iii): One of the other
implication is equivalent to ν-continuity. For the other implication, let φ and h be monotone
maps such that U( f◦)φ � νY h. We have:

φ � U( f ◦ f◦)φ � U( f ◦)νY h = νX f ◦h.

(iii) implies (ii): Suppose that φiY � U( f ◦) ↑Y , then U( f◦)φiY � ↑Y . Since νY is the
right Kan extension of ↑Y along iY , we have U( f◦)φ � νY . By hypothesis the latter is
equivalent to φ � νX f ◦. ��
Corollary 4 Suppose that ν is additive. f is ν-closed if and only if for anymaps h : P1 → PX
and φ : P1 → F(PY ), the relations U( f◦)eXφ � νY h and eXφ � νX f ◦h are equivalent.

Condition (iii) in Proposition 13 indicates that, in some sense closedmaps areweaker versions
ofmaps that reflect convergence. Thiswill naturally lead us to the notion ofS-reflectingmaps.

Definition 4 A monotone map φ : P1 → SPX converges to a point x : 1 → X if sXφ �
νX x◦.

Definition 5 [3] A morphism f : X → Y in C is said to be S-reflecting if for any monotone
map φ : P1 → SX there is given a point y : 1 → Y such that U( f◦)sXφ � νY y◦, then
there is a point x : 1 → X such that f◦x◦ = y◦ and sXφ � νX x◦.

Remark 2 Note that f◦x◦ = y◦ and f x = y are equivalent.
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Example 5 1. A topological space is compact if and only if X → 1 is U -reflecting; and a
continuous map f is U -reflecting if and only if it is proper in the usual sense [3].

2. A uniform space X is complete if and only if X → 1 is C -reflecting.
3. If a subspace A of a topological space is F -reflecting, then it is extension closed [20],

but the converse fails.

The class of all S-reflecting morphisms in C[ν] shall be denoted by R(S). The definition
could be described in the following lax diagram:

P1

�

≤
y◦

sXφ

x◦

.
f◦

νX �

.

νY

. U( f◦)
.

Though the diagram is not a 2-pullback, many essential features of pullbacks that are familiar
to us allow to obtain some interesting results (compare with [9,35]).

Proposition 14 1. R(S) contains isomorphisms and is stable under composition. Also, if
S ⊆ S ′, then R(S ′) ⊆ R(S).

2. If g f ∈ R(S) and g◦g◦ = 1, then f ∈ R(S).
3. If g f ∈ R(U) (resp.R(F ),R(U )) and f◦ f ◦ = 1, then g ∈ R(U) (resp.R(F ),R(U )).

On the other hand if g f ∈ R(C ) and f is a retraction, then g ∈ R(C ).

Remark 3 We note that U( f ◦) restricts to U ( f ◦) when f◦ f ◦ = 1.

Proposition 15 Suppose that P = Sub(−). If m◦m◦ = 1 and m is ν-closed, then m ∈ R(S).
In particular we have the inclusion K(ν)

⋂
Mono(C) ⊆ R(S).

Proof Let φ : P1 → SX bemonotonemap and y : 1 → X be a point such thatU(m◦)sXφ �
νX y◦. Sincem is closed, sXφ � νMm◦y◦. Letm′ : M ′ → 1 be the pullback ofm along y. We
have m′ ∈ Sub(1) and therefore m′ ∼= 01 = 0M or M ′ ∼= 1. (Since |Sub(1)| = |P1| = 2.)
The first case implies νMm◦y◦ = νM (0M ) = Sub(M) since ν is left-adjoint. Because φ

cannot be trivial, we have M ′ ∼= 1 and so there is x : 1 → M such that sXφ � νMx◦ and
m◦x◦ = y◦. ��
We single out the following fact which is a consequence of Propositions 14.1 and 15:

Corollary 5 Suppose that P = Sub(−). If m is ν-closed and f is S-reflecting, then f m is
S-reflecting whenever the composition makes sense.

Instances of the above result are the following well-known facts: a closed subspace of a
compact topological space is compact and a closed subspace of a complete uniform space is
complete.

Proposition 16 Suppose that ν is additive and that P and F have enough points. If f is
U -reflecting (resp. F -reflecting), then f is ν-closed. The converse fails in general.
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Proof Let φ : P1 → F(PX) be monotone map and y : 1 → Y a point such that eXφ �
f ◦νY y◦. For each ultrafilter θ : P1 → U (PX) such that tXθ � φ (where tX is the natural
inclusion), we have U( f◦)eX tXθ � νY y◦. There are xθ such that eX tXθ � νX xθ◦ and
f◦xθ◦ ≤ y◦, so that eX tXθ � νX f ◦y◦. Since F has enough points, we have

eXφ = eX (�{tXθ | θ : P1 → U (PX)})
= �{eX tXθ | θ : P1 → U (PX)}
� νX f ◦y◦.

The result follows from Proposition 11. ��

Corollary 6 Suppose that P = Sub(−). With the assumptions of Proposition 16, we have the
identity K(ν)

⋂
Mono(C) = R(U )

⋂
Mono(C).

Proposition 17 Let s : S → U be a subfunctor. Let 〈 f 〉 : ΔX → D be a limit cone and
x : 1 → X a point. For any monotone map φ : P1 → SX we have sXφ � νX x◦ if and only
if U( fi ◦)sXφ � νDi fi ◦x◦ for each i ∈ I .

Proof The necessary condition follows from continuity. Suppose that for each i ∈ I we have
U( fi ◦)sXφ � νDi fi ◦x◦. Then sXφ � ν〈 f 〉x◦, or equivalently sXφ � νX x◦. ��

Corollary 7 With the assumptions of Proposition 17:

1. If ν is additive and s factors through e, say s = e ◦ t , then sXφ � νX x◦ if and only if
U( fi ◦)sXφ � νDi fi ◦x◦ for each i ∈ I ;

2. If ν is idempotent, then sXφ � νX x◦ if and only if U( fi ◦)sXφ � νDi fi ◦x◦ for each
i ∈ I .

Proof Results follow from Corollary 3. If ν is additive, then:

sXφ = eX tXφ = eX (ρX sX )φ � eXρXν〈 f 〉x◦ = νX x◦.

The case where ν is idempotent is clear. ��

Theorem 1 R(S) is pullback stable in C[μ], in each case where μ = ν̂, ν∞ or ν̂∞ and
assuming that s = e ◦ t where additivity is involved.

Proof Let us have a pullback diagram:

A
g

a

B

b

X
f

Y
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Assume that f is S-reflecting. We shall prove that g is S-reflecting. Consider the following
diagram (the inequalities are not written for convenience)

P1
y◦

x◦

sXφ

z◦
.

g◦

νA

a◦
.

f◦

νX

.
b◦

νB νY

.

U(g◦)

U(a◦)
.

U( f◦)

. U(b◦)

Let x : 1 → B be a point and φ a(n appropriate) monotonemap such thatU(g◦)sXφ � νBx◦.
ThenU( f◦a◦)sXφ � νY b◦x◦. Since f isS-reflecting, there is a point y such that f◦y◦ = b◦x◦
and U(a◦)sXφ � νX y◦. By the property of pullback there is a point z such that g◦z◦ = x◦
and a◦z◦ = y◦. We have the following inequalities:

U( f◦)U(a◦)sXφ � νY f◦a◦z◦
U(a◦)sXφ � νXa◦z◦
U(g◦)sXφ � νBg◦z◦,

which imply sXφ � νAz◦ by Proposition 17 and Corollary 7. Thus g is S-reflecting. ��
Theorem 2 (Frolik’s theorem)R(S) is closed under the formation of direct products inC[μ],
in each case whereμ = ν̂, ν∞ or ν̂∞ and assuming that s = e◦t where additivity is involved.
Proof Let fi : Xi → Yi , i ∈ I be a family of morphisms and let f : X → Y be its product
with natural projections πi : X → Xi and pi : Y → Yi , i ∈ I . Assume that each fi is
S-reflecting and consider the following diagram:

P1 yi ◦

y◦

sXφ

x◦
.

f◦

νX

πi ◦
.

fi ◦

νXi

. pi ◦

νY νYi

.

U( f◦)

U(πi ◦)
.

U( fi ◦)

. U(pi ◦)
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Let y : 1 → Y be a point and φ a(n appropriate) monotonemap such thatU( f◦)sXφ � νY y◦,
then for each i ∈ I , we have U( fi ◦πi ◦)sXφ � νYi pi ◦y◦. Each fi is S-reflecting, therefore
there are points yi such that fi ◦yi ◦ = pi ◦y◦ and U(πi ◦)sXφ � νXi yi ◦ for each i ∈ I . There
is a point x such that πi ◦x◦ = yi ◦ for all i ∈ I so that pi ◦y◦ = pi ◦ f◦x◦. By the fact that we
have a product, f◦x◦ = y◦.

On the other hand the inequalities U(πi ◦)sXφ � νXi πi ◦x◦ imply sXφ � νX x◦ (Propo-
sition 17 and Corollary 7). Thus f is S-reflecting as desired. ��
We end this section by discussing under which condition the “fill-in” arrow in Definition
5 is unique. The answer to this is obviously a separation condition and we use our notion
of S-reflecting morphisms to define this notion. Though ν is considered to be a left-adjoint
neighbourhood operator, the notion of separation discussed here is not to be confused with
the notion of separation with respect to interior operators introduced in [7]. It is rather related
to the notion of convergence separation in [33].

Definition 6 An object X is said to be ν-separated if the diagonal δX = 〈1X , 1X 〉 is ν-closed.

Lemma 12 Suppose that P = Sub(−). Suppose in addition that P and F have enough
points. Then X is ν-separated if and only if δX is U-reflecting. If ν is additive, then X is
ν-separated if and only if δX is U -reflecting.

Proof Corollary 6. ��
If δX is S-reflecting, then looking at the following diagram

P1

�

≤
y◦

sXφ

x◦

.
δX ◦

νX �

.

νX×X

. U(δX ◦)
.

one sees that x is necessarily unique such that δX ◦x◦ ≤ y◦ and sXφ � νX since δ◦
X δX ◦ = 1.

This motivates the following definition:

Definition 7 We say that X is S-separated if δX is S-reflecting.
Lemma 13 Let f : X → Y be a morphism and suppose that X is S-separated. Then f is
S-reflecting if and only if the continuity diagram f◦νX � νY f◦ is a pointed lax pullback,
i.e. the fill-in arrow in Definition 5 is unique.

The above observations motivate a notion of separated morphisms that are suitable for neigh-
bourhood operators. Properties of separated morphisms depend merely on the behaviour of
the class R(U)

⋂
Mono(C) [9, Section 4.2]. Proposition 14 ensures that we have a well-

behaved class that meets the criteria. We shall mention the following facts which are of
interest (compare with [9, Paragraph 5.5.1]).

Proposition 18 [9] Any morphism f : X → Y is S-reflecting provided that X → 1 is
S-reflecting and Y is S-separated.
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Proof [9] f is a composition of the morphism 〈1X , f 〉 : X → X × Y and the projection
X × Y → Y which are S-reflecting as consequences of Theorem 1. By Proposition 14.1, f
is S-reflecting. ��
Instances of the above result are thewell-known facts that compact (resp. complete) subspaces
of a Hausdorff (resp. uniform) spaces are closed.

Corollary 8 [9] Suppose that Y → 1 is S-reflecting and S-separated, then any morphism
f : X → Y is S-reflecting if and only if X → 1 is S-reflecting.
Remark 4 By merging the three parameters F,C and U in the categories such as Unif , one
can obtain satisfactory notions more or less related to convergence such as clustering and
pre-compactness: one says that a point x is an adherence point of F if there is an ultrafilter
U ⊇ F converging to x , and an object X is pre-compact if U (X) ⊆ C (X).
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