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Abstract: Empirical evidence continues to show that climate change remains a threat to the stability
of the hydrologic system. As the climate system interacts with the hydrologic cycle, one significant
repercussion of global warming includes changes in water availability at both regional and local scales.
Climate change adaptation is intrinsically difficult to attain due to the dynamic earth system and
lack of a comprehensive understanding of future climate and its associated uncertainties. Mostly in
developing countries, climate adaptation is hampered by scarcity of good quality and adequate hydro-
meteorological data. This article provides a synopsis of the modelling chain applied to investigate the
response of the hydrologic system under changing climate, which includes choosing the appropriate
global climate models, downscaling techniques, emission scenarios, and the approach to be used
in hydrologic modelling. The conventional criteria for choosing a suitable hydrological model
are discussed. The advancement of emission scenarios including the latest Shared Socioeconomic
Pathways and their role in climate modelling, impact assessment, and adaptation, are also highlighted.
This paper also discusses the uncertainties associated with modelling the hydrological impacts of
climate change and the plausible approaches for reducing such uncertainties. Among the outcomes
of this review include highlights of studies on the commonly used hydrological models for assessing
the impact of climate change particularly in the sub-Saharan Africa region and some specific reviews
in southern Africa. Further, the reviews show that as human systems keep on dominating within
the earth system in several ways, effective modelling should involve coupling earth and human
systems models as these may truly represent the bidirectional feedback experienced in the modern
world. The paper concludes that adequate hydro-meteorological data is key to having a robust model
and effective climate adaptation measures, hence in poorly gauged basins use of artificial neural
networks and satellite datasets have shown to be successful tools, including for model calibration
and validation.

Keywords: hydrological modelling; climate models; climate change adaptation; developing countries;
emission scenarios; southern Africa

1. Introduction

Climate change has resulted in continued changes in the hydrologic systems in differ-
ent watersheds across the globe [1,2]. Accordingly, hydrological research and assessment
of climate change impacts is an existing matter at both global and regional levels [3,4]. In
fact, climate change impacts are largely detected and well understood in natural systems,
typically shifting precipitation and temperatures, which eventually change the hydrologi-
cal system [5]. The common direct impacts of climate change on water resources include
changes in the catchment water balance (increase or decrease) and nutrient cycling [6–8].
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The hydrological system is largely influenced by among others climatic conditions, ter-
rain characteristics, land use and land cover, and population growth [9], which collectively
affect water availability and quality. The uncertainties in the magnitude and dynamics
of these elements have resulted in challenges in the management and planning of water
resources. Having reliable hydrological predictions is, therefore, important to developing
climate-adaptive strategies for different water-related sectors [10–12]. This is particularly
true at a regional or basin-scale because it is at these scales where the impacts are felt and
adaptation strategies are developed and implemented [13].

Due to increasing concentrations of greenhouse gases and therefore global warming,
the impact of climate change on water resources is expected to increase [14]. Achieving
sustainable water management at a catchment scale will require predicting and analyzing
future trends in water resources using advanced tools over long periods [15]. Further,
assessing the impacts of climate change on water resources requires the application of
different decisions on the method to be used. These include choosing suitable global climate
models, downscaling techniques, emission scenarios, and also the approach to be used in
hydrologic modelling [16]. This calls for a need for effective modelling approach in order
to have rational water resource plans. For countries to successfully adapt to future changes
in climate, there is a need for a comprehensive understanding of the climate situations in
different regions in both seasonal, yearly, and decadal timescales. Thus, it is imperative to
conduct research that will offer guidance and prediction on the extent of such impacts in
order to devise proper adaptation responses. Certainly, the desirable approach moving into
the future, is to try to identify the projected climate change impacts and devise strategies in
anticipation [17].

This paper aims to provide a literature review of the applications, approaches, and the
modelling chain involved in integrated hydrological modelling of climate change impacts.
The paper focuses on key aspects involved in simulating future runoff at a catchment scale
under changing climatic scenarios, for effective climate change adaptation. To accomplish
the aforementioned aim, corresponding literature were obtained from water, hydrology,
climate change, and climate/hydrological modelling journals. A literature search was
performed using different search engines including Scopus, Google Scholar, ScienceDirect,
and Web of Science. The search targeted internationally recognised peer-reviewed journals
covering aspects of integrated climate and hydrological modelling. Materials obtained
from the journals were complemented with information from reports mostly from the
Intergovernmental Panel on Climate Change (IPCC).

To obtain the literature, different keywords and phrases were used, which included the
following: ‘climate change’, ‘climate adaptation and mitigation’, ‘hydrological processes’,
‘climate change impacts’, ‘climate models’, ‘hydrological modelling’, ‘model uncertainty’,
‘sub-Saharan Africa’, ‘southern Africa’, ‘developing nations’, and ‘climate emission scenar-
ios’. Upon screening the titles and abstracts, only articles that focussed on climate change
and hydrological models were considered. Considering the numerous available literature
on the aforementioned themes, a “semi-systematic” approach was adopted for identifying
and analysing the themes in literature since the aim was to have a narrative overview
of the subject matter [18]. Although this process of article selection could be considered
subjective and biased, it was adopted in this paper because it provided a broader and
comprehensive context, current knowledge, gaps, and inconsistencies in the field under
study. Global literature were used to provide a general understanding of integrated climate
change and hydrological models and their associated modelling chain. Further, specific
literature on climate change and hydrological modelling from sub-Saharan and southern
Africa for the past decade (2012 to 2022), were randomly selected due to the regions’ rec-
ognized high vulnerability to climate change. Consequently, this paper did not discuss
every single available literature relating to the subject at hand, instead, only representative
studies (over 200 articles) were considered for the qualitative synthesis based on the above
mentioned themes.



Water 2022, 14, 4031 3 of 26

First, the article introduces the challenges associated with climate change adaptation
in developing countries particularly in sub-Saharan Africa in Section 1. In Section 2, the
paper highlights the relationship between climate change, and anthropogenic activities and
how they influence the hydrological processes. Sections 4 and 5 provide reviews on global
and regional climate models and climate change scenarios for integration into hydrological
models. In Section 6, a discussion of the southern African region is provided focusing on
a literature review of some of the applied global and regional climate models for use in
hydrological modelling. This is followed by a review of the common hydrological models
used in climate change analysis and their associated uncertainties and opportunities for
reducing the uncertainties in Sections 7 and 8. Finally, conclusions derived from the review
and potential future research are given in Section 9.

2. Climate Change Mitigation and Adaptation in Sub-Saharan Africa

Sub-Saharan Africa is the world’s most vulnerable region to climate change due to
low adaptive capacity resulting from development challenges at different levels and sec-
tors [19–21]. The intensity and frequency of climate-related risks in this region are further
aggravated by rising temperatures and sea levels as well as rainfall variability [22]. These
include, among others, the increase in frequency and duration of dry days in Zambia [23],
the persistent drought observed between 2015 and 2020 in South Africa [24,25], flooding
due to tropical cyclones in Malawi, Zimbabwe and Mozambique observed recently in 2019,
2021 and 2022 [26–28] and the severe rainfall observed in the Eastern Africa region between
October 2019 and January 2020 [29]. Meanwhile, risks to climate change are largely man-
aged through two primary approaches, namely, mitigation, and adaptation [30]. Mitigation
seeks to lessen or control the magnitude of climate change impacts by reducing the human
factors contributing to climate change, particularly greenhouse gases. Adaptation empha-
sizes reducing climate change damages and capitalizing on the opportunities associated
with it, for instance, by forecasting its trends and implications [31].

Mitigation is mainly considered to be a concerning matter for developed countries
while adaptation is understood to be a most important aspect for developing nations [32–35].
Adaptation to climate change has different overarching goals including increasing effective
response to stresses and managing risks, increasing resilience and continued functioning of
a system, and reducing vulnerability during times of hazards [36]. Hence, to achieve such
goals it is vital to proactively implement the different adaptation measures, which is also
key for enhancing the socio-economic development of countries [22,37].

In the context of expected future climatic variability, countries in sub-Saharan Africa
are investing in different adaptation strategies. For instance, the southern African region is
implementing programs to promote the conjunctive use of surface water and groundwater
and other augmentation schemes like desalination, to reduce the total reliance on surface
water, particularly in urban areas [38,39]. In the coastal town of Knysna in South Africa,
the municipality is engaged in the maintenance of sea walls to protect the infrastructure
from sea level rises [40]. The use of indigenous knowledge for weather forecasting and
water conservation measures is one of the common measures applied in sub-Saharan
African countries [41–44]. For example, to cope with changing precipitation and heat
stress, some local communities in Zimbabwe harvest water by digging wells for use during
water scarcity [45]. Meanwhile in Senegal, in addition to implementing climate change
awareness campaigns, the country is increasing water supply by constructing dams and
boreholes, which are supported by the planning instruments such as the National Adap-
tation Plans [46]. However, it has been revealed that most of these adaptation measures
are put in place after the occurrence of a crisis (e.g., drought or flood) [47,48], hence the
measures are based on historical weather data [49] and the current adaptation gaps. This
may not be a viable and reasonable approach because the adaptation measures need to be
sustainable by incorporating both current and future projected climate change including
extreme events. Overall, it is not enough to only adapt to the existing adaptation deficit
and there is a need for long-term adaptation measures based on the climate projections.
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Furthermore, it has been shown that climate adaptation strategies in sub-Saharan Africa
are dominated and led by the local communities and individuals [43,50–52]. Thus, locally
relevant climate information and projections suiting the environmental conditions at that
local scale cannot be overemphasized.

Essentially, climate adaptation is likely to be effective with good quality and adequate
hydro-meteorological and environmental data. For instance, according to the Global Center
on Adaptation (GCA) report based on studies in Africa [53], the possible benefit to cost
ratios attained from early adaptation is generally high throughout most climate adaptation
measures, as shown in Figure 1. From the GCA review, it was established that better
knowledge and availability of weather and climate information services is more vital in
achieving climate adaptation than any other adaptation strategies [53], suggesting the need
to intensify such initiatives in so far as climate adaptation is concerned.
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Climate adaptation planning is hampered by a lack of reliable information on climate
including the deep uncertainties relating to the timing and spatial distribution of the im-
pacts [37]. Thus, it remains a challenge to thoroughly understand the extent of future
vulnerability to both human and natural systems including water resources. Nevertheless,
hydrologists are required to provide information on the future climate and water resource
trends to water resource managers and policy-makers for future development and man-
agement. Hydrological and climate models are, therefore, used to predict the effects of
climate change on water resources and to forecast the potential hydrological regimes in
the future [54]. Predicting and quantifying the hydrological impacts and extent of future
climate change is a necessity for devising climate adaptive measures. Prediction of the
impacts of climate change on the hydrological systems including streamflow is usually
performed by using a series of modelling approaches. At first, future changes in the atmo-
spheric energy or the representative concentration pathways are identified, followed by the
compilation of climate projections generated by the general circulation and regional climate
models, and finally, the impact assessment is achieved by applying the chosen hydrological
impact models under different radiative forcing and climate scenarios [55]. This entails the
need to adequately understand the modelling chain for improved prediction and effective
adaptation of climate change impacts.
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3. Nexus between Climate Change, Land Use, and Hydrological Processes

Hydrological processes within a river basin are largely affected by two key factors
namely, changes in climate elements (e.g., precipitation and potential evapotranspiration)
and changes in catchment land use [17,56]. Changes in land use and anthropogenic climate
changes are facilitated by population growth, urbanization, and the need to develop better
facilities [57,58]. Basically, knowledge of the collective impacts of climate change, socio-
economic development, and associated land-use change on water resources is critical for
designing long-term water resource planning. Indeed, with the certainty of climate change
and a changing natural environment, the availability of water resources in the future is
heavily reliant on proper land use planning and management [59]. Climate and land-use
changes can result in both increase or decrease in streamflow, hence there is a possibility
that the changes due to the two factors may counterbalance [60]. Changes in climate and
catchment surface characteristics will result in the spatial and temporal heterogeneity of
water resources. It is thus important to understand such combined impacts for accurate
prediction of future changes in hydrological processes.

Due to the complexity of the hydrologic system owing to the variability in land use
and climate, it is becoming increasingly important to create and integrate different data sets
and approaches to better understand the system [61]. Hydrological models based on the
land surface data coupled with regional climate models are therefore used for forecasting
the behaviour of hydrological and meteorological events under different climate scenarios.
These climate scenarios are noticeable tools that are useful to decision-makers with respect
to characterizing the future climate. Sutton [62] argued that reasonable modelling and
prediction of future hydrological events will need to incorporate socio-economic data
including future population projections. This is particularly true as catchment land use
characteristics are largely modified by population changes and the eventual economic
activities that have an influence on the hydrological processes.

To date, there have been numerous studies that have been documented and provided
reviews about the understanding of the combined impacts of climate and land use changes
on the hydrological processes including streamflow quantity [63–67]. For better planning
of future water quantity within a river basin, hydrological simulations should incorporate
both the projected climate change and future land use [68]. Being the major determining
factors influencing the hydrological regimes, it is vital to differentiate the distinct impacts
induced by climatic and land use changes for appropriate climate change adaptation
and land use planning [69,70], especially due to the ever-changing climate, population
dynamics, and associated land use patterns.

Several approaches have been used in literature to separate and understand the in-
tricate and interconnected relationship between climate and land use changes with the
hydrological regime. Some studies have used only hydrological models, e.g., [71], others
have used a combination of conventional statistical methods such as the Mann–Kendall
and regression analysis with hydrological models, e.g., [72,73], other studies employed
a paired catchment approach, e.g., [74] while some have used conceptual approaches
like climate elasticity and sensitivity methods [75]. Meanwhile, Garg, Nikam, Thakur,
Aggarwal, Gupta and Srivastav [59] argued that the best approach would be the phys-
ically based and spatially distributed hydrological models because of their potential to
simulate hydrological processes in different dimensions. Linear regression is relatively
convenient and easy to use, but it does not consider the non-linearity experienced in the
hydrologic system [76]. The paired catchment approach is challenging as it requires one
to identify a homogeneous catchment with matching climatic characteristics to the one
being studied [77]. The use of hydrological models is encouraged because models are able
to show the physical mechanism and reflect the changes in streamflow [78], however, the
approach requires high quantities and good quality data leading to numerous uncertainties.
Therefore, most researchers use a mix of approaches due to limitations and assumptions
associated with each individual method, because the different methods might produce
contrasting results. For example, Guan, et al. [79] noted in their study that the conceptual
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Budyko-based decomposition showed streamflow variation being largely attributed to
physical changes in catchment characteristics while the hydrologic model method indicated
climate change to have a major influence on streamflow changes.

To better understand the application of the above-mentioned methods, land use
scenarios need to be well examined, including the past and projected or future land use.
Further, when examining the impact of land-use changes on the hydrological regime, it
is imperative to choose a desirable hydrological model that can definitively handle the
spatial and temporal changes in the river basin’s physical characteristics [80]. Hence, the
chosen land-use model should be capable to generate realistic land-use projections because
this will have an overall impact on the hydrological model output. The need for accurate
land-use projections is necessitated by the fact that in some catchments where the effects
of climate change are not felt, increasing population will always create a burden on water
resources due to land use/cover associated changes such as evapotranspiration, runoff,
and groundwater recharge [69].

4. Climate Change Modelling

General Circulation Models (GCMs) are essential and currently have become potential
tools for simulating global climate change and variability [81,82]. These numerical coupled
models represent various earth systems including the atmosphere, oceans, land surface,
and sea-ice [83], and are capable of providing long-term trends in historical, present, and
future climate. However, GCMs fail to provide detailed impacts of climate change on
hydrological processes in small and mid-sized catchments at regional and local scales [84],
and these models only provide rough estimations of uncertainties [85]. The GCMs provide
climate projections at an exceptionally coarser scale of around 250 km × 250 km [86,87].
However, recent developments such as the High-Resolution Model Intercomparison Project
(HighResMIP) within the CMIP6 provide an important horizontal resolution at a scale
finer than 50 km [88], thereby providing reliable simulations of the physical processes [89].
Nevertheless, GCMs may not be sufficient to provide detailed regional information for
climate change impact studies including hydrological studies at river basin scale.

Most climate change impact, adaptation, and vulnerability studies are focused on a
regional or local level, hence climate change information needs to be available at a finer
spatial resolution [90]. Accordingly, GCM outputs are integrated with regional models
for better hydrological modelling at that local scale. Ye and Grimm [84] pointed out that
downscaled GCM outputs are incorporated as input to physical process-based models that
predict hydrologic trends and the potential impacts of climate changes at a catchment scale.
Sun, et al. [91] assented that in general, the common approach for analyzing climate change
impacts on hydrology is by pairing climate variables from GCMs with hydrologic models.
Moreover, assessing the hydrological impacts of climate change comprises projecting the
climate at a global scale using the GCMs, downscaling the global projections to a regional
scale using regional climate models and/or statistical models, and finally, using the regional
outputs in the hydrological modelling [92]. Although global hydrological models are also
used to simulate global river flows [93–95], regional models have the potential to provide
solutions regarding the hydrologic variability at a regional scale, which is primarily of
interest to hydrologists. This is specifically true because despite the fact that climate change
impacts are perceived to be experienced at a global scale, the primary interest is how society
responds to the local and regional effects that have been facilitated by global deviations [96].

Regional Climate Models (RCMs) serves to improve the spatial and temporal resolu-
tion of the coarser GCMs, thereby providing better data for informing policy. The rationale
for the formulation of RCMs and their significance led to the notion of “downscaling”,
whose purpose is to refine different data irrespective of its resolution [97,98]. Thus, down-
scaling can simply be described as a process whereby local and regional climate information
is derived from large-scale modelled data. Downscaling works on the principle that the
GCM describes the effect of large-scale climate forcings, such as due to changes in solar
radiation and influx of greenhouse gases, whereas the RCMs improve the resolution of this
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large-scale data by incorporating the smaller components of the GCM grid scale forcings
like topographical and land cover variations at a mesoscale level [83,90].

Under downscaling, there are two main approaches to how information on the local
conditions can be combined with large-scale climate projections, namely statistical and
dynamical downscaling. Statistical downscaling entails developing an empirical relation-
ship between large-scale climate variables that are provided by the GCMs and the fine
resolution observed from the local climate, which is then used to simulate the future cli-
mate [99,100]. It is based on the concept that climate at a regional scale is largely influenced
by climate experienced at a larger scale and the existing local features, thus, large-scale
climatic parameters serve as predictors for local and regional parameters [98]. In contrast,
dynamical downscaling involves using a GCM output as an input for RCM. In essence,
RCM uses large-scale climate data provided by the GCM at the lateral boundaries, which
are combined with the local scale features like land–sea contrast, topography, and land-use
variations [101], thereby producing representative climate information at a resolution range
of 2.5 to 100 km2 [102]. The statistical downscaling approach is preferred because, apart
from requiring less expensive computing resources [83], it is a viable method for develop-
ing precise and local-level climate estimates [86]. However, training the statistical models
requires long-term and higher spatial resolution climatic data [99], which is a common
challenge in developing countries.

To date, RCMs have been used in different applications that include: providing input
data for assessing the impact of climate change, investigating climate variability, projecting
future climates, and largely downscaling the hydrological cycle [103]. Despite the addi-
tional value in RCMs, as earlier noted, their resolution may not appropriately represent
the local catchment characteristics due to bias errors between the climate model and the
observed data [104–106]. Therefore, before performing any climate change impact studies,
there is still a need to adjust the regional climate model simulations to match the spatial
resolution required by the impact hydrological models, through what is referred to as bias
correction [107–109]. Generally, bias correction is performed through the use of distribu-
tional model output statistics such that the simulated and observed probability distributions
are within the same ranges [110,111]. To rescale these RCM outputs, a number of statistical
bias correction approaches have been developed and available in the literature [112–114].
The most prevalent ones are the univariate bias correction methods whereby only one RCM
simulated variable is corrected at a particular time and location [115,116]. Although these
univariate methods are considered simple and thus their prevalence, they may be unable
to reestablish the spatial and temporal relationships between the climatic variables thereby
creating more biases [117,118]. Consequently, multi-variate bias correction techniques, that
ensure that there is uniformity in spatiotemporal fields and multiple climatic variables
such as precipitation and temperature, have been developed. Multi-variate bias corrections
are considered to result in improved estimation of the joint likelihood of precipitation and
temperature [119]. To date, researchers [115,117,120] are evaluating the applicability and
effectiveness of using the multivariate bias correction methods taking into consideration
the different assumptions in the method. For instance, a study by Guo, Chen, Zhang, Xu
and Chen [120] showed that the use of multivariate methods improves the simulation of
hydrological variables including evaporation and streamflow.

Generally, choosing the right bias correction method is required because these methods
can also be a source of uncertainty in the modelling process, especially when simulating
streamflow [121,122]. In a nutshell, the assessment of climate change impacts on hydrology
is performed in three key stages. Firstly, future climate projections are generated using
GCMs and RCMs, then the climate model outputs are used for hydrological modelling.
Finally, the hydrological model findings are statistically analyzed so that they can be used
for decision-making in different sectors.
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5. Assessing Future Climate Change: Climate Change Scenarios

As earlier indicated, water resource managers and other related authorities are re-
quired to make decisions on how best to plan and manage water resources based on the
expected climate for a particular region. Yet, quantifying the radiative forcing based on the
concentration of future greenhouse gases is a challenge. This is because the concentration
of greenhouse gases is dependent on varying driving forces, among others, advancement
in technologies, population growth, energy sources, political will, and changes in attitudes
towards the environment [123]. Hence, it is a best practice for climate change practitioners
to use a variety of future climate change scenarios that take varying levels of greenhouse
gas emissions into account, rather than a single set of future climate data. This entails that
professionals in the climate sector can work with future climate data to investigate potential
climate conditions over a wide range of futures. These futures are defined through emission
scenarios, which are used to evaluate the effects of near-term decisions on the long-term
future [124]. In general, emission scenarios can be described as “images of the future” as
they suggest what the future will look like [125], thus they are useful tools for analyzing
how the various driving forces (human activities) may influence future emissions [126].
Accordingly, emission scenarios help in analyzing climate change, which includes climate
modelling, impact assessment, adaptation, and mitigation [125].

In the past decades, climate scientists have developed a scenario framework that
integrates a variety of potential climate futures and society for better policy-making. Re-
cently, a framework consisting of potential atmospheric and socioeconomic pathways has
been developed and adopted by the climate research community, to what is referred to as
the Shared Socioeconomic Pathway (SSP)–Representative Concentration Pathway (RCP)
framework [127]. This framework provides diverse potential future information such as
climate, society, and economic trends, thereby offering an essential platform for climate
research. The RCP and SSP scenarios are discussed in this section.

To generate future climate scenarios due to changing information needs for policy-
makers, the IPCC Fifth Assessment Report [5] published a standardized set of scenarios
called Representative Concentration Pathways (RCPs) that are used for climate research and
as input for running climate models. RCPs are a collection of scenarios that encompass the
impact of emissions, concentrations, land use/land cover, and various climate policies [128].
These are different from the scenarios from the Special Report on Emission Scenarios
(SRES) [125], which only considered the radiative forcing as a result of greenhouse gases
and aerosols from anthropogenic factors without any mitigation policies to limit greenhouse
gas emissions.

These four RCP scenarios are: (i) RCP2.6, a low greenhouse gas (GHG) emissions
scenario largely characterized by the declining use of oil and low energy intensity (ii) RCP4.5
describing medium-range emission with low energy intensity and strong reforestation
programs (iii) RCP 6.0 describing medium-range emission and is consistent with heavy
reliance on fossil fuels and intermediate energy intensity (iv) RCP 8.0 representing very
high GHG emissions due to no policy changes to reduce emissions, whereby by 2100 the
global temperatures will have increased by 2.6 ◦C and 4.8 ◦C than it was in 2000 [5].

On the contrary, SSPs are the latest scenarios used for the IPCC Sixth Assessment Re-
port (AR6) and Coupled Model Intercomparison Project Phase 6 CMIP6 [129]. SSPs provide
key narratives for different possible changes in the world climate in the future (over the
century) when there is no climate policy. They comprise two elements, namely: narrative
storylines and quantitative measurements of potential changes in socioeconomic indicators
such as demographics, economic development, and technological advancement [126]. The
development of SSPs was facilitated by the need to advance scenarios that cover both the
greenhouse gas concentrations and the role of social-economic factors in global warming,
hence they complement the RCPs. Further, the development of new scenarios may always
be required to incorporate and run the latest generation of climate models.

Ultimately, the SSPs have variables from six main categories [130]: economy and
lifestyle, demography, technology, institutions and policies (but not climate policies), envi-
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ronment, and natural resources. Five SSPs have been developed, and their outcomes reflect
the possible combination of challenges the society might face while implementing the
mitigation and adaptation strategies. An overview of the five SSPs storylines is presented
in Table 1.

Table 1. A synopsis of the SSP and their narratives. Adapted from [130].

Shared Socioeconomic Pathway A Summary of the Narrative

SSP1: Sustainability—Taking the green road
(low challenges to mitigation and adaptation)

Its emphasis is on the commitment to achieving development goals, increasing
environmental awareness in societies around the world, and a gradual move
toward less resource-intensive lifestyles. A society following the SSP1 path will
experience relatively low challenges to mitigation due to the increase in renewable
energy and environmentally friendly technologies. Again, relatively low
challenges to adaptation will be experienced because of the reductions in
inequality and strong institutions at global to national scales.

SSP2: Middle of the road—(intermediate
challenges to mitigation and adaptation)

Describes a scenario whereby the society follows a path in which the social,
economic, and technological trends do not significantly change from the historical
patterns. Institutions at the national and international levels strive to but move
slowly towards accomplishing sustainable development goals. Environmental
degradation, global population growth, and education investments will all be
moderate. Hence, the world will experience moderate challenges to mitigation and
adaptation, but with major differences amongst countries.

SSP3: Regional rivalry—A rocky road (high
challenges to mitigation and adaptation)

This pathway is characterized by increasing nationalism, concerns about
competitiveness and security, and regional conflicts, which eventually push
countries to highly focus on domestic and regional issues. Further, economic
growth is slow, inequalities are high while population growth is high in
developing countries and low in developed nations.

SSP4: Inequality—A road divided (low
mitigation challenges, adaptation
challenges dominate)

Inequalities increase due to increasingly unequal investments in human capital,
economic opportunity, and political power. Economic growth is moderate in
industrialized and middle-income countries, while low-income countries remain
behind. Low challenges to mitigation are largely due to the improved investment
and adoption of low carbon energy sources while adaptation challenges will be
high for societies with low levels of development and little access to effective
institutions for coping with economic or environmental stresses.

SSP5: Fossil-fueled development—Taking the
highway (high challenges to mitigation, low
challenges to adaptation)

Society highly relies on competitive markets, innovation, and participatory
societies to produce rapid technological progress and the development of human
capital as a path to sustainable development. Global markets are increasingly
integrated and there are strong investments in health, education, and institutions
to enhance human and social capital. Further, the push for economic and social
development is coupled with the exploitation of abundant fossil fuel resources and
the adoption of resource and energy-intensive lifestyles around the world. High
challenges to mitigation are a result of heavy reliance on fossil fuels and the lack of
global environmental concern while relatively low challenges to adaptation are
due to the attainment of human development goals, robust economic growth, and
highly engineered infrastructure.

It can be debated that on their own, SSPs are as well limited as they produce climate
projections that are deemed not to specifically relate to a societal pathway. Hence, due
to the limitation of RCPs, it is recommended that RCPs and SSPs are merged for a better
assessment of climate risks and mitigation and adaptation policies [127].

The use of a combined RCP/SSP framework in hydrological modelling is useful
in having a comprehensive knowledge of future climate impact on river basins under
various climate emission scenarios. Accordingly, researchers in the hydrology and climate
field employ the RCP/SSP scenarios to better understand the potential future changes in
the water resources under different climate scenarios. For instance, Kumar, et al. [131]
employed the Soil and Water Assessment Tool (SWAT) model and used climate projections
from CMIP5 and CMIP6 to understand the dynamics of hydrological and environmental
flows in the central Himalayan River basin (India). In the study, future climate projections
for rainfall and temperature were evaluated using both the RCPs and SSPs emission
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scenarios. Mensah, et al. [132] used the WEAP model together with two RCPs (RCP4.5 and
RCP 8.5) and three SSPs (SPPS 2, 3, and 5) to simulate the groundwater demand at present
and future times in nine sub-catchments of the White Volta River Basin in Ghana. The
study established that four of the nine sub-basins will face water shortage under all future
scenarios. The study further showed that climate change and an increase in socioeconomic
activities will create gaps between groundwater demand and supply, particularly in areas
with higher population density and arable agricultural land [132].

Meanwhile, since the advent of the CMIP6, other researchers in recent years have been
using the CMPI6 model only for climate projections because the new and updated model
has higher climate sensitivity and mostly produces simulated data closer to the actual
observed climate change because it incorporated experiences from the past models and
used new technologies [133,134]. For instance, Song, et al. [135] used eleven CMIP6 GCMs
to estimate future runoff for two SSPs using the SWAT and Long Short-Term Memory
networks (LSTM). Coupled with the SWAT model, Zhang, et al. [136] employed data from
the CMIP6 program to simulate the runoff in the Baihe River Basin (China) based on three
shared socioeconomic pathways (SSP1, 2, and 5).

Studies that have applied the CMIP6 in southern Africa are not prevalent, however, a
few researchers have employed the CMIP6 data to project the climatic parameters including
precipitation and temperature, mostly at a regional level. For example, Almazroui, et al. [137]
applied three SSPs scenarios (SSP1, 2, 5) from CMIP6 to project changes in precipitation and
temperature over Africa. The study observed significant increasing trends in temperature
and high precipitation decline in southern Africa under all three scenarios. Sian, et al. [138]
effectively used data from the CMIP6 to model precipitation trends over the southern Africa
region, however, there were discrepancies in the results in the different sub-regions. There-
fore, it is recommended that the applicability of the CMIP6 program be tested in different
countries and localized river basins in southern Africa to demonstrate its performance and
relevance in predicting future climatic variables such as temperature, precipitation, and
runoff in the region. This is notably the case for the majority of southern Africa because the
response and adaptation to climate change effects are generally achieved from the analysis
of local conditions [139].

From the reviews, it is highlighted that emission scenarios are not considered to be
climate predictions, largely because there is high uncertainty in the future. Therefore, it is
important to explore various emission scenarios and regularly reassess these scenarios to
reflect technological and socioeconomic changes [140]. Applying multi-model ensemble
scenarios, including the recent AR5/AR6 (RCPs/SSPs) into various climate and hydro-
logical models has the capability of increasing the projection range that may be closer to
reality. The combination of RCPs and SSPs employed in the CMIP6 model ensured that the
potential future socioeconomic changes are better captured and described, which is key to
having more rational future scenarios.

6. Synopsis of Applied GCMs and RCMs in Southern Africa

Currently, climate change modelling studies at a regional and local scale entail starting
with a global climate model and then downscaling it to the desired region. Thus, the
chosen GCM and RCM will not only have a direct implication on the regional or local water
resources but also, in general, climate change adaptation. The key challenge in choosing
the global models for use in regional studies relates to the fact that different GCMs produce
varying downscaled results [141,142]. Therefore, for appropriate water resource planning,
selecting a suitable GCM for a specific location is a necessity.

As the case for the majority of Africa, the southern African region is considered to be
one of the regions highly vulnerable to the effects of climate change and variability [138],
largely due to its low adaptive capacity [20] and because a majority of its people directly
depend on the natural environment for a living [143]. To formulate effective climate
adaptation approaches, scientific information on the possible future climate is needed
for every region including at a local scale. To this effect, the demand for climate change
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information at different spatial and temporal resolutions is gaining popularity amongst a
wide spectrum of decision-makers. Hence, climate models are the major mechanism for
projecting future climate change under different emission scenarios [144].

Numerous researchers have to date assessed the performance of climate models to
simulate the different climate data over the southern African region. The studies focused on
projecting information such as surface solar radiation, droughts, precipitation variability, cli-
mate change signals, and hydrological features such as runoff and evapotranspiration [145].
At present, the Coordinated Regional Downscaling Experiment (CORDEX) Africa domain
is the most common RCM that has been evaluated to establish its ability to simulate climate
data including in southern Africa.

Shongwe, et al. [146] performed a study to evaluate the capability of CORDEX RCM
in simulating variation, timing, and frequency of events in monthly summer rainfall over
southern Africa. The study observed that majority of CORDEX RCMs were able to simulate
the progression, extent, start, and cessation of precipitation over southern Africa, despite
the presence of biases in some models. The observed and modelled data strongly correlated
around the Inter-Tropical Convergence Zone, near the 20◦ South region. Shongwe, Lennard,
Liebmann, Kalognomou, Ntsangwane and Pinto [146] further noted that amongst the
individual RCMs, the ARPEGE5.1 showed to have performed better within the southern
Africa region.

Meque and Abiodun [147] assessed the ability of ten RCMs from the CORDEX project
to simulate the relationship between El Nino Southern Oscillations and the droughts in
southern Africa. Of the ten RCMs, i.e., RegCM3, ARPEGE, PRECIS, CRCM, HIRHAM,
REMO, RACMO, RCA, CCLM, and WRF, the ARPEGE model performed the best while the
worst simulation was from the CRCM model. The disparities in the model performance
were attributed to the lateral boundary conditions of the models.

Using data from 23 GCMs from the CMIP6, Sian, Wang, Ayugi, Nooni and On-
goma [138] explored the spatial-temporal changes and modelled the future trends in
precipitation over southern Africa. The study established that the GCMs were effective in
capturing the precipitation trends over the region, however, precipitation was generally
overestimated in high elevation areas. Further, the study noted that three GCMs namely,
FGOALS-g3, MPI-ESM1-2-HR, and NorESM2-LM, performed the best over the region.
Based on the findings from the southern Africa sub-regions (i.e., Eastern-Southern Africa,
Western-Southern Africa, and Madagascar), Sian, Wang, Ayugi, Nooni and Ongoma [138]
concluded that there is no single GCM that produced consistent results, hence, precipitation
trends cannot be generalized for the region and precise findings can be obtained through
small scale local studies.

A study by Karypidou, et al. [148] was conducted to see if the climate change signals
and monthly precipitation bias and variability within the southern Africa region were a
result of RCMs or their driving GCMs. An ensemble of 19 RCMs from the CORDEX-Africa
namely, CCLM4-8-17.v1, RCA4.v1, and REMO2009.v1 and a collection of 10 GCMs from
CMPI5 were used. The study noted that in the simulations there was a consistent wet
bias in both RCM and GCM, although the magnitude and spatial extent were smaller in
the RCMs. Thus, the study concluded that RCMs could be viable tools for studying the
impacts of climate change in the southern African region as they can resolve some biases
observed in GCMs. Additionally, Karypidou, Sobolowski, Katragkou, Sangelantoni and
Nikulin [148] showed that projections from CORDEX-Africa domain can provide sound
information for studying climate change impacts. Using CORDEX-Africa, CMIP5, and
CMIP6 ensembles to determine precipitation trends in southern Africa, the study showed
that CORDEX and CMIP5 data underestimated the observed trends while the CMIP6
showed conflicting results by indicating a continuous drying trend. Nevertheless, a better
performance was observed in the CORDEX-Africa, particularly on the annual and extreme
precipitation indices observations.

Based on the aforementioned recent studies, it is evident that research on climate
modelling within the southern African region is expanding. Moving forward, it is critical
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to understand how well these models represent a specific country at a local scale, which is
a crucial element for carrying out climate change impact assessments and adaptations for a
specific context. This is particularly important because, for instance, within Africa biases
in RCMs acquired from GCMs vary with regions and climatic variables, hence specific
impact assessment for a particular country or local region needs its model evaluation
separately [149]. Further, characterizing the strengths, weaknesses, and uncertainties
associated with the climate models is a prerequisite for projecting future climate change
impacts and model evaluation. In some studies, for example [150], it has been seen that there
is a poor correlation between the individual RCMs and GCMs with their corresponding
observed data. Therefore, a collection of RCMs should be used based on the RCM’s
capability to model climatic features of the specific region under interest. Again, the
differences in the models in projecting the climatic variables can be minimized by reducing
the biases from both the GCM and RCM, hence enhancing the reliability of the data [151].

7. Hydrological Models under Changing Climate: Role of Hydrological Models in
Climate Change Studies

There exists an intricate relationship between hydrological processes such as stream-
flow and climatic variables like temperature and rainfall across many river basins. As such,
to examine the effects of climate change on streamflow, a mix of hydrological models and
climatic projections from GCM and RCMs are commonly utilized [81,152]. Despite the
potential to provide data in a relatively finer resolution, RCMs solely may fail to furnish the
appropriate aspects for addressing the climate change on water resources and hydrological
processes. In general, there is high uncertainty in future projections of water resources due
to the disparities in the high-resolution climate models and the hydrological models at
a local basin scale [153]. In contrast, Olsson, Arheimer, Borris, Donnelly, Foster, Nikulin,
Persson, Perttu, Uvo, Viklander and Yang [2] argued that the matching in sizes and spatial
scales (less than 50 km) between most river basins and a general RCM, would mean that
the RCMs, despite the biases, can provide pertinent spatial-temporal climate simulations.
Regardless, RCM outputs are employed as input data and are integrated with the hydro-
logical model to assess basin-scale hydrological processes [145,154]. This is relevant to
the extent that some hydrological impacts are assessed at a highly local scale having a
temporal climate variability, which has fine resolutions compared to those offered by a
standard RCM.

To date, hydrological models are widely regarded as essential tools for managing
environmental and water resources. Thus, the modelling of climate change impacts on
hydrological processes continues to receive interest from the different land surface and
hydrology researchers, considering the continued land use/cover changes and varying
climate characteristics. As previously highlighted, the impact assessment of climate change
on hydrological processes encompasses many stages that include choosing the GCM, the
downscaling method, the emission scenario and also deciding the approach to hydrologic
modelling. For instance, Ref. [16] noted that selecting the structure of the model and
appropriate calibration of parameters are two of the most important elements to consider.
When these two elements of the hydrologic model are chosen based on the modeller’s
preferences, the impacts of climate change are perceived differently by different modellers,
hence having an impact on the climate adaptative strategies [16]. This section reviews
some of the common criteria used when selecting a hydrologic model for climate impact
assessment with a comparison between studies in developed and developing regions with
a focus on southern Africa.

7.1. Choosing the Right Hydrologic Model for Climate Impact Analysis

Hydrological models are widely employed to predict future stream runoff as a way to
analyze climate change impacts on water resources. Several studies on the climate change
impacts on hydrological processes have shown that, for instance, in southern Africa, there
is a high likelihood of temperature increase in the future while precipitation and streamflow
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could increase or decrease depending on the region, the extent of catchment modification,
and mostly the selected GCM/RCM type [87,145,155,156]. These studies have used either
one or a combination of various hydrological models to simulate hydrological responses
under different climate change scenarios. Indeed, the best approach to understanding the
hydrology of a river basin under various climate change scenarios is to employ various
hydrological models under different scenarios [3]. However, Krysanova, Donnelly, Gelfan,
Gerten, Arheimer, Hattermann and Kundzewicz [13] argued that in addition to using an
ensemble of models, the best strategy is to use models once they have been evaluated and
their performance is taken into account.

Unlike developed countries, a large number of developing nations do not have hydro-
logical models of their own, largely because of fairly low technical capacity for simulating
the models and lack of financial resources to compute and maintain the models [157]. This
means that modellers and researchers in developing countries strive to choose an ideal and
appropriate model from a variety of models developed in other regions.

The key question is what criteria modellers apply in selecting a hydrological model
for different impact assessments. Addor and Melsen [158] realized that many researchers
adopt a hydrological model due to the “legacy” associated with that model. The modellers
are familiar and have practical experience, hence it becomes convenient to use such a
model. Addor and Melsen [158] further reasoned that with time, the hydrological modeller
gets a deeper insight into the model, hence among other things they can easily build
it in a different setting and identify possible errors. However, using this approach will
mean that the modeller will be limited to only using one model, despite the opportunities
and potential gains from comparable models, which might even yield better results from
the study objective perspective. Thus, model intercomparison where the strengths and
weaknesses of each related model are evaluated is a necessary step to help with the choice
of the right model. In addition, the relative easiness and flexibility of the model remain
key factors in selecting a hydrological model. It is still common that a model is chosen due
to that model and its codes being freely available to the public, the required quantity and
quality of input data, the applicability in different regions, and the model’s temporal and
spatial scale [159].

Meanwhile, in developed countries, one country regardless of size may have numerous
but similar hydrological models [160]. It can be argued that such diversity is due to different
contexts in which the model is being generated and the physical features and geographical
settings of the area under study. Still, even in some developed countries, despite having a
number of models, most hydrologists are accustomed to using one hydrological model and
seldomly pursue learning other models [160]. While it is known that there is no individual
model that works for all scenarios [161], it is essential to apply different hydrological
models to reduce the uncertainty associated with model structure and execution [162].
However, issues to do with environmental management including water resources, are
complex in nature, hence scientists prefer working with only one suitable model [161].

Considering all these factors for hydrological model selection and having in mind that
most countries do not have a model of their own, it is only rational that the preferred model
particularly for climate change assessment should be capable of being transferred [163],
such that the results can generalized to other regions and other time periods. Nevertheless,
an appropriate hydrological model should serve its purpose, which includes understanding
the catchment hydrological processes, testing the hypothesis, and also being used in the
decision-making process [162,164]. Therefore, of ultimate importance would be that the
model is precise such that the simulated parameters are closer to the observed values [164].
Although a model can be chosen based on one’s preference, what is clearly important
is that the model should achieve the objectives of the study, which are usually project
dependent. Hence, one needs to understand if the model outputs are valuable to the project
and whether the model can simulate the desired hydrological processes adequately. For
example, a hydrological model projecting impact assessment on a river basin should be
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capable to manage the continuous future changes in the basin, which are typically climate
(temperature and precipitation) changes and land use/cover alterations.

In the southern Africa region, researchers on hydrological modelling have applied
different models in areas of streamflow evaluations under different climate and land-use
changes. The main reasons for the model choice range from a well-known history of
the model’s ability to achieve certain objectives, which is based on how the model was
developed as well as evaluations from previous related studies, user-friendliness of the
model and scalability of the model. Some recent studies on the hydrological models used
in the southern African region and their reasons for adoption are summarized in Table 2.

Table 2. Summary of some of the recent studies in southern Africa applying hydrological models.

Hydrological Model Reason for Selecting the Model Basin Applied Reference

The Soil and Water Assessment
Tool (SWAT)

Ability to perform long-term
simulations, including climate
change impact studies

Zambezi River basin Ndhlovu and Woyessa [165]

The Water Evaluation and
Planning (WEAP)

Comprehensiveness with respect
to water resource management
including the water supply,
demand, and use.

Chongwe River Catchment, Zambia Tena, et al. [166]

JAMS/J2000 model

Applicable for comparing
different hydrological processes in
different catchments, hence can be
performed on medium and
large-scale catchments

Verlorenvlei, Berg River, Eerste, Bot
and
Breede (Western Cape province,
South Africa)

Watson, et al. [167]

mesoscale Hydrological
Model (mHM)

Does not depend on the basin
location and size (applicable on a
basin scale of 4 to 530,000 km2).
Performed better in different
catchments of different sizes and
diverse climatic regions

Lake
Malawi and Shire River Basins Mtilatila, et al. [168]

The Pitman model

It has previously been utilized in
the study area and continues to be
used in South Africa for water
resource planning

Eerste River catchment Du Plessis and Kalima [156]

MIKE-SHE Capability to model at a finer
scale for small sub-basins

Upper Berg, Dwars, Du Toits, and
Elands—all neighbouring catchments Rebelo, et al. [169]

ACRU

The model has been widely used
in the southern African region for
studying climate and
land-use changes

The uMngeni catchment Kusangaya, et al. [170]

7.2. Commonly Used Hydrological Models for Climate Change Impact Assessment

Across the world, the impact of climate change on streamflow variability continues
to receive interest from a wide range of researchers [3,154,168,171,172]. Currently, varying
hydrological models are used to simulate future changes in the hydrologic regime due to
potential changing climate. Within sub-Saharan Africa where hydrometeorological data
are usually scarce, some of the commonly applied models in literature for simulating
streamflow include The Hydrologiska Byråns Vattenbalansavdelning (HBV) model [173],
the Pitman model [156], the Variable Infiltration Capacity (VIC) [174], the SWAT [165,175],
the HEC-HMS rainfall-runoff model [176,177], and most recently using the Artificial Neural
Networks (ANN) as a tool for simulating runoff [178].

The HBV is a semi-distributed conceptual model, that requires daily rainfall, air
temperature (in areas having snowfall), and monthly potential evapotranspiration data, in
addition to catchment characteristics data such as digital elevation, land use, and vegetation
cover [179,180]. It has been widely used for climate change and land use impact assessments.
For example, the model was applied by Abdulahi, Abate, Harka and Husen [173] to
investigate how future climate change would impact streamflow in the upper Awash sub-
basin in Ethiopia. The CORDEX-Africa RCM temperature and precipitation data under the
RCP4.5 and 8.5 scenarios were applied for the historical period 1996–2015 and streamflow
was simulated for the 2021–2040 and 2041–2060 periods. The HBV model showed that the
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streamflow in the Awash sub-basin would increase under both RCPs, largely in response to
precipitation increase [173].

The Pitman model, which has been largely applied in southern Africa, is a monthly
time step conceptual semi-distributed hydrological model, operating on a sub-basin
whereby every sub-basin has its own data inputs [181]. Du Plessis and Kalima [156]
applied the Pitman model to project the flow of the Eerste River (South Africa) due to
climate change. Using the historical period from 1983 to 2018, Du Plessis and Kalima [156]
simulated the temperature, precipitation, and flow for the 2022–2057 and 2058–2093 pe-
riods under the 4.5 and 8.5 RCPs. The study showed that as a result of climate change,
evaporation will increase while precipitation will decrease resulting in an eventual decrease
in streamflow.

A land-surface, semi-distributed VIC is one other model that has in recent times
been used to model the impacts of climate change on the catchment hydrological regime,
largely at a macro scale. The model, which requires rainfall, maximum and minimum
air temperature, and wind speed is applied to simulate the effects of both land use and
climate change in a river basin [180]. As it is a macro-scale model [182], it is inapplicable for
small basins, hence it can project hydrological processes on wider catchment, regional, and
even continental scales [183]. Roy, Valdés, Lyon, Demaria, Serrat-Capdevila, Gupta, Valdés-
Pineda and Durcik [174] employed the VIC model in order to assess how the hydrological
processes of the Mara River basin (East Africa) are impacted by climate change focusing on
the near term. The model was able to predict the seasonal and annual trends in rainfall,
evapotranspiration, and soil moisture.

The SWAT ecohydrological model is one of the most common, computationally effi-
cient, and comprehensive river-basin models for tackling water resource problems in the
long term [184]. The SWAT, a semi-distributed physically-based model, simulates differ-
ent hydrologic processes and it can be applied in different basin scales, climatic regions,
and land management practices. The model’s main meteorological data requirements are
daily precipitation, minimum and maximum temperature, wind speed, air humidity, and
solar radiation while catchment characteristics such as slope, soils, and land use are also
required for simulating the runoff [184]. Despite the popularity, validation of the model is
a challenge particularly in ungauged basins since the model requires a large dataset. To
overcome this, one common approach is regionalization, whereby data from a similar and
gauged basin is used and transferred to an ungauged basin to calibrate and validate the
model [185]. Further, the readily available global datasets for water resources, climate, and
land use provide an opportunity for modelling in the SWAT platform.

The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS), is
a semi-distributed conceptual and semi-physically based model for predicting flows at
different spatial scales, including larger basins and small basins in natural and urban envi-
ronments [186]. Lawin, Hounguè, N’Tcha M’Po, Hounguè, Attogouinon and Afouda [177]
applied the HEC-HMS to model the impact of climate change on the flow of Ouémé River
(Benin) between 1971 and 2050 by employing four global climate models. The HEC-HMS
successfully projected the runoff due to climate change and at the same time took into
consideration land-use changes. The study projected a significant decreasing trend and
non-significant increase in streamflow based on the RCP 4.5 and 8.5 scenarios, respectively,
hence proposed for the region to enhance its water infrastructure. The model was also
recommended in catchments with limited soil data.

In recent years, one popular technique used in analyzing and estimating runoff under
non-linear catchment processes is the use of artificial neural networks (ANN). ANNs use a
mathematical simulation approach inspired by interconnected biological neurons [187] and
are capable of representing complex and non-linear processes that connect a system’s input
and outputs [188]. The use of deep learning skills, therefore, can be highly used in place of
the conventional conceptual or physically-based hydrological models, especially in regions
with insufficient meteorological and topographical data and poor physical understanding
of the basin characteristics [189,190]. Valeh, et al. [191] simulated the rainfall and runoff
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in the Ammameh basin (Iran) under climate change using the ANN and SWAT models.
Based on the error analysis, the study showed that the ANN model performed better than
the SWAT including when determining extreme conditions such as floods and droughts.
Hence, the ANN models can be assertively used in climate change studies, importantly
in river basins with scanty hydrometeorological data, despite the need for high technical
knowledge in programming.

It is of no surprise that regions such as sub-Saharan Africa largely employ semi-
distributed hydrological models as they are not only physically based but are also relatively
less demanding on input data. On that note, fully distributed models such as the MIKE SHE,
despite being able to model the hydrologic processes in higher detail, are data-intensive
and thus rarely applied in regions such as sub-Saharan Africa.

In summary, hydrological models continue to be used to address a wide range of water
resources and environmental-related problems. However, the application of such models
in regions such as sub-Saharan Africa is hampered by poor data availability especially at a
microscale level, causing poor performance and high uncertainty [167]. At large, in most
studies, the models are chosen based on data requirements and availability, and functional-
ities. For one to sufficiently describe the simulated phenomena such as future streamflow,
the spatial and temporal extent of input data need to be adequate, otherwise the model’s
performance will be reduced. Owing to this, the use of gridded meteorological datasets
offers a great opportunity in such basins where data is limited or poorly distributed. For
instance, Onyutha, Turyahabwe and Kaweesa [175] showed that satellite-driven meteo-
rological data can help in alleviating data paucity, which is a key challenge in applying
physically-based hydrological models, particularly in developing countries. A review by
Akoko, et al. [192] also indicated that with the use of remotely sensed data, the application
of the SWAT model in ungauged basins in Africa was successful in analyzing runoff pro-
cesses, simulating streamflow, and even calibration. Further, the use of Gravity Recovery
and Climate Experiment (GRACE) satellite data remains a viable option for understanding
and processing runoff characteristics [193–195]. Overall, despite the numerous models and
techniques for simulating runoff under changing climate and catchment characteristics,
each model will have its advantage and limitation, thus it is important to critically evaluate
which model will help in achieving the study objective.

8. Uncertainty in Modelling the Hydrological Impacts of Climate Change
8.1. Uncertainties in Climate Models

The impacts of climate change are determined by the extent to which that change
occurs. A thorough understanding of the historical, present, and future climate change
impacts on water resources is hindered by the uncertainties associated with the multifaceted
processes affecting the climate system [153]. Walker, et al. [196] defined uncertainty as
“any deviation from complete deterministic knowledge of the relevant system”. High
uncertainty provides little confidence in the decisions made relating to both anthropogenic
climate change and natural variability in climate. Therefore, minimizing uncertainty in
future climate model simulations and their associated impacts on water resources is key to
having reliable climate estimates and information, thereby ensuring better adaptation.

Uncertainty in modelling the hydrological processes can originate from various
sources, which can happen in the past, present, and future estimates. Past and present
uncertainties are largely due to two sources, which are data limitations and difficulties in
determining the causes of complex processes in the hydrological system triggered by the
interaction of biological, physical, and human systems [14]. This substantiates the need
for having a broader understanding of the hydrologic system along with good quality and
adequate data, with a view to building up a robust and reliable hydrological model.

Generally, from the climate system perspective, the two main sources of future uncer-
tainty originate from firstly, the actions of human beings resulting in the undefined degree
of future concentrations of emissions, and secondly, uncertainty over the capability and
knowledgeability of humans to better model the climate [197]. Specifically, the different
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steps applied to come up with the projections in regional climate models, collectively,
also result in numerous uncertainties. These various sources of uncertainties from climate
model projections can be categorized into four, namely [90]: (i) scenario uncertainty, i.e.,
uncertainty related to the emission or concentration scenario (ii) GCM uncertainty, i.e.,
uncertainty related to how the different global models respond to a particular emission
scenario, (iii) RCM or downscaling uncertainty i.e., the uncertainty resulting from the use
of several RCMs and several downscaling techniques from a specific GCM projection, (iv)
uncertainty caused by the internal variability of the climate system.

Scenario uncertainty emanates from the unpredictability surrounding the emissions
and concentrations of greenhouse gases in the atmosphere due to human activities [197].
Largely, scenario uncertainty increases tremendously with time, eventually becoming the
most significant uncertainty when projecting climate change [99]. Human-induced factors
such as population growth, industrialization, and related economic development will
continue to increase the atmospheric burden in the next century [198]. Hence, it becomes
difficult to confidently determine future concentrations as they depend on the conduct of
humans. In addition to the above-mentioned varying sources of uncertainties, the overall
uncertainty in climate projections is dependent on how these uncertainties integrate with
different components of human behaviour, improvement in technology, and changes in
socio-economic developments [149]. Still, despite such future uncertainties, the confidence
in the climate model projections can be improved by a better understanding of the physical
processes characterizing the models and also having a comparison of the previous forecasts
against what was observed [99].

Understanding climate model uncertainty and increasing the level of confidence in
the projections is key to adaptation planning. As already discussed, the unquantified
anthropogenic activities and the resultant inherent scenario uncertainty remain a barrier to
effective climate change adaptation planning. On this note, Motesharrei, et al. [199] argued
that effective adaptation policies need to have a coupled earth/human system model by
having bidirectional coupling, which would represent the real world’s positive, negative,
and delayed feedback. This would provide comprehensive knowledge of the modern
non-linear world situation, which is important for science-based decision-making.

8.2. Uncertainties in Hydrological Models

Since hydrological models are a simplified version of the actual processes in the hy-
drological cycle, this simplification results in hydrological models becoming uncertain.
Uncertainties in hydrological models originate from three key sources: parameter uncer-
tainty, the structure of the model, and the input and observed or calibration data [162].
Considering that hydrological models involve the use of a wide range of input data, the
model tends to be well parameterized, particularly as a result of the absence of such input
data [92]. On the other hand, uncertainty due to model structure is a result of the inability
to thoroughly simulate the real-world processes [200]. In essence, the performance of the
model is largely dependent on the model structure [201].

Meanwhile, a better understanding of the hydrological system begins with the avail-
ability of comprehensive and accurate hydrological data. McMillan, et al. [202] summarized
the uncertainties in the hydrological data into five groups, namely: measurement or point
uncertainty e.g., rainfall depth whose measurement occurs at a point; uncertainties from
data derived from a proxy measurement, such as streamflow derived from a river stage
measurement, uncertainty from data interpolated in space and time, scaling uncertainty
whereby data measured at one usually small scale is used for a process at another larger scale,
and uncertainties in data management, for example, due to human or computing errors.

From the above reviews, it is shown that hydrological simulations under climate
change are limited due to uncertainties from both hydrological and climate models. As
there are varying sources of uncertainties, it is likely that some types of uncertainties have a
larger influence on the final model output than others. For instance, Joseph, Ghosh, Pathak
and Sahai [92], while assessing the hydrologic impact of climate change, compared the
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contribution of parameter uncertainty and climate model uncertainty in the hydrological
simulations. The study found that hydrological parameter uncertainty was less and nearly
negligible compared to climate model uncertainty, hence suggesting the need to prioritize
minimizing the climate model uncertainty before adopting the findings. Indeed, reducing
these uncertainties provides high confidence to policymakers to use the projections for
managing water resources and adapting to climate change. Dobler, et al. [203] also identified
that choices of the GCM and RCM were the principal sources of uncertainty while the
uncertainty from hydrological model parameters was negligible. Therefore, to reduce these
uncertainties, it is recognized that future climate change projections cannot be based on a
single model. Therefore, in order to develop an acceptable model, multiple simulations
from multi-model ensembles are used [154,204]. This is because the various structures in
different models pick up a wider range of catchment responses, which are subsequently
captured in the combined model [201].

9. Conclusions

Despite recent improvements in the horizontal resolution in global climate models,
on their own, these models may be unable to effectively simulate the hydrological im-
pact of climate change at a river basin scale. Thus, climate models are integrated with
hydrological models in order to adequately describe the responses of the basin due to both
climatic change and human influences. Under changing physical and natural environments,
hydrological models continue to be valuable tools for developing different scenarios for
managing water resources, thus, choosing the right hydrological model is crucial.

The impact of climate change on water resources and mankind, in general, will be
determined by how the earth system responds to variations in radiative forcing but also on
the society’s feedback and adaptation to changes in technology, demographics, socioeco-
nomic development, and policies. High uncertainties in the future radiative forcing have
facilitated the continued development and use of the latest and improved emission sce-
narios, which are used to assess the prospective impacts of different policies and response
plans. Thus far, RCPs and SSPs present a great opportunity for advancing climate research
and they offer a potential framework for mitigating emissions and analyzing the impact of
climate change. For an individual study where climate models are coupled with hydrologic
models, it is essential to integrate the RCPs and SSPs for effective assessment of climate
risk, adaptation, and mitigation.

From a water resource modelling perspective, the initial uncertainties stem from dif-
ferences in the spatial and temporal coarser resolution of the climate model compared to
the small-scale and finer resolution of the hydrological model. Meanwhile, information at
a smaller scale is the most preferred for better planning at a river-basin scale. Reducing
uncertainties in modelling the hydrological impacts of changing climate largely involves
the advancement in data availability and improvement in both the climate and hydrologi-
cal models.

As reviewed in this article, model input data can be improved by incorporating
remotely sensed and other global datasets while model improvements would entail having
a better understanding of the model’s physical processes, assumptions, and limitations in
the applicability of the model. This is critical for developing countries to better adapt to the
ever-changing environment. For example, within the southern Africa region, many recent
articles have incorporated different downscaled RCMs to improve the modelling results.
Further, the best-performing RCMs have been indicated in several studies. Nevertheless,
more research on the performance of downscaled RCMs at a basin level needs to be
intensified because it is at this scale where most decisions on water resource management
are carried out.
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