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The theoretical explanation of electric field structures associated with density depletion in the Earth’s upper 
ionosphere is presented. Using the quasi-neutrality hypothesis, the effect of excess energetic electron species 
is studied on the evolution of nonlinear low-frequency ion-cyclotron and ion-acoustic waves in a magnetized 
auroral plasma. The dynamics of the cold ion beam is governed by the fluid equations and the electron is treated 
as energetic species with non-thermal density distribution. Numerical computations appear in a series of periodic 
oscillations, such as spiky, sawtooth and sinusoidal waveforms. The present model can generate up to 18 mV/m 
electric field amplitude, which is in the range of the FREJA satellite measurements in the auroral acceleration 
region.
1. Introduction

Broadband electrostatic noise (BEN) have been observed with fre-

quencies fluctuating from the ion-cyclotron up to and higher than the 
ion plasma frequency (frequency range of several hectohertz (hHz) 
to a few kilohertz (kHz)) in the auroral acceleration region of the 
Earth’s magnetosphere [1]. Several spacecraft missions have reported 
that BEN has a potential of dynamical characters with small-scale, large-

amplitude, magnetic-aligned electric fields in different regions of the 
magnetosphere, e.g. in the auroral acceleration region [2], the plasma 
sheet boundary layer (PSBL) [3], polar cup boundary layer (PCBL) [4], 
the Earth’s high altitude polar magnetosphere [5], on cusp field lines 
[6] and magnetosheath [7], etc.

Further investigations revealed that BENs consist of non-linear, 
quasi-static, time-domain parallel or/and perpendicular electric field 
structures, such as spiky, sawtooth and sinusoidal structures in an elec-

trostatic ion cyclotron (EIC) wave reported by S3-3 [8], Viking [9], 
FREJA [10], POLAR [11, 12] and FAST [13] satellites. Various theo-

retical investigations of such electric field structures parallel and per-

pendicular to the geomagnetic field line have been done by several 
authors [14, 15, 16, 17, 18] using the fluid theory technique. In or-

der to explain the generating mechanism of the parallel electric field 
fluctuations which exhibit sawtooth or spiky wave structures observed 
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by FAST satellite mission, Reddy et al. [14] presented a magnetized 
two-component auroral plasma model consisting of a cold ion and Boltz-

mann electron distribution, which is responsible for the field-aligned 
current. The investigation reveals series of non-linear structures, such 
as sinusoidal, sawtooth and spiky waveforms.

The instruments on the Viking [9] and FREJA [10] satellite have 
detected a localized electrostatic structures in the lower hybrid wave 
frequency of the Earth’s upper atmosphere with characteristic features 
of a density depletion supported by an enhancement of the electric field 
fluctuations, which appear as wave-filled cavities with strong poten-

tial drop along the geomagnetic field line of the Earth’s magnetosphere. 
Such observed non-linear electrostatic structures might be found to ex-

ist predominantly in regions where high-energy particles accelerated 
or during the magnetic reconnection. A pattern of such fluctuations is 
shown in Fig. 1, where the period of oscillation of the wave propa-

gation along the magnetic field line is found to be small [19]. These 
observed structures are generally associated with beams of energized 
ions flowing in upward directions and electrons being decelerated along 
the geomagnetic field line and form the aurora when infiltrate into the 
auroral acceleration region of the Earth’s upper atmosphere [9]. Mo-

tivated by the spacecraft measurements, several theoretical attention 
have been focused on the presence of the excess energetic particles 
as the generating mechanism of electrostatic structures with density 
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Fig. 1. The electric field structures observed by FREJA satellite (taken from Kjus et al. [19]).
Fig. 2. Geometry of the model.

depletion in the Earth’s magnetosphere. It has been found that the ve-

locity distribution function of such particles completely deviated from 
Maxwellian-Boltzmann equilibrium. An example of such velocity dis-

tribution is Kappa [20], Tsallis q-nonextensive [21] and Cairn’s non-

thermal distribution [22].

In an attempt to describe the nonlinear structures observed in the 
Earth’s upper ionosphere with density depletion, Cairns et al. [22] pro-

posed a non-thermal velocity distribution function for the model of the 
excess energetic particles. In this paper, the Cairn’s non-thermal ve-

locity distribution will account for the density of the excess energetic 
electron species coupled with a cold ion beam drifting along the mag-

netic field with speed 𝑣0 to investigate the properties of the electric field 
structures observed in the Earth’s upper ionosphere, as an extension 
of Reddy et al. [14]. The format of this paper is as follows. Section 2

present the theoretical model and the numerical results in Section 3. 
Conclusions are drawn in Section 4.

2. Model

For the plasma model, a homogeneous, nonlinear low-frequency 
wave in a magnetized two-component collisionless plasma consisting 
of a cold ion beam and excess energetic electrons with non-thermal dis-

tribution is considered. The arbitrary amplitude ion-cyclotron (IC) and 
ion-acoustic (IA) waves are propagating obliquely in the x-direction at 
an angle 𝜃 to the magnetic field 𝐁𝟎, which is assumed to be in the 
(𝑥, 𝑧)-plane (see Fig. 2). On the ion time scale, the phase velocity of 
2

the oscillations is reckoned to be smaller in comparison with the elec-

tron thermal velocity, which satisfies 𝑣𝑇 𝑖 ≪ 𝑣𝑝∕𝛾 ≪ 𝑣𝑇𝑒, that is, the 

plasma wave is subject to Landau damping. Here 𝑣𝑗 =
√

𝑇𝑗

𝑚𝑗
is the 

particle thermal velocity, 𝑇𝑗 and 𝑚𝑗 are particle temperature and 
mass, where 𝑗 = 𝑖, 𝑒 for ions and electrons respectively. Thus, the 
Cairn’s [22] non-thermal velocity distribution function will be adopted 
for the excess energetic electron species. In unnormalized form, the 
Cairn’s non-thermal electrons distribution function is given by

𝑓𝑒(𝑣) =
𝑛0

(3𝛼 + 1)
√

2𝜋𝑣2
𝑒

(
1 + 𝛼𝑣4

𝑣4
𝑒

)
exp

(
− 𝑣2

2𝑣2
𝑒

)
(1)

where 𝑛0 is the equilibrium electron density and 𝑣𝑒 is the thermal speed 
of the electrons and 𝛼 is the non-thermal energetic electron parameter. 
Then, the non-thermal energetic electron distribution can be found by 
replacing 𝑣2∕𝑣2

𝑒
by 𝑣2∕𝑣2

𝑒
−2𝑒𝜙∕𝑇𝑒 in Eq. (1), which, on integration over 

velocity space, gives the following expression for the electron density 
[22, 23, 26, 27]:

𝑛𝑒 = 𝑛0

[
1 − 𝛽

(
𝑒𝜙

𝑇𝑒

)
+ 𝛽

(
𝑒𝜙

𝑇𝑒

)2
]
exp

(
𝑒𝜙

𝑇𝑒

)
, (2)

where the excess energetic electron component, 𝛽 = 4𝛼
1+3𝛼 and 𝛼 measure 

the non-thermal electron population. For 0 ≤ 𝛼 ≤ ∞, the value of 𝛽 is 
limited in the range 0 ≤ 𝛽 ≤ 4∕3. It is noted that 𝛼 → 0 corresponds to 
the Boltzmann distribution limit of electrons.

The dynamics of the cold ion beam (𝑁𝑖, 𝑇𝑖 = 0) are described by the 
fluid equations, namely the continuity and momentum equations [14],

𝜕𝑛𝑖

𝜕𝑡
+
𝜕(𝑛𝑖𝑣𝑖𝑥)
𝜕𝑥

= 0 (3)

𝜕𝑣𝑖𝑥

𝜕𝑡
+ 𝑣𝑖𝑥

𝜕𝑣𝑖𝑥

𝜕𝑥
= − 𝑒

𝑚𝑖

𝜕𝜙

𝜕𝑥
+Ω𝑖𝑣𝑖𝑦 sin𝜃 (4)

𝜕𝑣𝑖𝑦

𝜕𝑡
+ 𝑣𝑖𝑥

𝜕𝑣𝑖𝑦

𝜕𝑥
=Ω𝑖𝑣𝑖𝑧 cos𝜃 −Ω𝑖𝑣𝑖𝑥 sin𝜃 (5)

𝜕𝑣𝑖𝑧

𝜕𝑡
+ 𝑣𝑖𝑥

𝜕𝑣𝑖𝑧

𝜕𝑥
= −Ω𝑖𝑣𝑖𝑦 cos𝜃, (6)

where 𝑛𝑖 is the cold ion density, 𝑣𝑖𝑥, 𝑣𝑖𝑦 and 𝑣𝑖𝑧 are the compo-

nents of the ion velocity along the 𝑥, 𝑦 and 𝑧 directions, respectively, 
Ω𝑖(= 𝑒𝐁0∕𝑚𝑖) is the ion cyclotron frequency, 𝑚𝑖 is the ion mass, 𝑒 is the 
magnitude of the electron charge and 𝜙 is the electrostatic potential of 
the waves. Then, the set of the equations are closed with the charge 
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Fig. 3. Normalized electric field structures 𝐸(𝜓,𝑀) vs 𝜉 for 𝑀 = 1.25, 𝜃 = 2◦, 𝛿 = 0.2, 𝐸0 = 1.1, 𝛼 = 0.00 (a), 0.05 (b), 0.1 (c), 0.199 (d).
neutrality condition (𝑛𝑖 = 𝑛𝑒), which is valid for low-frequency analysis 
[23, 24, 28, 29].

The non-linear analysis of Eqs. (3) to (6) that depend on space 𝑥
and time 𝑡 can be done through a stationary frame 𝜉 = (𝑥 − 𝑉 𝑡)Ω𝑖∕𝑉 , 
where 𝑉 is the phase velocity of the wave. Using the quasi-neutrality 
condition and the following initial conditions, 𝑛𝑖 = 𝑛0 and 𝑣𝑥 = 𝑣0 at 
𝜉 = 0. In addition, the normalized electric field potential 𝜓 = 𝑒𝜙∕𝑇𝑒, 
Mach number 𝑀 = 𝑉 ∕𝐶𝑠 and 𝛿 = 𝑣0∕𝐶𝑠, where 𝐶𝑠 = (𝑇𝑒∕𝑚𝑖)1∕2 is the 
ion-acoustic speed. Then, Eq. (3) becomes

𝑣′
𝑥
=

−(𝑉 − 𝑣0)𝑒−𝜓

(1 − 𝛽𝜓 + 𝛽𝜓2)
, (7)

by eliminating the ion-velocity components, 𝑣𝑥 and 𝑣𝑧 from Eqs. (4) to 
(6) and exploiting Eq. (7) to obtain

𝑑

𝑑𝜉

[
𝑒−𝜓
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𝐴
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𝑑𝜉

(8)

where 𝑀𝐴 =𝑀 − 𝛿.

Integrating Eq. (8) with the conditions 𝜓 = 0, 𝑑𝜓∕𝑑𝜉 = 𝐸0 and 
𝑑2𝜓∕𝑑𝜉2 = 0 at 𝜉 = 0, to obtain a non-linear second-order differential 
equation of the form

𝜒1(𝜓)
𝑑2𝜓

𝑑𝜉2
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(
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)2
+ 𝜒3(𝜓) = 0, (9)

where
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− 1
𝑀𝐴

, (10)
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(1 − 𝛽𝜓 + 𝛽𝜓2)3
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) = 𝑒𝜓

(
𝑀2

𝑀2
𝐴

+ 2(1 + 𝛽)(1 − 2𝛽)𝐸2
0

)
− 𝑀2

𝑀2
𝐴

2 cos2 𝜃(1 − 𝛽𝜓 + 𝛽𝜓2)𝑒𝜓

𝑀2
𝐴

(
𝑒𝜓 (1 + 𝛽𝜓 + 𝛽𝜓2 − 𝛽) − (1 + 3𝛽)

)
. (12)

ation (9) describes the evolution of the nonlinear structures (both 
cyclotron and ion-acoustic waves) in the auroral plasma. For the 
 of Boltzmann electron limit 𝛼 = 𝛽 → 0, Eqs. (10) to (12) goes back 
qs. (11) to (13) of Reddy et al. [14]. In addition, perpendicular prop-

ting electrostatic ion cyclotron (EIC) waves investigated by Temerin 
l. [25] can be obtained for 𝜃 = 90, 𝑣0 = 0, 𝛼 = 𝛽 = 0 and 𝐸0 = 0, as a 
ial case.

esults and discussions

The numerical computation of the nonlinear evolution equation (9)

low-frequency parallel electric field structures will be examined us-

the MATLAB ODE solver for periodic wave solutions in the electric 
 𝐄. The results for the effect of the different auroral parameters, 
 as the non-thermal energetic electron contribution, 𝛼, Mach num-

 𝑀 , ion drift velocity, 𝛿, electric field driver strength, 𝐸0 and prop-

tion angle, 𝜃, are discussed.

The variation of normalized parallel electric field, 𝐸(𝜓, 𝑀) for 
1.25 and vary the energetic non-thermal hot electrons as showed 

igs. 3(a) to (d) for other fixed parameters, 𝜃 = 2◦, 𝛿 = 0.2 and the 
er strength, 𝐸0 = 1.1. The electric field curve plotted in Fig. 3(a) 
ws highly spiky waveform of driven ion acoustic mode in the ab-

e of the non-thermal electron contributions 𝛼. This is a reciprocate 
ig. 7(d) of Reddy et al. [14] for the same plasma parameters. It 
oted upfront (Fig. 3(a)) that in the limit 𝛼 = 𝛽 → 0, the Boltzmann 
t [14] is obtained. In the present of the non-thermality component 
ig. 3(b)), the period of the oscillations decreases and later grows to 
ibit a sawtooth type at 𝛼 = 0.199 in Fig. 3(d). For 𝛼 > 0.199, no elec-

 field structures can be found. This is consistent with the exceeding 
e of 𝛼 > 0.25, i.e. 𝛽 > 0.57 the non-thermal distribution starts to 
 ring component and particles become more energetic and might 

ome unstable [23]. It is important to mention that the fluctuations 
he electric field are found to be reduced due to the contribution 
. Therefore, one may concede that the electric field fluctuations, 
d to be small by the FREJA satellite (Fig. 1), arise due to the occur-
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Fig. 4. Normalized electric field 𝐸(𝜓,𝑀) vs 𝜉 for 𝛼 = 0.199, 𝜃 = 2◦, 𝛿 = 0.2, 𝐸0 = 1.1, 𝑀 = 0.22 (a), 1.0 (b), 1.20 (c), 1.25 (d).

Fig. 5. Normalized electric field 𝐸(𝜓,𝑀) vs 𝜉 for 𝛼 = 0.199, 𝜃 = 2◦ , 𝑀 = 1.25, 𝐸0 = 1.1, 𝛿 = −0.1 (a), 0.0 (b), 0.1 (c), 0.2 (d).
rence of excess energetic particles attributed to the solar radiation in the 
Earth’s magnetosphere. The period of the bipolar spiky structures with 
a period of approximately Δ𝑡 ≅ Δ𝜉 Ω−1

𝑖
≃ 17 Ω−1

𝑖
≈ 2.7 𝜏𝑐𝑖 (where the 

ion-cyclotron period is given by 𝜏𝑐𝑖 = 2𝜋∕Ω𝑖) decreases to exhibit a saw-

tooth structure with a periodicity of about Δ𝜉 ≃ 7 ≈ 1.1𝜏𝑐𝑖 in Fig. 3(d). 
This structure is simply classified as an ion-acoustic mode.

The effect on normalized parallel electric field structures, 𝐸(𝜓, 𝑀)
due to the variation in the Mach number is presented in Fig. 4(a)-(d) 
for a fixed non-thermal energetic hot electron of 𝛼 = 0.199 and other 
parameters of Fig. 3. For small values of Mach number, 𝑀 = 0.22, the 
normalized parallel electric field exhibits a signal waveform, the fluc-

tuations in the electric field are found to be small, that is, with low 
periodic oscillations. The wave frequency is very low to be captured 
similar to the FREJA spacecraft observations in Fig. 1. As the Mach 
4

number increases, the parallel electric field structures reveal the oscilla-

tions in the ion-cyclotron with sinusoidal behavior, which later tends to 
be of the sawtooth type with a period of about Δ𝑡 ≈ 1.1𝜏𝑐𝑖. It is obvious 
from the Fig. 4 that the period of the oscillations increases as the Mach 
number 𝑀 increases from 0.22 to 1.25. This is due to the non-thermal 
electron effect, contrary to the case of Boltzmann electron [14]. It is 
also important to mention that no electric field structures can be found 
for 𝑀 < 0.22, unlike the case of Boltzmann electron distribution studied 
by Reddy et al. [14], where the electric field structures can be found 
to exist for 𝑀 = 0.2. In this case, a transition from ion-acoustic spiky to 
ion-cyclotron sinusoidal and back to ion-acoustic sawtooth structures 
are observed.

Fig. 5 illustrates the effect of the ion drift speed, 𝛿 on the normal-

ized parallel electric field, 𝐸(𝜓, 𝑀) for 𝑀 = 1.25 and other parameters 
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Fig. 6. Normalized electric field 𝐸(𝜓,𝑀) vs 𝜉 for 𝛼 = 0.199, 𝜃 = 2◦ , 𝛿 = 0.2, 𝑀 = 1.25, 𝐸0 = 0.01 (a), 0.1 (b), 0.8 (c), 1.1 (d).

Fig. 7. Normalized electric field 𝐸(𝜓,𝑀) vs 𝜉 for 𝛼 = 0.199, 𝑀 = 1.25, 𝛿 = 0.2, 𝐸0 = 1.1, 𝜃 = 2◦ (a), 20◦ (b), 50◦ (c), 85◦ (d).
of Fig. 4. The graphs showed the non-linear wave transformation from 
ion-cyclotron sinusoidal to ion-acoustic sawtooth structures. It is noted 
that the ion-cyclotron can be found propagating antiparallel to the mag-

netic field 𝐁𝟎 (negative −𝛿) which results to a sinusoidal electric field 
structure and later grown to ion-acoustic sawtooth type in the paral-

lel magnetic field direction. The period of oscillation increases with the 
drift speed. The driven ion-cyclotron structure display in Fig. 5(a) has 
a low period of oscillation. For positive values of 𝛿, the period of the 
oscillations grows faster as the direction of the ion flow becomes par-

allel to the magnetic field 𝐁𝟎. The oscillation moves from a sinusoidal 
for 𝛿 = 0.0 to a sawtooth type with a period of ≈ 1.1𝜏𝑐𝑖 for 𝛿 = 0.2. The 
present parallel electric field profile is contrary to the study of Reddy 
et al. [14], in which the period of the spiky structures decreases with 𝛿.

In Fig. 6, the effect of the driver strength 𝐸0 on the normalized par-

allel electric field profile is presented for 𝛼 = 0.199 and other fixed pa-
5

rameters of Fig. 4. The curves reveal only ion-acoustic sawtooth mode. 
For small driving amplitude 𝐸0 = 0.01, the electric field oscillation pe-

riod was found to be about 3.5𝜏𝑐𝑖. As the driver strength 𝐸0 increases, 
the ion-acoustic oscillation with sawtooth waveform decreases. On the 
same ion-acoustic sawtooth mode, the oscillation period reduce to about 
1.1𝜏𝑐𝑖 for large driven amplitude 𝐸0 = 1.1. That is, the electric field 
potential amplitude drops with 𝐸0, which may be related to the con-

sequence of several different acceleration mechanisms responsible for 
the large scale potential drop along the geomagnetic field as observed 
by several spacecraft mission [9, 10].

Finally, the variation of the normalized electric field for the en-

ergetic non-thermal electrons 𝛼 = 0.199 and other fixed parameters of 
Fig. 4, for different values of the angle of propagation 𝜃. As the angle of 
propagation 𝜃 increases from 2◦ (almost parallel propagation; Fig. 7(a)) 
to 85◦ (nearly perpendicular propagation; Fig. 7(d)) the period of the 
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oscillations decreases and a transition from the sawtooth to spiky struc-

tures occur with the mode remaining in the ion-acoustic regime. The 
curve in Fig. 7(d) shows the normalized electric field structures with 
lower period of oscillations for nearly perpendicular propagation. For 
the data captured from the FREJA satellite shown in Fig. 1, the electric 
field fluctuations in the magnetic field are found to be small. There-

fore, one may infer that the low frequency waves may also propagate 
perpendicular to the magnetic field in the auroral region.

4. Conclusion

In this paper, the theoretical explanation of the periodic low-

frequency non-linear electric field structures associated with density 
fluctuations in the auroral acceleration region of the Earth’s magne-

tosphere have been presented. The auroral plasma model is composed 
of a cold ion beam and Cairn’s non-thermal velocity distribution for ex-

cess energetic electron species. The study investigated the properties of 
non-linear low-frequency electrostatic fluctuations arising from a cou-

pling of the ion-cyclotron and ion-acoustic waves in any direction of 
wave propagation to the ambient magnetic field in the presence of ex-

cess energetic electrons.

Regarding the spacecraft observation, the present study is merely 
looking for possible electric field structures in a non-thermal auroral 
plasma. The numerical computation presented here shows a sequence of 
wave bursts with the frequency of a small electric field fluctuations due 
to the contribution of the excess energetic electrons, which has a great 
resemblance with the observed structures by the FREJA spacecraft [10, 
19]. It shows from the analysis that the FREJA observations (Fig. 1) can 
also be characterized either as nearly parallel or nearly perpendicular 
propagation wave modes as Reddy et al. [14] described the observation 
of FAST satellite in the auroral region. The plasma parameters, such 
as non-thermal contribution 𝛼, Mach number 𝑀 , drift speed 𝛿, electric 
field strength, 𝐸0 and angle of propagation play roles in the existence 
of the non-linear structures. Furthermore, the energetic particles, such 
as electron/ion beams or the field-aligned currents are the source of the 
free energy responsible for generating electrostatic fluctuations in the 
auroral acceleration region. The model can generate wave structures 
with spiky, sawtooth and sinusoidal oscillations, and depending on the 
auroral plasma parameters both ion-cyclotron and ion-acoustic modes 
can be obtained. It has also shown the possibility of obtaining highly 
spiky electric field structures observed by FAST auroral satellite [13] as 
the limit of the non-thermal electron tends to zero (𝛼 = 𝛽 → 0).

For the present model, the unnormalized electric field is given as 
[14, 17, 18]

𝐸𝑈𝑁 = 𝐸

𝑀

𝑇𝑒

𝑒𝜌𝑖
. (13)

Note that the ratio of the Mach numbers, 𝑀2
𝑀1

is equal to the amplitudes 

of the electric field 𝐸1
𝐸2

, i.e., 𝐸1(𝐸2) is the electric field corresponding 
to the Mach number 𝑀1(𝑀2). In this paper, the electric field structures 
obtained are for electron temperature 𝑇𝑒 = 1 − 10 eV [9] and the ion-

cyclotron frequency of about Ω𝑖 ≈ 1000 rad/sec. This would generate 
maximum ion acoustic speed, 𝐶𝑠 ≈ 31 km/s and electric field amplitude 
of about 18 mV/m from Eq. (13). These results may be relevant to the 
FREJA observations in Fig. 1 with electric field amplitude of the order 
of 20 mV/m or less by Kjus et al. [19].

The present theoretical analysis can be helpful in understanding 
the non-linear electrostatic fluctuations phenomena in space and as-

trophysics environments.

4.1. Derivation of the non-linear second-order differential equation

Defining the moving coordinate 𝜉 = (𝑥 −𝑉 𝑡)Ω𝑖∕𝑉 , i.e. 𝜕𝑥 =
Ω𝑖

𝑉
𝜕𝜉 , 𝜕𝑡 =

−Ω𝑖𝜕𝜉 , the normalized fluid Eqs. (3)-(6) can be resolved. From Eq. (3)

𝑉
𝑑𝑛𝑖 −

𝑑𝑛𝑖𝑣𝑖𝑥 = 0 (14)

𝑑𝜉 𝑑𝜉

6

integrate

𝑉 𝑛𝑖 − 𝑛𝑖𝑣𝑖𝑥 = 𝐶 (15)

using the boundary conditions 𝜉 → 0, 𝑣𝑖𝑥 = 𝑣0 and 𝑛𝑖 = 𝑛0, to obtain

𝑣′
𝑥
𝑛𝑖 = −𝑛0(𝑉 − 𝑣0) (16)

where 𝑣′
𝑥
= 𝑣𝑖𝑥 − 𝑉 and 𝑛𝑖 = 𝑛𝑒. Then, substituting equation (2) into 

equation (16) to obtain Eq. (7).

Then, one can write the Eqs. (4)-(6) in form

𝑣′
𝑥

𝑑𝑣𝑖𝑥

𝑑𝜉
+ 𝑒

𝑚𝑖

𝑑𝜙

𝑑𝜉
= 𝑉 𝑣𝑖𝑦 sin𝜃 (17)

𝑣′
𝑥

𝑑𝑣𝑖𝑦

𝑑𝜉
= 𝑉 𝑣𝑖𝑧 cos𝜃 − 𝑉 𝑣𝑖𝑥 sin𝜃 (18)

𝑣′
𝑥

𝑑𝑣𝑖𝑧

𝑑𝜉
= −𝑉 𝑣𝑖𝑦 cos𝜃 (19)

Substituting Eq. (17) into Eq. (18) to obtain

𝑣𝑖𝑧 =
𝑣′
𝑥

𝑉 2 cos𝜃 sin𝜃

[
𝑑

𝑑𝜉

(
1
2
𝑑𝑣′ 2

𝑥

𝑑𝜉
+ 𝑒

𝑚𝑖

𝑑𝜙

𝑑𝜉

)]
+
𝑣𝑖𝑥 sin𝜃
cos𝜃

, (20)

also, Eq. (17) into Eq. (19) gives

𝑣′
𝑥
sin𝜃

𝑑𝑣𝑖𝑧

𝑑𝜉
+ 𝑣𝑥

′ cos𝜃
𝑑𝑣𝑖𝑥

𝑑𝜉
+ cos𝜃

(
𝑒

𝑚𝑖

𝑑𝜙

𝑑𝜉

)
= 0. (21)

Solving Eqs. (20) and (21) together to obtain

𝑑

𝑑𝜉

[
𝑣′
𝑥

(
𝑑

𝑑𝜉

(
1
2
𝑑𝑣′ 2

𝑥

𝑑𝜉
+𝐶2

𝑠

𝑑𝜓

𝑑𝜉

))]
+ 𝑉 2 𝑑𝑣𝑖𝑥

𝑑𝜉
+ 𝑉 2 cos2 𝜃

𝑣′
𝑥

𝐶2
𝑠

𝑑𝜓

𝑑𝜉
= 0

(22)

where 𝑒𝜙
𝑇𝑒

= 𝜓 and 𝐶2
𝑠
= 𝑇𝑒

𝑚𝑖
.

Now, differentiating 𝑣𝑖𝑥 = 𝑣′
𝑥
+ 𝑉 and use 𝑣′

𝑥
= −(𝑉 −𝑣0)𝑒−𝜓

(1−𝛽𝜓+𝛽𝜓2) in Eq. (7)

to obtain

𝑑𝑣𝑖𝑥

𝑑𝜉
=

−(𝑉 − 𝑣0)𝑒−𝜓 (𝛽 − 𝛽𝜓 − 𝛽𝜓2 − 1)
(1 − 𝛽𝜓 + 𝛽𝜓2)2

𝑑𝜓

𝑑𝜉
. (23)

Substituting Eq. (23) into Eq. (22) and divide by −(𝑉 − 𝑣0)𝐶2
𝑠

gives

𝑑

𝑑𝜉

[
𝑒−𝜓

1 − 𝛽𝜓 + 𝛽𝜓2

(
𝑑2𝜓

𝑑𝜉2
+ (𝑀 − 𝛿)2

2
𝑑2

𝑑𝜉2

(
𝑒−2𝜓

(1 − 𝛽𝜓 + 𝛽𝜓2)2

))]

+𝑀2 𝑑

𝑑𝜉

(
𝑒−𝜓

1 − 𝛽𝜓 + 𝛽𝜓2

)
+ 𝑀2 cos2 𝜃

𝑀2
𝐴

𝑒𝜓 (1 − 𝛽𝜓 + 𝛽𝜓2)𝑑𝜓
𝑑𝜉

= 0 (24)

where 𝑀 = 𝑉

𝐶𝑠
, 𝛿 = 𝑣0

𝐶𝑠
and 𝑀𝐴 =𝑀 − 𝛿. Integrate the Eq. (24) above to 

obtain

𝑒−𝜓

1 − 𝛽𝜓 + 𝛽𝜓2

(
𝑑2𝜓

𝑑𝜉2
−
𝑀2

𝐴
𝑒−2𝜓 (1 − 𝛽𝜓 + 𝛽𝜓2 − 𝛽)
(1 − 𝛽𝜓 + 𝛽𝜓2)3

𝑑2𝜓

𝑑𝜉2

+
(
(1 + 𝛽𝜓 + 𝛽𝜓2 − 𝛽)(2 + 3(2𝛽𝜓 − 𝛽)(1 − 𝛽𝜓 + 𝛽𝜓2)2) − (𝛽 + 2𝛽𝜓)

(1 − 𝛽𝜓 + 𝛽𝜓2)3

)

×
(
𝑑𝜓

𝑑𝜉

)2
)
+ 𝑀2𝑒−𝜓

1 − 𝛽𝜓 + 𝛽𝜓2 + 𝑀2 cos2 𝜃
𝑀2

𝐴

𝑒𝜓 (𝛽𝜓2 − 3𝛽𝜓 + 3𝛽 + 1) +𝐶 = 0

(25)

then divide by (1−𝛽𝜓+𝛽𝜓2)
𝑀2

𝐴
𝑒−𝜓

, using the boundary conditions 𝜓 = 0, 

𝑑𝜓∕𝑑𝜉 = 𝐸0 and 𝑑2𝜓∕𝑑𝜉2 = 0 at 𝜉 = 0. The constant of integration C 
can be obtained as

𝐶 = −2(1 + 𝛽)(1 − 2𝛽)𝑀2
𝐴
𝐸2
0 −𝑀2 − 𝑀2 cos2 𝜃(1 + 3𝛽)

𝑀2
𝐴

. (26)

Finally, substitute Eq. (26) into Eq. (25) that gives
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(
𝑒−2𝜓 (1 + 𝛽𝜓 + 𝛽𝜓2 − 𝛽)

(1 − 𝛽𝜓 + 𝛽𝜓2)3
− 1
𝑀𝐴

)
𝑑2𝜓

𝑑𝜉2

−
(
𝑒−2𝜓 ((1+𝛽𝜓 + 𝛽𝜓2 − 𝛽)(2 + 3(2𝛽𝜓 − 𝛽)(1−𝛽𝜓 + 𝛽𝜓2)2) − (𝛽 + 2𝛽𝜓))

(1 − 𝛽𝜓 + 𝛽𝜓2)3

)

×
(
𝑑𝜓

𝑑𝜉

)2
+ 𝑒𝜓

(
𝑀2

𝑀2
𝐴

+ 2(1 + 𝛽)(1 − 2𝛽)𝐸2
0

)
− 𝑀2

𝑀2
𝐴

− 𝑀2 cos2 𝜃(1 − 𝛽𝜓 + 𝛽𝜓2)𝑒𝜓

𝑀2
𝐴

(
𝑒𝜓 (1 + 𝛽𝜓 + 𝛽𝜓2 − 𝛽) − (1 + 3𝛽)

)
= 0.

(27)
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