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ABSTRACT
A common problem in CCD photometry is to combine measurements obtained at different
epochs. This is especially challenging if the fields only overlap partially, and are sparse, so
that not all calibrating stars are observed at all epochs. A least-squares method for determining
zero-points for all epochs under these circumstances is formulated. Allowance is made not
only for the presence of intra-night measurement errors, but also for epoch-to-epoch scatter in
star brightnesses (due, for example, to slow variability or instrumental effects). Expressions are
derived for the uncertainties in the estimated zero-points. Three different criteria for selecting
optimal calibrating subsets of the available group of stars are introduced. Simulations show
that if intra-night variability dominates, it may be best to use all available stars for zero-point
determinations. On the other hand, if epoch-to-epoch scatter dominates, smaller subsets of
stars may give superior results. Characterization of the uncertainty in the estimated variance
of epoch-to-epoch variability remains an important outstanding problem.
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1 IN T RO D U C T I O N

This work arose out of a project designed to study variability of
brown dwarfs (e.g. Koen 2013). Target objects were continuously
monitored for a few hours in order to test for short time-scale
variability. Further runs were obtained at other epochs, either as a
follow-up or to also check for longer time-scale brightness changes.
The fields of view covered during the different runs often overlapped
only partially. Given the typical sparseness of stars in a field, this
meant that a very small number of common stars were available
to tie photometry from different runs together. In mathematical
parlance, the cardinality of the intersection of all the sets (from the
different nights) of stars is typically quite small.

It seems that a more efficient way of proceeding would be to e.g.
use fully the overlapping stars from all pairs of starfields. The sta-
tistical treatment of this problem is the aim of this paper. Reference
will also be made to the ‘full-data’ case, i.e. starfields which are
identical from night to night, as the derived relations simplify to
more transparent forms in that special case.

Although the exact problem appears not to have been addressed
directly in the literature, there are a number of published papers
with varying degrees of relatedness, some of which include ob-
servations through multiple filters, the use of standard stars, colour
equations, etc. Reed & FitzGerald (1982), Manfroid & Heck (1983),
Honeycutt (1992), Padmanabhan et al. (2008) and Regnault et al.
(2009), amongst others]. All of these papers make use of least
squares for parameter estimation, and some arrive at an explicit
matrix equation similar to equation (13) in Section 2 below. There,
however, the ways part; the treatment of error estimation in the lit-
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erature is often unsatisfactory, and the topic of optimally selecting
standardizing stars does not seem to have been discussed at all. It
should also be noted that the methodology referred to in some of the
papers is at times ad hoc – e.g. dealing with missing observations
by assigning fictitious values with near-zero weights, rather than
formulating the problem to allow variable numbers of observations
of different stars.

2 THE STATI STI CAL MODEL

The following notation will be used: index the different nights by r
(r = 1, 2, . . . , R); the collection of all stars observed by s (s = 1,
2, . . . , S); and the individual observations by k (k = 1, 2, . . . , nrs

for a given night r and star s). Measurements are denoted by Yrsk:
it is taken that these have been corrected for short time-scale drifts
in photometric zero-point, possibly by differential correction. The
zero-point for night r is μr.

In the ideal situation, exactly the same zero-point applies to all
stars; in practice there are small individual offsets for different
apparently constant stars. Put differently, the difference in mean
magnitudes between any two stars will typically vary by some
small amount from night to night. Mechanisms at play have been
discussed by Kovács, Bakos & Noyes (2005). The mean offset of
star s from μr is �rs.

The crucial part of the statistical model of this paper is the as-
sumption that, for a given star s, the �rs are distributed randomly,
with variance σ 2

ηs , around an overall mean �s:

�rs = �s + ηrs , var(ηrs) = σ 2
ηs , (1)

where the mean of the random numbers ηrs (over different nights r)
is zero.

C© 2013 The Author
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The overall model for a measurement of a constant star is then

Yrsk = μr + �rs + εrsk

= μr + �s + ηrs + εrsk , (2)

where εrsk is the random variation for an individual measurement
of star s on night r, assumed to have zero mean and variance σ 2

rs . (It
is relatively easy to extend the theory to allow for these variances
to depend on the index k, and for the εrsk with different indices s
and/or k to be correlated. In order to keep the exposition as clear as
possible, it is not done here). The σ 2

rs are easily estimated from the
raw observations:

σ̂ 2
rs = 1

(nrs − 1)

nrs∑
k=1

(Yrsk − Yrs•)2, (3)

where Yrs• is the mean of Yrsk over all observations k. Model (2) can
then be replaced by

Yrs• = μr + �s + ers , (4)

where

ers ≡ ηrs + 1

nrs

∑
k

εrsk . (5)

It is noted in passing that equation (5) constitutes one of the
novelties in this paper: since the aim is to combine sets of time
series photometry obtained at different epochs, there is additional
information available in the form of precise estimates, in the form of
(3), of the measurement errors at each epoch. Furthermore, outlying
individual measurements can be removed to reduce the variance
in (3).

The immediate aim is to tie photometry from the different nights
together, i.e. to estimate μr. Since we are not attempting to place
these on an absolute footing, an arbitrary constant can be added to
each of the μi without changing the essential results. One way of
dealing with this indeterminacy is to fix one of the μr; the notation
is simplest if

μR = 0

is selected (see also e.g. Reed & FitzGerald 1982, Honeycutt 1992).
A least-squares estimating equation follows from (4): minimize

SS =
R∑

r=1

∑
s

(Yrs• − μr − �s)
2

=
R−1∑
r=1

∑
s

(Yrs• − μr − �s)
2 +

∑
s

(YRs• − �s)
2 (6)

with respect to μr and �s. Note that if the summation over k had
been retained, i.e. if (6) had been written in terms of Yrsk rather than
Yrs•, terms with the same indices r and s, but different k, would have
been correlated because of sharing the same ηrs. This would have
required some adjustment (multiplication of a vector of terms by
the inverse square root of its covariance matrix).

Since not all stars are necessarily observed every night, it is
understood that summation in (6) over s involves only values ap-
propriate for a given r. The notation Rs will be used for the set of
nights during which star s was observed. The set of stars observed
during night r will similarly be denoted by Sr . Later calculations
will require that the last night sometimes be excluded from Rs – in
such cases R′

s = Rs \ R (indices Rs excluding index R).
A point worth remarking on is that many previous papers (see

references in Section 1) make use of weighted least squares. In

theory, weighting observations produces more accurate parameter
estimates. In practice, the weights used are usually themselves es-
timates, with accompanying uncertainty. For data sets as small as
those considered in this paper, this added uncertainty is counterpro-
ductive.

Taking partial derivatives of (6) and setting the results equal to
zero,∑
s ∈ Sr

(Yrs• − μr − �s) = 0 r = 1, 2, . . . , R − 1

∑
r ∈ Rs

(Yrs• − μr − �s) = 0 s = 1, 2, . . . , S (7)

follows, where it is understood that μR = 0 in the second equation.
Let

Ur =
∑

s ∈ Sr

Yrs• Vs =
∑

r ∈ Rs

Yrs•

Nr = #{Sr} Ms = #{Rs}. (8)

Here Nr (the cardinality of the setSr ) is the number of stars observed
during night r, while Ms is the number of nights during which star
s was observed.

With the help of (8), equations (7) can be written in matrix form
as

D2μ + A� = U

D1� + A′μ = V . (9)

In (9), D1 and D2 are diagonal matrices of orders S and R − 1, with,
respectively, the Ms and Nr on the diagonals; U and V are column
vectors with respective entries Ur and Vs, and the entries in A are
defined by

A(r, s) =
{

0 nrs = 0

1 nrs �= 0
(10)

for r = 1, 2, . . . , R − 1 and s = 1, 2, . . . , S. It is also useful to
define

E = D2 − AD−1
1 A′

b = U − AD−1
1 V . (11)

The solution of (9) is then easily shown to be

μ̂ = E−1b

�̂ = D−1
1 [V − A′μ̂]. (12)

The estimation problem (9) can also be written as the single
matrix equation:

G

[
μ

�

]
= W

with

G =
[
D2 A

A′ D1

]
W =

[
U
V

]
.

The solution is[
μ̂

�̂

]
= G−1W . (13)
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1050 C. Koen

If exactly the same set of stars is observed every night, then
Nr ≡ S and Ms ≡ R, and A = JR−1,S [an (R − 1) × S matrix with
all entries equal to unity]. It can then be shown that

G−1 = 1

S

[
G1 G2

G′
2 G3

]
, (14)

with

G1 = IR−1 + JR−1,R−1 G2 = −JR−1,S

G3 = S

R
IS + R − 1

R
JS,S ,

where IS is the S × S identity matrix. Solution (13) can then be
written explicitly in terms of the observations:

μ̂r = Yr•• − YR•• = 1

S

S∑
s=1

Yrs• − 1

S

S∑
s=1

YRs•

�̂s = Y•s• − Y••• + YR••

= 1

R

R∑
r=1

Yrs• − 1

R

1

S

R∑
r=1

S∑
s=1

Yrs• + 1

S

S∑
s=1

YRs•. (15)

3 STA N DA R D E R RO R S O F T H E E S T I M AT E S

It follows from (13) that the covariance matrix of [μ̂ �̂]′ is

C = G−1cov(W , W ′)G−1 = G−1 H G−1. (16)

The entries in the covariance matrix H are

Hij = cov(Ui, Uj ) = cov

(∑
k

eik,
∑

�

ej�

)

= δij

∑
k∈Si

cov(eik, eik)

= δij

∑
k∈Si

var(eik)

i, j = 1, 2, . . . , R − 1

HR−1+i,R−1+j = cov(Vi, Vj ) = cov

(∑
k

eki ,
∑

�

e�j

)

= δij

∑
k∈Rj

cov(ekj , ekj )

= δij

∑
k∈Rj

var(ekj )

i, j = 1, 2, . . . , S

Hi,R−1+j = HR−1+j,i = cov(Ui, Vj ) = cov

(∑
k

eik,
∑

�

e�j

)

=
∑
k∈Si

∑
�∈Rj

cov(eik, e�j )

= δ(j ∈ Si)var(eij )

= A(i, j )var(eij )

i = 1, 2, . . . , R − 1;

j = 1, 2, . . . , S. (17)

In these equations δ is the Kronecker delta function. The A(i, j) are
defined in (10).

If all stars are observed on every night,

cov(μ̂i , μ̂j ) = 1

S2

S∑
�=1

[
(1 + δij )σ 2

η� + δij

ni

σ 2
i� + 1

nR

σ 2
R�

]

cov(�̂i , �̂j ) = δij

R2

[
Rσ 2

ηi +
R∑

�=1

σ 2
�i

n�

]
+ σ 2

Ri + σ 2
Rj

RSnR

+ R − 1

RS2

S∑
�=1

(σ 2
η� + σ 2

R�) − 1

R2S

R∑
�=1

σ 2
�i + σ 2

�j

n�

+ 1

R2S2

R∑
k=1

S∑
�=1

σ 2
k�

nk

cov(μ̂i , �̂j ) = 1

RS

(
σ 2

ij

ni

− σ 2
Rj

nR

)
− 1

S2

S∑
�=1

σ 2
η�

+ 1 − R

RS2nR

S∑
�=1

σ 2
R� − 1

RS2ni

S∑
�=1

σ 2
i�, (18)

where ni is the number of individual measurements obtained during
night i. Of course, (18) could also be derived directly from the
explicit formulae in (15).

Note that for i = j the first of equations (18) can be written as

var(μ̂i) = γi•/S, (19)

where the mean variance γ i• is defined as

γi• = 1

S

S∑
s=1

γis = 1

S

S∑
s=1

(
2σ 2

ηs + σ 2
is

ni

+ σ 2
Rs

nR

)
. (20)

Standard errors of the μr and �s are given by square roots of the
diagonal elements of C in (16), but require variances of the eij (see
equation 17). From (5),

var(ers) = var(ηs) + 1

nrs

σ 2
rs .

The last term is easily estimated from the individual time series
measurements (cf. equation 3). Estimated variances of the ηs can
then be calculated as described in Appendix A [fully observed data
sets, i.e. A(r, s) = 1 for all r, s] or Appendix B [some A(r, s) = 0].

Estimates obtained from (A7) or (B10) have the virtue that they
are unbiased. However, unless the number of nights R is large,
obtaining σ̂ 2

ηs < 0 is a distinct possibility. Similar problems are
encountered in genetics research, where the number of genes (S)
may be large, but the number of replications (R) is small, and hence
accurate estimation of variance components is an issue (e.g. Tong &
Wang 2007). A possible cure would be ‘shrinkage’, in essence using
a weighted mean of σ̂ 2

ηs and the overall mean variance
∑

k σ̂ 2
ηk/S.

Two simple alternatives are to either replace negative estimates by
zeros or to assume that ση is the same for all stars. Estimation
formulae for the latter case are given in equations (A8) and (B11).

Study of equations (13) and (8) reveals that the estimators μ̂r and
�̂s are linear combinations of the Yrs•. This is particularly obvious
in the case of fully observed data – see (15). If the Yrs• are Gaussian,
so are the estimators. It then follows that the joint distribution of
all the estimates μ̂r and �̂s is multivariate Gaussian, with the mean
given by (13), and the covariance matrix by (16) and (17).
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4 W H I C H S TA R S S H O U L D B E I N C L U D E D ?

It is, of course, desirable to have the variances of the μi as small
as possible. This suggests (i) judiciously choosing the set of stars
included, and (ii) giving thought as to which nightly μr to assign
the zero value, i.e. the choice of r to be set equal to R. An answer
to point (ii) is suggested by equation (20): refer all measurements
to the night r for which∑

s

σ̂ 2
rs/nr

is a minimum.
Equation (20) applies to the case of full data; if not all stars are

measured during all nights r, the situation could be more compli-
cated. In particular, in the full-data case, all the variances of all the
μr would be reduced by a wise choice of the index R, but in the case
of partially overlapping starfields minimization of∑
s ∈ Sr

σ̂ 2
rs/nrs

may be inappropriate, as different Sr will contain different stars.
In the statistics literature, a number of approaches to this type of

experimental design problem have been proposed. Two standard cri-
teria which are appropriate to the present context are ‘A-optimality’

Minimize
R−1∑
r=1

var(μ̂r ) = Minimize
R−1∑
r=1

Crr (21)

and ‘D-optimality’

Minimize |CR−1|
or, more conveniently,

Minimize log |CR−1|, (22)

where CR−1 is the upper-left (R − 1) × (R − 1) part of the covari-
ance matrix C in (16). Confidence volumes (the multi-dimensional
generalization of confidence intervals) for the collection of μr are
proportional to the determinant in (22); hence, minimization of
|CR−1| is equivalent to ensuring accurate determination of the full
set of μr (see e.g. Myers & Montgomery 1995). A third possibility
is

Minimize
{

max
r

[var(μ̂r )]
}

, (23)

which is related to ‘E-optimality’ in the literature.
To summarize: different subsets of calibrating stars are tried,

and the optimality criterion of choice is calculated for each subset.
Furthermore, for a given subset of stars, each night is in turn consid-
ered as reference point. ‘Optimality’ in the present context clearly
involves minimizing the zero-point uncertainties in some way, but
this could take different forms.

(i) Minimize the mean uncertainty across all estimated μr (r =
1, 2, . . . , R). This is conceptually simple but ignores the fact that
the μ̂r may be correlated.

(ii) Explicitly take into account the inter-relationship between the
μ̂r , and minimize the multi-dimensional confidence region for the
entire collection of estimated zero-points. This is mathematically
more involved, and the results do not have as simple an interpretation
as in (i).

(iii) Choose the calibrating stars such that the largest possible
variance of any μ̂r is as small as possible. In this case, the mean
variance may be larger than that in (i), and/or the confidence volume
greater than that in (ii), but the worst case μ̂r will be a minimum.

In general, there is nothing which obviously commends one of
the criteria over the other two, but it may be that the context favours
a particular form. The different approaches are probably best seen
as alternative sensible procedures to get ‘good’ sets of calibrating
stars.

Some insight into the operation of criteria (21) and (23) can be
gained by considering the full-data case with known variances γ ij

and proceeding from the first of equations (18). [In practice, this
would imply the data from many nights being available, i.e. R � 1.]
Consider night i, such that var(μ̂i) ≥ var(μ̂j ), for j = 1, 2, . . . , R
(i.e. night i has the largest zero-point uncertainty). It is not difficult
to show that var(μ̂i) will be reduced by exclusion of star k if

γik >

(
2 + 1

S − 1

)
1

S − 1

S∑
s �=k

γis =
(

2 + 1

S − 1

)
γ i(k), (24)

where the notation γ i(k) indicates an average taken over all stars
excluding star k, and the variance γ ik is as defined in (20). In other
words, star k is a liability as far as criterion (23) is concerned if the
variance γ ik associated with it is more than about twice the average
of the other stars’ variances. The condition required by criterion
(21) is very similar:

γ•k >

(
2 + 1

S − 1

)
γ •(k), (25)

i.e. the average of (24) over all nights i. The implication is that stars
with outlying large γ ij do not contribute accuracy in the estimation
of the μi. Note the further implication that if there are a few stars,
with γ ij widely different for different j, then criteria (21) and (23) are
likely to select a small number of stars with the smallest variances.

In practice, (24) and (25) are overly stringent, since allowance
was not made for the possibility of there being different optimal
indices R for the two sets of stars {1, 2, . . . , k − 1, k, k + 1, . . . , S}
and {1, 2, . . . , k − 1, k + 1, . . . , S − 1}.

If nij � 1, and/or the scatter σ ij in the light curves is small (e.g.
if the standardizing stars are bright), then the covariances of the μ̂r

will be dominated by the σηs, and hence will not depend on the
night r. In that case, the three criteria (21)–(23) will select the same
set of stars, at least for fully observed data.

5 ILLUSTRATI VE SI MULATI ON RESULTS

Fig. 1 illustrates the material presented at the end of Section 4. It
is mostly based on the following configuration: the σηs are uni-
formly distributed over (0.05, 0.5) mag; σ ij are uniform over (0.02,
0.1) mag; and it is assumed that a single observation of each star is
obtained during each night (nij = 1, for all i, j). For the simulations
summarized by the dotted line the upper limit on σηs was increased
from 0.5 to 0.8 mag. The number of nights is R = 20. Note that
for the purpose of selecting the best subsample of stars, it is not
necessary to estimate the μr and �s – knowing the upper-left (R −
1) × (R − 1) part of the covariance C is sufficient. For now it is
assumed that the σηs and σ ij needed to calculate C are known.

The broken lines in Fig. 1 trace the decrease in the maximal
variance in μ̂r , over all nights r, as stars contributing most to the
variance are removed one at a time. The lines represent averages,
taken over 200 independent simulations. For convenience, plotted
variances have been multiplied by 1000. Starting from a sample of
size 50, the average minimum is at about 15: further reducing S
leads to a steadily increasing variance. For a smaller initial sample
size of 25, the minimum is, on average, at about S = 8.
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1052 C. Koen

Figure 1. Simulated results illustrating the selection of stars to include in the sample used to estimate the nightly offsets μr, in the case where the σηs are
the main contributors to the variances of the μ̂r . The broken lines show the decrease in the criterion (23) by successively removing the star with the greatest
contribution to the maximum variance over all μr, starting from full samples of sizes 50 and 25, respectively. The solid lines show the additional benefit of
re-determining the optimal reference night at each step. The dotted line gives the results of increasing the upper bound on the σηs; see the text for more details.
For convenience, the plotted variances have been scaled by a factor of 1000.

Figure 2. Simulated results illustrating the selection of stars to include in the sample used to estimate the nightly offsets μr, in the case where the σ ij are the
main contributors to the variances of the μ̂r . The dotted, solid and broken lines, respectively, show the normalized results for criteria (21), (22) and (23), as
functions of the number of stars remaining in the sample.

The substantial advantage of choosing anew, at each step, the
optimal reference night r = R is demonstrated by the two solid
lines. It is interesting that the minima of the two solid curves are
also at smaller S than their broken-line counterparts. The dotted line,

with higher average σηs, may be compared with the lower solid line,
since the optimal reference night was also determined afresh each
time a star was removed from the sample. It is of no surprise that
the decrease in the dotted line with decreasing S is steeper; note
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also that the minimum is reached at a slightly lower value of S than
in the case with max(σηs) = 0.5 mag.

Since the covariances of the μ̂r are largely determined by the
σηs, with the σ ij playing only a minor role, very similar results are
obtained if either of the criteria (21) or (22) is used.

Exchanging the distributions of the σηs and σ rs, i.e. having the
within-night scatter dominate, leads to the results plotted in Fig. 2
(again showing mean values of 200 simulations in each case). Rela-
tive changes in criteria (21) and (23) are small when the full sample
is initially reduced, but increase sharply as sample sizes drop below
10. In all three cases, the reference index R was adjusted at each
step to further minimize the relevant criterion.

Since the primary aim of Fig. 2 is to compare the shapes of the
three curves, these were normalized. Actual ranges may also be of
interest, at least for criteria (23) [(1.0, 12.8) × 10−3] and (21) [(17.0,
109.4) × 10−3]. Clearly, if the intra-night errors are dominant, it
could be desirable to include as many stars in the sample as possible.

The difference in the functional dependence on S in Figs 1 and
2 can be understood in terms of equation (25), and the fact that for
dominant σ ij there are R times as many potentially large variances
as when the σηs are dominant.

In real applications, the distribution of σ ij is, of course, unlikely
to be uniform. In particular, there is often a small number of brighter
stars for which measurements are exceptionally accurate. Given the
form

γis = 2σ 2
ηs + σ 2

is

ni

+ σ 2
Rs

nR

of the relevant combined variance [see (18)–(20)], this will only be
important if σηs also happens to be small for those stars. Simula-
tions show in such cases a lowered rate at which optimality criteria
increase with decreasing subset size. This can be explained by the
increased prominence of the high-accuracy measurements as the set
of calibrating stars is made smaller.

Next we turn to simulations in which there are missing values, i.e.
not all stars are observed every night. In order to avoid completely
unrealistic data sets, the restrictions Ms ≥ 2, Nr ≥ 1 are imposed. (In
practice, Nr = 1 is not very realistic, but the assumption of known
σηs and σ ij mitigates this case. The practical situation in which
these variances are estimated from the data, rather than specified,
is addressed below.) The results of simulations based on the same
configuration as that leading to the bottom curve in Fig. 1, but with
30 per cent missing observations, are plotted in Fig. 3 (top panel).
The outcomes are slightly different if criteria (21) and (22) are
used; hence, these are also shown, in the other two panels of the
figure. The general shapes are similar to those in Fig. 1, although
the minima are somewhat wider.

Data analogous to those giving rise to Fig. 2, but with 30 per
cent of the data randomly missing, were also simulated. The results
were quite similar in appearance to those in Fig. 2, and are hence
not shown.

As was pointed out at the end of Section 3, the distribution of
the μ̂r and �̂s is fully known, at least in terms of the σ ij and σηs.
The distribution of the estimated σ 2

ηs (Appendices A and B) is a
different kettle of fish: it is a linear combination of squared Gaus-
sian random variates, which are interdependent and have different
variances. Although a formula for the variance of σ̂ 2

ηs can be worked
out, it requires considerable algebra. Here, we restrict ourselves to
reporting the results of a number of computer experiments.

(i) If σ ij is comparable to, or larger than, σηs, then estimates of
the latter are systematically too small, and may be very inaccurate.
This is not necessarily a problem in the context of this paper, as
the principal use of these variances is in the determination of the
covariance matrix C through the matrix H in (17): if σ ij is dominant,
then poorly determined σηs will have a relatively minor effect on the
accuracy of C. In what follows, it is assumed that random variability
is dominated by ηrs in (1), i.e. that σηs � σ rs/nrs for all stars s and

Figure 3. As for the bottom solid line in Fig. 1, but with two differences: (i) 30 per cent of the observations are missing (randomly across nights and stars),
and (ii) results for all three criteria are shown. From top to bottom, equations (23), (21) and (22). The covariance matrix C has been multiplied by 1000, and
the determinant has been log-transformed.
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nights r. The simulations reported below were obtained with σ rs =
0.

(ii) Fig. 4 shows histograms of σ̂ 2
η , for true values σ 2

η =
0.0025, 0.029, 0.096 and 0.25. The 10 000 simulations were based
on R = S = 20. Quantile–quantile comparison plots confirm the
visual impression that the densities are generally similar in shape,
except possibly in the extreme tails. The same does not hold true
for smaller R, for which the distributions corresponding to larger
σ 2

η are more asymmetric, with short lower tails.

(iii) For a given value of R, the standard deviation of σ̂ 2
η is pro-

portional to σ 2
η , to a very good approximation. The slope of the

linear relation depends on R; the equation

std.dev.
(
σ̂ 2

η

)
≈ 1.762R−0.555σ 2

η

is accurate to a few millimagnitudes for complete data sets, provided
R and S are larger than 10 or so.

Figure 4. Histograms of σ̂ 2
η , where the true parameter values are (anti-clockwise, starting at the top left) 0.0025, 0.029, 0.25 and 0.096. The figure summarizes

the results of 10 000 simulation trials with R = S = 20.

Figure 5. A data set (I-band observations of 2M 1155−3727) which is typical of the type to which the theory in this paper can be applied. Only four stars (3–6)
were measured on all nine nights. Each light curve is plotted with an arbitrary zero-point, and an adjustment has also been made for night-to-night zero-point
shifts common to all stars.
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6 IL L U S T R AT I V E R E S U LT S FO R T WO R E A L
DATA SETS

Fig. 5 shows the results of I-band observations of the ultracool dwarf
(UCD) 2MASS J1155395−372735 (hereafter 2M 1155−3727).
Thirteen stars in its field of view were measured at least twice,
but only four of these were observed during all nine nights. The
number of observations obtained during each night varied from

32 to 212, and the standard deviation of the scatter around the
nightly light curves was in the range 1.8 ≤ σ ij ≤ 31.3 mmag. It
follows that the standard errors of the plotted points are in the range
0.23 ≤ σij /

√
nij ≤ 4.2 mmag; these are indicated by error bars,

barely visible in the plot. The fraction of ‘missing values’ is 0.40.
The behaviour of the three criteria (21)–(23) with decreasing S is

summarized by Fig. 6. Here, and in the second example below, the
index R was also adjusted at each step in order to optimize results.

Figure 6. The selection criteria (21)–(23) for the data in Fig. 5, as a function of the number S of stars included in the calibrating subset. The criteria plotted
in the top two panels have been scaled so that these are, respectively, the maximum standard error of any μr, and the mean standard error over all μr (in
millimagnitudes). The squares and filled circles, respectively, show results starting from the full complement of 13 stars, and from only the 9 stars measured
on at least four occasions (Ms ≥ 4).

Figure 7. Six different sets of estimates for the zero-points μr. Each solution has been arbitrarily shifted vertically for clarity. Note that the full width of the
error bars is four standard errors, rather than the usual two standard errors. For each of the solutions there is one zero-width error bar, corresponding to the
reference level with index R (e.g. R = 4 for solutions plotted third, fourth and last from the top).
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In the case of (23), the square root of the maximum variance (i.e.
the maximum standard error of any μr) is plotted (top panel), while
the sum in (21) has been modified to

Minimize

[
1

R − 1

R−1∑
r=1

var(μr )

]1/2

which is approximately the minimum mean standard error of all the
estimated μr (middle panel). Note that the units are in millimag-
nitudes. The squares denote results obtained by starting with the
full set of 13 stars; the filled circles are for the subset of nine stars
observed at least four times.

Points worthy of note are as follows.

(i) None of the optimal sets of stars includes numbers 5 and 9; a
glance at Fig. 5 shows that this makes perfect sense.

(ii) One of the two stars with Ms = 2 and both with Ms = 3 are
included in the subsets selected by criteria (21) and (22), starting
from the full-data complement. This shows that even stars with
quite small numbers of measurements may be useful in determining
the μ̂r .

(iii) The standard errors of the μr are evidently quite small.
This and the similarity of the six different sets of estimates
(corresponding to the six minima in Fig. 6) are confirmed by
Fig. 7, which shows the optimal estimates with ±2 standard error
bars.

(iv) Differences between solutions are made more explicit in
Fig. 8, in which each individual point in Fig. 7 has been adjusted by
subtraction of means taken over all six solutions for a given r, and
the mean over all r for a given solution. The odd one out, plotted
as dashes, corresponds to the criterion (23) subset of stars, selected

Figure 8. A different view of some of the information in Fig. 7: adjustment has been made for the large night-to-night level changes, and the arbitrariness of
the mean value, for any given solution. The dashed line corresponds to the lower of the two minima in the top panel of Fig. 6.

Table 1. Estimated ση (in millimagnitudes) for the 2M 1155−3727 I-band observations, for
the various optimal collections of calibrating stars (columns 4–6, 8–10). Also shown are the
σ̂η for the full data set (column 3) and all stars with at least four measurements (column 7).

Starting from full data Only Ms ≥ 4 data
Star number σij /

√
nij All (23) (21) (22) All (23) (21) (22)

1 0.16 0.0 – 0.0 0.0 – – – –
2 0.25 0.0 – 0.0 0.0 – – – –
3 0.46 8.1 1.6 7.7 7.5 9.6 6.6 7.7 7.4
4 0.48 7.4 2.0 5.7 6.2 8.7 5.3 5.1 5.7
5 0.81 12.5 – – – 11.9 – – –
6 0.62 3.9 – 6.6 4.6 2.6 5.1 6.8 4.7
7 0.80 3.4 – 2.1 4.1 0.0 6.1 2.2 4.4
8 0.86 3.4 – 4.2 4.1 0.0 5.0 4.2 4.2
9 0.57 13.5 – – – – – – –
10 0.94 0.0 0.0 0.0 0.0 – – – –
11 1.07 4.2 – 0.0 2.0 0.0 – 0.0 2.8
12 1.24 7.8 0.5 – 7.5 1.9 5.4 – –
13 1.17 2.0 2.4 0.0 0.0 0.6 – 0.0 1.5
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from the full complement of stars (i.e. the minimum at S = 5 in the
top panel of Fig. 6).

(v) A probable reason for the discrepancy between the dashed
line solution in Fig. 8 and the rest can be seen in Table 1, which
lists the estimated ση for each star in the selected calibration subset.
Comparison of the rows in the table reveals that the estimates in

the fourth column generally do not agree very well with the rest.
In particular, three of the five estimates are substantially smaller
than those obtained from other calibration sets of stars. This can
be understood by noting, for example, that only two of the stars
selected in this solution (numbers 3 and 4 in Fig. 5) are used to
estimate μr for r = 1, 2, . . . , 5. This could obviously give rise to

Figure 9. As for Fig. 5, but for the UCD DENIS 1454−6604. Note that only one star was measured on all eight nights.

Figure 10. As for Fig. 6, but for DENIS 1454−6604.
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Figure 11. As for Fig. 8, but for DENIS 1454−6604. The solid line, connected dots and dashed line show the μ̂r corresponding, respectively, to criteria (21),
(22) and (23).

an erroneous impression of very small variability in these μr. What
is missing here is some compensation for the uncertainty in the
estimates of the ση: that information could be used to add error bars
to the points plotted in Fig. 6, which would most likely reveal that
the lower minimum in the top panel of the figure, which is based on
data from only three stars, is quite uncertain.

The L3.5 dwarf DENIS-P J1454078−660447 (hereafter DENIS
1454−6604) was monitored on eight nights. The number of time
series measurements per night varied from 35 to 140, with 1.7 ≤ σ ij

≤ 42.1 mmag. The fraction of missing observations is 0.56, with
only one star observed every night (Fig. 9).

The analogue of Fig. 6 is plotted in Fig. 10. Given the remarks
in point (v) above, it seems sensible to ignore the minima at S = 3,
and instead to impose S ≥ 10, and concentrate on the local minima
visible in the range 10 ≤ S ≤ 20. The number of calibrating stars
selected by criteria (21)–(23) is then, respectively, 13, 10 and 11.
The corresponding three sets of standard errors on the μ̂r lie in
the intervals (1.6, 3.3), (2.9, 3.4) and (1.6, 2.8) mmag. The three
solutions are also in good agreement – see Fig. 11, which is the
analogue of Fig. 8 for 2M 1155−3727. On the other hand, estimates
of ση for a given star can be widely different – probably reflecting
the considerable incompleteness of the data, which leads to several
estimates being based on only two data points.

7 C L O S I N G R E M A R K

Two important, but (at least to the author) unexpected points
emerged in the discussion of the 2M 1155−3727 data in the previous
section. The first is that even stars which have only been measured
two or three times may be useful in estimation of the μr. The

second is the importance of quantifying the uncertainties in the
points plotted in diagrams such as Fig. 6 – which again requires
evaluation of the uncertainties in the σ̂η. This may not be straight-
forward, as a theoretical expression for the covariance matrix of the
estimated σ 2

ηs will itself contain higher unknown moments of the
ηs. The best strategy may be to rely on non-parametric methods, if
such can be found.

AC K N OW L E D G E M E N T S

A research grant from the South African National Research Foun-
dation is acknowledged. This work was done while visiting the
Experimental Astrophysics Group of the Space Sciences Labora-
tory (University of California, Berkeley). The author is grateful to
that institution, and to Prof. Oswald Siegmund and Dr Barry Welsh
in particular, for the hospitality.

R E F E R E N C E S

Honeycutt R. K., 1992, PASP, 104, 435
Koen C., 2013, MNRAS, 428, 2824
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APPENDIX A : ESTIMATION O F σ 2
ηs, FULL-DATA CASE

The estimated residuals are given by

êrs = Yrs• − μ̂r − �̂s .

Consider the expected value

E

R−1∑
r=1

ê2
rs = E

R−1∑
r=1

[(Yrs• − μr − �s) + (μr + �s − μ̂r − �̂s)]
2

=
R−1∑
r=1

[Ee2
rs + cov(μ̂r + �̂s, μ̂r + �̂s) − 2cov(ers , μ̂r + �̂s)]. (A1)

The first term can be written as

R−1∑
r=1

Ee2
rs = (R − 1)σ 2

ηs +
R−1∑
r=1

σ 2
rs

nrs

(A2)

while the last is (cf. equation 15)

cov(ers , μ̂r + �̂s) = cov(ers , Yr•• + Y•s• − Y•••)

= cov

(
ers ,

1

S

∑
k

Yrk• + 1

R

∑
�

Y�s• − 1

RS

∑
k

∑
�

Yk�•

)

= 1

S

∑
k

cov(ers , Yrk•) + 1

R

∑
�

cov(ers , Y�s•) − 1

RS

∑
k

∑
�

cov(ers , Yk�•)

= 1

S
var(ers) + 1

R
var(ers) − 1

RS
var(ers)

= R + S − 1

RS
(σ 2

ηs + σ 2
rs

nrs

). (A3)

Substituting (A2) and (A3) into (A1), and using (18),

E

R−1∑
r=1

ê2
rs = (R − 1)2(S − 2)

RS
σ 2

ηs + (R − 1)2

RS2

S∑
k=1

σ 2
ηk + (R − 2)(S − 2)

RS

R−1∑
r=1

σ 2
rs

nrs

+ (R − 1)(S − 2)

R2S

R∑
r=1

σ 2
rs

nrs

+ R − 2

RS2

R−1∑
r=1

S∑
k=1

σ 2
rk

nrk

+ R − 1

R2S2

R∑
r=1

S∑
k=1

σ 2
rk/nrk. (A4)

Summing over all the stars,

E

S∑
s=1

R−1∑
r=1

ê2
rs = (R − 1)2(S − 1)

RS

S∑
s=1

σ 2
ηs + (R − 2)(S − 1)

RS

R−1∑
r=1

S∑
s=1

σ 2
rs

nrs

+ (R − 1)(S − 1)

R2S

R∑
r=1

S∑
s=1

σ 2
rs

nrs

. (A5)

Equation (A5) provides an estimator for the sum over the σ 2
ηs :

S∑
s=1

σ̂ 2
ηs = RS

(R − 1)2(S − 1)

S∑
s=1

R−1∑
r=1

ê2
rs − (R − 2)

(R − 1)2

R−1∑
r=1

S∑
s=1

σ 2
rs

nrs

− 1

R(R − 1)

R∑
r=1

S∑
s=1

σ 2
rs

nrs

(A6)

which can be substituted into (A4) to give

σ̂ 2
ηs = RS

(R − 1)2(S − 2)

R−1∑
r=1

ê2
rs − R

(R − 1)2(S − 1)(S − 2)

S∑
s=1

R−1∑
r=1

ê2
rs − R − 2

(R − 1)2

R−1∑
r=1

σ 2
rs

nrs

− 1

R(R − 1)

R∑
r=1

σ 2
rs

nrs

. (A7)

In the case when ση1 = ση2 = ··· = σηS ≡ ση,

σ̂ 2
η = R

(R − 1)2(S − 1)

S∑
s=1

R−1∑
r=1

ê2
rs − R − 2

(R − 1)2S

R−1∑
r=1

S∑
s=1

σ 2
rs

nrs

− 1

R(R − 1)S

R∑
r=1

S∑
s=1

σ 2
rs

nrs

. (A8)
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APPENDIX B: ESTIMATION O F σ 2
ηs, PARTI AL-DATA CASE

The summation in (A1) and (A2) now only extends over the nights during which star s was measured:

E
∑

r ∈ R′
s

ê2
rs =

∑
r ∈ R′

s

[Ee2
rs + cov(μ̂r + �̂s, μ̂r + �̂s) − 2cov(ers , μ̂r + �̂s)] (B1)

and∑
r ∈ R′

s

Ee2
rs = M ′

sσ
2
ηs +

∑
r ∈ R′

s

σ 2
rs

nrs

, (B2)

where R′
s is the set of nights during which star s was observed, excluding night R; M ′

s is the cardinality of Rs . Proceeding from (12), it is not
difficult to prove that

cov(ers , μ̂r + �̂s) = cov(ers , grrUr ) + cov(ers , gr,R−1+sVs) + cov(ers , gR−1+s,rUr ) + cov(ers , gR−1+s,R−1+sVs)

= var(ers)(grr + gr,R−1+s + gR−1+s,r + gR−1+s,R−1+s),

where the notation gij ≡ G−1
ij , the (i, j) entry in the matrix G−1, and Ur and Vs are defined in (8). Summing,

∑
r ∈ R′

s

cov(ers , μ̂r + �̂s) = σ 2
ηs

R−1∑
r=1

(grr + gr,R−1+s + gR−1+s,r + gR−1+s,R−1+s)A(r, s)

+
R−1∑
r=1

(grr + gr,R−1+s + gR−1+s,r + gR−1+s,R−1+s)A(r, s)
σ 2

rs

nrs

≡ α0(s)σ 2
ηs + β0(s). (B3)

Also, in terms of entries in the covariance matrix C in (16),

cov(μ̂r + �̂s, μ̂r + �̂s) = Crr + 2Cr,R−1+s + CR−1+s,R−1+s . (B4)

After some algebra,

Crr =
R−1∑
j=1

S∑
k=1

(grj + gr,R−1+k)2A(j, k)var(ejk) +
S∑

k=1

g2
r,R−1+kA(R, k)var(eRk)

CR−1+s,R−1+s =
R−1∑
j=1

S∑
k=1

(gR−1+s,j + gR−1+s,R−1+k)2A(j, k)var(ejk) +
S∑

k=1

g2
R−1+s,kA(R, k)var(eRk)

Cr,R−1+s =
R−1∑
j=1

S∑
k=1

(gr,j + gr,R−1+k)(gj,R−1+s + gR−1+k,R−1+s)A(j, k)var(ejk)

+
S∑

k=1

gr,R−1+kgR−1+k,R−1+sA(R, k)var(eRk). (B5)

Summing over r,

∑
r ∈ R′

s

Crr =
S∑

k=1

σ 2
ηk

⎡⎣R−1∑
r=1

A(r, s)
R−1∑
j=1

(grj + gr,R−1+k)2A(j, k) +
R−1∑
r=1

g2
r,R−1+kA(R, k)

⎤⎦

+
S∑

k=1

R−1∑
r=1

A(r, s)

⎡⎣g2
r,R−1+kA(R, k)

σ 2
Rk

nRk

+
R−1∑
j=1

(grj + gr,R−1+k)2A(j, k)
σ 2

jk

njk

⎤⎦
≡

S∑
k=1

α1(s, k)σ 2
ηk + β1(s) (B6)
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∑
r ∈ R′

s

CR−1+s,R−1+s = M ′
s

S∑
k=1

σ 2
ηk

⎡⎣g2
s,R−1+kA(R, k) +

R−1∑
j=1

(gsj + gs,R−1+k)2A(j, k)

⎤⎦

+M ′
s

S∑
k=1

⎡⎣g2
s,R−1+kA(R, k)

σ 2
Rk

nRk

+
R−1∑
j=1

(gsj + gs,R−1+k)2A(j, k)
σ 2

jk

njk

⎤⎦
≡

S∑
k=1

α2(s, k)σ 2
ηk + β2(s) (B7)

∑
r ∈ R′

s

Cr,R−1+s =
S∑

k=1

σ 2
ηk

⎡⎣R−1∑
r=1

A(r, s)
R−1∑
j=1

(gr,j + gr,R−1+k)(gj,R−1+s + gR−1+k,R−1+s)A(j, k)

+
R−1∑
r=1

A(r, s)gr,R−1+kgR−1+k,R−1+sA(R, k)

]
+

S∑
k=1

R−1∑
r=1

A(r, s)

[
g2

r,R−1+kA(R, k)
σ 2

Rk

nRk

+
R−1∑
j=1

(gr,j + gr,R−1+k)(gj,R−1+s + gR−1+k,R−1+s)A(j, k)
σ 2

jk

njk

⎤⎦
≡

S∑
k=1

α3(s, k)σ 2
ηk + β3(s). (B8)

Substituting (B2)–(B8) into (B1),

E
∑

r ∈ R′
s

ê2
rs = [

M ′
s − 2α0(s)

]
σ 2

ηs +
S∑

k=1

[α1(k) + α2(s, k) + 2α3(s, k)] σ 2
ηk

+
[
−2β0(s) + β1(s) + β2(s) + 2β3(s) +

R−1∑
r=1

A(r, s)
σ 2

rs

nrs

]
. (B9)

Replacing the expected value on the left-hand side of (B9) by its sample value, the estimator

σ̂
2
η = Q−1q

Q(s, k) = [M ′
s − 2α0(s)]δks + α1(s, k) + α2(s, k) + 2α3(s, k)

q(s) = 2β0(s) − β1(s) − β2(s) − 2β3(s) +
R−1∑
r=1

A(r, s)

[
ê2
rs − σ 2

rs

nrs

]
(B10)

is obtained; σ 2
η is a column vector with entries σ 2

ηs (s = 1, 2, . . . , S).
If it can be assumed that all σηs are equal, then the common variance σ 2

η can be estimated from

σ̂ 2
η =

∑R−1
r=1

∑S
s=1 A(r, s)

(
ê2
rs − σ 2

rs/nrs

) + ∑S
s=1(2β0 − β1 − β2 − 2β3)∑S

s=1(M ′
s − 2α0) + ∑S

s=1

∑S
k=1(α1 + α2 + 2α3)

. (B11)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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