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Abstract: This paper considers a case where an Unmanned Aerial Vehicle (UAV) is used to monitor an
area of interest. The UAV is assisted by a Sensor Network (SN), which is deployed in the area such as
a smart city or smart village. The area being monitored has a reasonable size and hence may contain
many sensors for efficient and accurate data collection. In this case, it would be expensive for one UAV
to visit all the sensors; hence the need to partition the ground network into an optimum number of
clusters with the objective of having the UAV visit only cluster heads (fewer sensors). In such a setting,
the sensor readings (sensor data) would be sent to cluster heads where they are collected by the UAV
upon its arrival. This paper proposes a clustering scheme that optimizes not only the sensor network
energy usage, but also the energy used by the UAV to cover the area of interest. The computation
of the number of optimal clusters in a dense and uniformly-distributed sensor network is proposed
to complement the k-means clustering algorithm when used as a network engineering technique in
hybrid UAV/terrestrial networks. Furthermore, for general networks, an efficient clustering model
that caters for both orphan nodes and multi-layer optimization is proposed and analyzed through
simulations using the city of Cape Town in South Africa as a smart city hybrid network engineering
use-case.

Keywords: clustering; hybrid network; UAV

1. Introduction

The use of Unmanned Aerial Vehicles (UAVs) continues to be not only one of the most efficient
approaches, but also less expensive and risky ones, for various exploratory problems. These problems
include rescuing, data delivery/collection, surveillance, and many more. In the case of city surveillance,
it has been found efficient to assist UAVs with a Sensor Network (SN) comprising static ground sensors,
which collect local information and deliver them to the UAVs visiting them [1]. In case more detailed
information is to be captured, large-scale and complex SNs are usually deployed in the zone of interest.
In this case, the use of UAVs continues to be one of the most efficient ways to handle the mentioned
situations. However, UAVs’ flights are generally constrained by their limited flight time, fuel and
energy usage when powered by battery. Therefore, the UAV exploration of targeted environments
necessitates the optimization of energy usage to ensure the scalability and resilience of the data
capturing. This is why it is generally important to minimize the UAVs’ moves, yet collect maximal
information by having the UAVs visit only an optimal number of selected ground sensors serving as
ground gateways, each of them receiving information collected from other ground sensor nodes for
collection and data muling by a UAV upon its visit. It is then important to assign to each gateway an
optimal team of sensor nodes providing the sensed data. Here, we refer to the teams of sensor nodes as
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cluster members, while their gateways are referred to as cluster heads, and the corresponding partition
of the sensor network is called clustering.

Cluster-based sensor networking has been a subject of high interest in the literature. In [2],
the physical-access control cross-layer analytical approach for determining the optimum number of
clusters has been proposed. The proposed model minimizes the communication-energy consumption
in a highly-dense sensor network. In [3], the Euclidean distance (communication range and the area
on which the network is deployed) from nodes to a cluster head was considered in order to design
clusters with the objective of minimizing the energy required for efficient communication. In the latter
paper, the energy usage is minimized with the increase of the number of clusters. A connectivity-based
k-hop to the cluster head was proposed as a clustering technique in [4], where it was shown that the
efficiency of messages transmissions from the cluster heads to the sink of the underlying network is
reduced with the number of clusters. This raises the issue of finding the optimal number of clusters
in a network (note that it exists). An optimal, temporal clustering algorithm was proposed in [5],
as an adaptive model for a wireless micro-sensor network, to ensure efficient utilization of its energy.
In [6], the optimal number of cluster heads and their locations were analytically computed for efficient
wireless sensor network communication. The main goal of the paper was to ensure optimal data
transfer in the network by adopting the cluster head selection method in [7], which is based on the
calculated probability of a node to be a cluster head. Simulations in [6] showed a better performing
clustering, compared to the k-means algorithm-based [8] schemes, including those presented in [9–13].

The k-means is a clustering algorithm aiming to partition nodes into Voronoi cells (see [14] for
example). Given the number k of centroids (cluster heads), the algorithm consists of the following steps.

1. Initialization: this is done by randomly selecting k of the nodes to be cluster heads.
2. Assignment step: this step consists of assigning cluster members to cluster heads, based on the

least Euclidean distance between the node and cluster heads.
3. Update: for each cluster, a centroid (most central node) is computed, and if it is different from the

current cluster head, it replaces it.
4. Iteration: this step consists of alternating Steps 2 and 3 until no more updates are possible.

The clustering problem being an NP-hard problem, the k-means is its heuristic solution,
whose properties include: (i) local convergence, (ii) the choice of the number k of cluster heads
influencing the optimality of the clustering, (iii) the initialization step impacting the running
time of the algorithm, and (iv) Euclidean distance used as the utility function for clustering.
To address issues related to the above four properties, different versions of the algorithm have been
proposed, respectively a globally-converging clustering [15], an optimal number of clusters for image
segmentation [16,17], a better initialized k-means [18] algorithm, and the multi-norm clustering [19].
However, to the best of our knowledge, there is no k-means algorithm that has been proposed to
ensure the connectivity of all cluster members to corresponding cluster heads in order to avoid
orphan/isolated nodes in a sensor network. Two versions of the k-means algorithm were considered
in [6]: (i) the deterministic k-means algorithm, which is built around the same principles as the
classical k-means algorithm, and (ii) the adaptive k-means algorithm, which uses the classical k-means
algorithm iteratively to cluster n sensor nodes for n times by varying the parameter k from 1 to n
and selecting the clustering result with the minimum energy cost. The Distance-based Crowdedness
Clustering (DCC) was also proposed in [6] as a greedy algorithm, which, for a given general network,
outputs the corresponding clustering by using node degrees as a way of selecting the best cluster head
(one of highest degree) and building corresponding clusters. In DCC, the length of the underlying
network’s links is used to select the clustering radius (the length of one of the links), and every neighbor
of the selected cluster head at a distance less than the radius is added to the cluster. This process
continues to all remaining nodes, until each node belongs to a cluster. After performing clustering
once, the corresponding cost (a function of the radius) is computed, and for all possible values of the
radius, a clustering corresponding to the least cost is chosen to be the output of the algorithm.
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Figure 1a compares DCC and the adaptive k-means algorithms. In the figure, the solid lines
represent clusters with the DCC, while the dotted lines represent the adaptive k-means clustering for
100 nodes, on a 200 m × 200 m area. The figure reveals that DCC outperforms k-means in terms of
cluster-based node density. On the other hand, Figure 1b shows that the DCC outperforms the k-means
in terms of Total Energy Consumption (TEC) efficiency for 10 consecutive runs of both algorithms.

(a) (b)
Figure 1. Comparison between Distance-based Crowdedness Clustering (DCC) and deterministic
k-means [6]. (a) Clustered nodes; (b) minimum energy per round. TEC, Total Energy Consumption.

While the models and algorithms presented above focused the optimization process on a
ground-based/terrestrial sensor network, the works in [20–24] are among those that have addressed
UAVs’ related clustering. In [20], UAVs were presented as moving agents, which were clustered
by using their mobility attributes to predict their motion, hence leading to clusters’ predictions.
In [21], the UAVs also were clustered with the goal of computing the optimal route discovery. In [22],
a clustering scheme was proposed to provide Internet connectivity, using a mobile sink (a UAV). In the
paper, the clustering was performed based on the distance separating potential cluster heads and other
ground sensor nodes, and also the proximity of the UAV, and a UAV’s move was predicted in order to
determine its corresponding cluster. To the best of our knowledge, this was one of the first clustering
schemes considering different positions of a UAV (path). However, the paper did not consider the
energy spent by the UAV while moving from one position to another, which is a requirement to
allow the UAV to aggregate data as much as possible prior to being recharged. The works in [23,24]
considered a multi-layer model with a team of UAVs playing the role of an airborne gateway network
for a terrestrial sensor network. While [23] proposed an initial model showing through simulation how
the multi-layer network can be designed, the model in [24] was based on MIMO clusters to increase
the terrestrial sensor network lifetime by avoiding disconnections that can lead to orphan/isolated
sensors or groups of sensors that are unable to deliver their data.

Motivation and Contribution

As discussed in Section 1, the k-means algorithm (see [8] for example) and its variants are some of
the most popular clustering models. This algorithm aims to minimize the sum of distances (standard
deviations) between k cluster heads and their cluster mates. The deterministic k-means algorithm finds
the best number k, and a clustering cost function may be used to evaluate the cost corresponding to
each value of k ranging from one to the number of observations. Alternatively, mathematical methods
using calculus are used to compute the number k. When the connection (affinity) between cluster
members is one of the requirements, this algorithm is outperformed in terms of TEC, even in dense
networks (see [6]). Note that for the k-means algorithm, nodes are grouped based on their statistical
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characteristics. However, statistical approaches alone could be less efficient in case the relationship
of observations matters. The affinity of data points/nodes has been addressed in [25–27], but could
not guarantee a perfect assignment of the node to the correct cluster head (the node to which all
cluster members are connected). This is why the DCC algorithm proposed in [6] could outperform the
adaptive k-means algorithm.

This paper extends [28] to revisit the problem of clustering as a way of optimizing hybrid
terrestrial/airborne sensor networks by proposing a novel clustering model that combines efficient
sensor network communication and efficient cluster heads’ visitation by a UAV. The clustering problem
for a hybrid network (UAV routes and the communication-based SN) is firstly proposed. Thereafter,
the optimal number of clusters is rigorously computed for uniform and dense network distribution
settings. A heuristic clustering is then proposed for general networks; and its extension to cater for
the sensor nodes’ isolation is supported through relaxation techniques. Our work is closely related
to DCC in [6], but differs by proposing a clustering scheme that (i) takes care of the relationship of
nodes while DCC does not and (ii) considers a multi-layer approach that caters for the efficient cluster
heads’ visitation by a UAV. While different clustering schemes and algorithms have been proposed
in the literature, they have either focused the optimization process on a single layer (UAV layer or
terrestrial layer) [2,3,6,8–13] or consisted of non-optimization techniques that show how UAVs can be
used as mobile sensor networks [1] for different purposes including city surveillance. Our model is
based on an optimization process that considers both layers of a hybrid sensor network. Furthermore,
the presence of orphan nodes (which could be either cluster heads or normal nodes) may lead to (i) a
dislocated network with part of the data produced by the orphan nodes not reaching the network
gateway and (ii) an energy-inefficient hybrid network with a UAV’s energy being wasted to visit an
orphan cluster head that does not have data to be collected. While all previous works have discounted
the issue of orphan nodes, the clustering solution presented in this paper addresses this issue by the
proposed mitigation processes to reduce the number of orphan nodes.

The rest of the paper is organized as follows. The problem is mathematically formulated in
Section 2, and the proposed algorithmic solution is described in Section 3. To adopt a special case,
the proposed algorithm is relaxed in Section 4, and the performance of the proposed model is discussed
in Section 5, whereas in Section 6, the paper is concluded.

2. Problem Formulation

In this section, the clustering problem is formalized as an energy optimization problem,
under network-related constraints. The focus lies on an energy-efficient design where a single UAV
located at a specific base station is used to collect sensor data from a number of collection points.
The network H can be considered as a hybrid network H(Hg,Ha) combining the terrestrial sensor
sub-network Hg and the airborne muling sub-network Ha consisting of all possible UAVs’ paths.
Note that while having the same number of nodes, theHa network might differ fromHg as it is based
on potential UAV path restrictions related to obstacles and Distance-based Crowdedness Clustering
(DCC) different environmental limitations. This is illustrated by Figure 2.

Figure 2 reveals that while the two network configurations in Figure 2a (aerial and ground
networks) have the same sets of nodes, they may have different sets of links and hence different routing
paths. Therefore, they may result in different energy consumption patterns (Eg 6= Ea). This raises the
issue of energy consumption in a hybrid network (Figure 2b) and the need for an optimization model
that combines the energy consumed by both networks Eh = f (Eg, Ea).
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(a) (b)
Figure 2. Terrestrial, airborne, and hybrid networks. (a) Physical topology; (b) conceptualized topology.

2.1. The Energy Models

As suggested earlier, this paper considers an energy-efficient model where the energy
consumption is described below.

Eg = Et + Er (1)

Ea = βEc + γEu, (2)

where the constants β and γ are proportionality constants corresponding to Ec and Eu, respectively,
and the energy components Er, Et, Ec, and Eu are defined below.

• Energy for sensor-data reception (Er): This is the energy spent by cluster heads due to its
topological and environmental properties, the physical/electronic properties of the receiving
node, and the nature of messages to be received. We assume that all possible cluster heads are
in the same and good condition; hence, they require the same quantity of energy to receive a
message. It is assumed that nodes communicate directly with their corresponding cluster head,
and in the case a multi-hop communication is applicable, the least interference beaconing protocol
(see [29]) is used to find sensor communication route.

• Energy for data transmission among sensors (Et): This is the total energy required to move the
captured data from each cluster node to its corresponding cluster head. This form of energy
is directly proportional to the distance separating the two communicating sensors. We assume
one-hop inter-cluster communication, and hence, the considered distance is the Euclidean length
of links. All nodes of the network are assumed to require the same quantity of energy for
message transmissions.

• Energy for UAV data transport (Eu): This refers to the expected energy required for a UAV to visit
cluster heads. This energy depends on the number of cluster heads in the Hg network and the
distance between these nodes (the expected link length).

• Energy for UAV data collection (Ec): This is the energy spent by the UAV to collect data from the
sensor nodes (cluster heads).

From Equation (1), the overall energy for data dissemination in the terrestrial ground-based
sensor network to cluster heads and data muling by the UAV can be expressed by the weighted sum of
energy consumption in both ground and airborne networks as expressed by:

Eh = αEg + βEu + γEc. (3)
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2.1.1. The Terrestrial Network Energy Consumption: Eg

Let L× L units of area be the area of the field where sensors are distributed. It follows that one
cluster’s area is

√
L2/k×

√
L2/k, based on the Voronoi diagram (see [30]).

It has been shown in [6] that the total energy E for data gathering in a uniformly-distributed
network of type Hg is expressed as follows.

E = (2n− 2k + a× k)Ee + nEp + (n− k)e f
L2

3k
+ a× k× em

4L4

9
, (4)

where a (with 0 < a ≤ 1) denotes the data compression ratio: an input of k bits results in an output
of a× k bits after compression; Ee denotes the energy for driving the electronics; Ep is the energy for
data processing; n the number of all sensors in the field; and the constants e f and em represent the
coefficient corresponding to the effects of the clusters intra-distances and inter-distances, respectively.

The considered case in this paper assumes that there is no inter-cluster communication, and thus,

em = 0.

This is why the gathering energy Eg for the uniformly-distributed network of type Hg is computed
as follows.

Eg = (2n− 2k + a× k)Ee + nEp + (n− k)e f
L2

3k
, (5)

On the other hand, for the generally-distributed network, the energy may be computed as follows.
Let C be a set of clusters; ci represents the node i of cluster c, and ch denotes the cluster head of cluster c.

Eg = (2n− 2k + a× k)Ee + nEp + ∑
c∈C

∑
i∈c

d(ci, ch), (6)

where the function d(ci, ch) represents the Euclidean distance between node i and the cluster head in
the cluster c.

2.1.2. The Data Collection Energy Consumption: Ec

This is the total energy for data collection from cluster heads by a UAV. Let 1, 2, . . . k be the indices
corresponding to k cluster heads. If Ei is the energy required by the UAV to receive data from the
cluster head i (with 1 ≤ i ≤ k) and ei is the energy required by the cluster head to forward the gathered
data to the UAV, then the total energy Ec for data collection is expressed as follows.

Ec =
k

∑
i=1

(Ei + ei) =
k
k

k

∑
i=1

(Ei + ei) (7)

Hence,
Ec = k(E + e), (8)

where E and e are the expected value of the energy required to receive and forward data, respectively.

2.1.3. Energy for UAV Transportation: Et

The transportation energy Et depends on the length of the used path, which gets longer as the
number of clusters increases. We assume that the UAV moves from one node to another, using Dijkstra’s
algorithm [31] on the network of typeHa. This will enable us to evaluate the goodness of a node to be
in a particular cluster or even to be a cluster head.

Since the UAV-transportation energy is directly proportional to the length of the path used, it is
directly proportional to the number of cluster heads. It is also proportional to the average distance from
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one cluster head to another and hence the distance D to travel from one node to another. Therefore, Et

is computed as follows,
Et = b× k× D. (9)

where b is the proportionality constant and D = E(Ej(d)) is the expected value of the average length
of shortest paths d from each sensor node j to others, where Ej(d)) expresses the expected Dijkstra’s
shortest distance d from the node j to any node in the underlying network (here, it isHa).

Considering a network whose number of nodes is n, let An×n = {dij} be the matrix where each
entry dij corresponds to the shortest distance from node i to node j based on Dijkstra’s algorithm.
Here, dii = 0 ∀i because dii represents the distance from node i to itself. The index D may be calculated
as follows.

D =
1

n− 1

n

∑
j=1

(
1

n− 1

n

∑
i=1

aij

)
=

1
(n− 1)2

n

∑
j=1

n

∑
i=1

aij

Notice that the denominator is n− 1 to exclude the case where i = j with related terms equal
to zero.

It follows from Equations (3), (5), (8) and (9) that the total energy used in data collection is
expressed as follows.

Eh(k) = Eg + bkD + k(E + e). (10)

The main issues involved in the optimal clustering model considered in this work are (i) finding
the optimal number of clusters, (ii) selection of the optimal cluster heads/sinks, and (iii) associating the
cluster members with the sinks. These issues can be solved by three algorithmic solutions: (a) a myopic
k-means clustering algorithm where the optimal number of clusters k = Kopt is computed and the
classical K-means algorithm is applied with k = Kopt, (b) an optimized k-means clustering algorithm
where the optimal number of clusters k = Kopt is computed and theKopt best cluster heads are selected
and fed to the k-means algorithm to guide the clustering process, and (c) a multi-step clustering
algorithm where a sequence of cluster head selection and cluster member association is performed
on the network until all the nodes are assigned a cluster head or member status. Note that while the
k-means algorithm can be applied to a dense and uniform network where each sensor node is able to
communicate with its neighbors, the multi-step algorithm is more suitable for general networks where
the connectivity property may not be met.

2.2. Problem Definition

The network considered in this paper is denoted by H(N ,Pg,Pa, Eg, Ea), where N is the set
of sensor nodes and the UAVs’ base stations’ locations, Pg is the set of paths expressing possible
sensors communication pathways in the ground-based terrestrial network, Pa the set of paths in the
airborne network consisting of possible routes followed by the UAVs to collect data delivered by the
ground-based sensor network, and the energy consumed by the set of paths Pg and Pa is respectively
represented by Eg and Ea. Given a hybrid network H, the problem consists of finding the smallest
nodes’ partition P(N) to minimize the total energy Eh (see Equation (3)), such that each partition
(cluster) is connected and its optimum head is known. The energy Eh is referred to as the clustering
cost. The network design consists of finding a network configuration that minimizes the clustering
cost function subject to node selection and topology constraints with the objective of partitioning
the network into two sets: a dominating set of UAV collection points and a dominated set of cluster
members forming the edge of the network. Mathematically formulated, the design process consists of
finding a network partition C derived from the graph of the type explained in Figure 2b, which leads
to the optimal energy consumption Eopt, such thatN is divided into disjoint clusters, where the cluster
head is communicatively connected with all its cluster mates.

Eopt = min Eh = min(αEg + βEu + γEc) (11a)
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Subject to,
∀c ∈ C, ∃x ∈ c, ∀y ∈ c, (x, y) ∈ Pg (11b)

c1, c2 ∈ C, c1 ∩ c2 = ∅ (11c)⋃
c∈C

c = N (11d)

where, Constraints (11b) shows the dominating set property of the set of cluster heads and (11c) and
(11d) represent the network partitioning properties.

3. The Proposed Clustering Models

Two clustering algorithms were developed:

1. The UAV-Aware k-Means (UAKM) algorithm, which computes the number k of optimal clusters
for hybrid dense networks to support/complement k-means clustering. Here, the number k is
calculated using both the ground and the aerial networks, and hence, it considers the movement
of the UAV.

2. The UAV-Aware DCC (UADC) algorithm, which adapts the DCC algorithm to include the UAVs
data collection process.

3.1. The UAV-Aware K-Means Algorithm

In this subsection, we express the forms of energy in terms of the number of clusters k a hybrid
network (see Section 2.2) needs to be partitioned into and use calculus to compute the value k that
minimizes the total energy required for data collection. Energy Equation (10) can be expressed in terms
of the number of clusters k, which in turn can be used to determine the optimal number of clusters,
as shown in Equation (12).

∂E
∂k

= Ee(a− 2) +
L2e f (k− n)

3 k2 −
L2e f

3 k
+ bD + E + e (12)

By solving the equation, ∂Eh
∂k = 0, where k ≥ 1, we obtain the optimal value of Eh for:

Kopt =

√
L2e f n

3( Ee(a− 2) + bD + E + e)
(13)

Notice that the second derivative is:

∂2Eh
∂k2 = −

2 L2e f (k− n)
3 k3 +

2 L2e f

3 k2 . (14)

We know that all observables in Equation (14) are positively valued. Furthermore, the difference
k− n is always negative (the number of cluster heads cannot exceed the number of all existing nodes).
It follows that,

∂2Eh
∂k2 ≥ 0. (15)

This confirms that the the total energy Eh(k) is a minimum at Kopt, as shown in Equation (13).
Since the optimal number of clusters has to be a positive integer, the optimal number of clusters is

denoted by K, and it is calculated as follows.

Kopt =

{
dke if E(dke) ≤ E(bkc)
bkc otherwise

(16)
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Consider three networks on which the following parameters are defined in Table 1.
The corresponding graphs of the energy are shown in Figure 3.

Table 1. Parameters and their corresponding values.

Parameter Network 1 Network 2 Network 3 Units

n 100 100 200
Ee 20 20 20 nJ/bit
Ep 21 21 21 nJ/bit/signal
e f 1 1 1 pJ/bit/m2

L 30 60 30 m
a 0.0008 0.0008 0.0008
b 9 9 9
D 6 6 6

E + e 3 3 3 nJ/bit/signal

(a) (b)

(c)

Figure 3. Energy required versus the number of clusters: (a) 30 m × 30 m network with 100 nodes;
(b) 60 m × 60 m network with 100 nodes; (c) 30 m × 30 m network with 200 nodes.

In Table 1, E + e can be set to zero if we need to consider a case where some sensors are
located together with refueling/repairing stations, which increase the energy of a UAV even if it
were collecting data.

Figure 3, showing the energy required compared to the number of clusters, reveals the optimal
number of clusters for the three different networks. Figure 3a–c shows that the optimal number of
clusters increases with the network size. Figure 3a shows that the number Kopt for the first network
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(Network 1) lies in the interval (4, 5). On the other hand, using Equation (13), Kopt = 4.84. It follows
from Equation (16) that,

Kopt =

{
5 if E(5) ≤ E(4)

4 otherwise.
(17)

Thus, the optimal number of clusters in this case is Kopt = 5. Similarly, it can be shown that for
the second network (Network 2),

Kopt =

{
6 if E(6) ≤ E(5)

5 otherwise.
, (18)

leading to Kopt = 6. For the third network (Network 3),

Kopt =

{
7 if E(7) ≤ E(6)

6 otherwise.
, (19)

leading to a value of Kopt = 7.

3.2. The UAV-Aware DCC Algorithm

The UADC algorithm has been designed based on a multi-step process using the following cluster
head selection assumptions:

• Degree-aware selection policy, where nodes are assigned the cluster head identity based on their
node degree deg(i). While leading to the UAV choosing data collection points with a high volume
of data, this policy might lead to the UAV flying longer distances to collect these data, and hence,
depleting its energy during its inbound journey.

• Distance-aware selection policy, where nodes are elected cluster heads based on the expected
Dijkstra’s shortest path from the nodes to all other nodes, following the links in the airborne
network (links of the network Ha). This policy aims at minimizing the energy usage of the
airborne sensor network, but might lead to the UAV being tasked with collecting data at collection
points with very few data.

• A hybrid policy that combines features from dense and distance-aware cluster head selection by
combining both parameters into a weighted sum metric expressed by:

P(i) = λdeg(i) + ψ
1

Di
. (20)

Here, deg(i) represents the number of available neighbors (of node i) in the network of typeHa,
whereas Di is the average distance from node i to all nodes in the network of type Hg. λ and ψ are
coefficients corresponding to the node degree inHg and average distance inHa, respectively.

This policy is used in clustering as shown by the proposed algorithm described as follows.

Input: The graph of type H(Ha,Hg)

Output: A dictionary of cluster heads and their cluster mates

In Algorithm 1, the first steps consist of computing a list L of all link lengths in the SN (network of
type Hg) and the dictionary DP, whose keys are the sensor labels, and the corresponding values consist
of the average distance to each node in the restricted network (network of type Ha). The minimum
coverage energy Emin is initialized to infinity. The network clustering is expressed in the form of
a dictionary whose keys are the cluster heads, and the values correspond to the clusters’ members.
The clusters’ dictionary C is initially set to empty (Line 4). The cluster dictionary is assumed to have
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the cluster heads as keys, and their corresponding values are the list of nodes each cluster head is
to support.

Algorithm 1: Optimal clustering.
L←− set of the lengths of links in Lg

Dp ←− dictionary of nodes (keys) and their expected length of the shortest path to each sensor
node in Ha (values).

Emin ←− ∞
Cmin = {}
for Radius ∈ L do

Nrad ←− dictionary of nodes (keys) and a list of their available neighbors at distance
dist ≤ Radius

Order Nrad in terms of the decreasing order of the value of the price P of the keys
(cluster heads)

Ch←− List of Nrad ordered keys (cluster heads)
Cv←− List of Nrad ordered values (cluster mates)
C←− empty dictionary, which will contain clusters
while Ch 6= ∅ do

CCh0 ←− Cv0

Remove Ch0 and all nodes in Cv0 from Ch.
Nrad ←− dictionary of nodes in Ch (keys) and a list of their neighbors not in any
formed clusters

Order Nrad in terms of the value of the price P of the keys (cluster heads)
Ch←− List of Nrad ordered keys (cluster heads)
Cv←− List of Nrad ordered values (cluster mates)

end
Calculate the price P(C) using Equation (20)
if P(C) < Emin then

Cmin ←− C
Emin ←− P(C)

end
end
Return Cmin

From Line 5 on, each link length (Euclidean distance between two connected nodes) is used
as the clustering radius (maximum distance of nodes and cluster heads), to form a corresponding
clustering C.

Clustering is done using a dictionary Nrad, consisting of nodes and their Hg neighbors at a
distance less than or equal to the chosen radius. Note that the radius is only chosen from a list of
lengths of theHg links, and it is assumed to be the same for all clusters to be formed. This dictionary
gets formed (Line 6), and using the pricing shown by Equation (20), it is decreasingly ordered (Line 7).

Let Ch be a list of ordered Nrad keys (list of potential cluster heads) and Cv be the list of the
corresponding keys (possible cluster members). To form the first cluster, we take the first element of
the list Ch to be the cluster head, and the first list in Cv constitutes the corresponding cluster mates.

Nrad is then updated to contain the remaining possible cluster heads and their neighbors, which
are the nodes not in any of the formed clusters.

The process of using the available nodes in the list Nrad to make one cluster is repeated (Line 11–16)
until no more cluster heads are available. In this case, one clustering configuration is done, and its cost
is computed using Equation (3) (Line 17).
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Each new clustering-related cost is compared to the existing minimum cost to check the possibility
of updating the best cluster Cmin and the corresponding cost Emin.

An example that shows graphically how Algorithm 1 works is presented below. For simplicity,
only the network of typeHg is shown. The considered cluster radius is assumed to be the maximum
link length, and hence, cluster heads will be associated with all their neighbors inHg.

Figures 4–6 show the different steps involved in the clustering algorithm example and are
explained below:

Step 0 is the initial step revealing the initial network.
Step 1 selects Node 8 as the one with highest utility (computed by Equation (20)) to become the

cluster head. The first cluster is formed by assigning all its neighbors as its cluster members.
Step 2 selects Node 2 as the next best cluster node. Here, to calculate the utility, the nodes or links

involved in the formed cluster are not considered. This is why for example Node 2 has a
new degree of two. The new degree of Node 0 is greater than that of Node 2 even though the
utility of Node 2 is highest since it is the closest node to the remaining nodes.

Step 3 is a step where Node 9 is selected as the next best cluster head, which is joined by only Node
4 as its cluster member.

Step 4 is a step where Node 0 is selected as the last best cluster head, which is joined by Node 11 as
its neighbor to form the last cluster.

Step 5 is the last phase where the resulting cluster and the corresponding communication links
through which nodes have to send sensor readings to cluster heads are shown.

(a) (b)

Figure 4. Beginning steps. (a) Step 0: initial network; (b) Step 1.

(a) (b)

Figure 5. Processing steps. (a) Step 2; (b) Step 3.
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(a) (b)

Figure 6. Last steps. (a) Step 4; (b) Step 5.

Proposition 1. Algorithm (1) satisfies the following properties.

P1. It terminates.
P2. The produced cluster heads constitute a dominating set of the network of typeHg (see Constraint (11b)).
P3. The set C of the produced clusters is a partition of the set of all nodes (see (11c) and (11d)).

Proof.

P1. Termination property: We first show that the algorithm terminates. Notice that the algorithm
iterates over a finite set (see Line 5) and loops for some iterations (Line 11). It is sufficient to
show that the inner loop on Line 11 halts. Notice that the loop starts with a finite set of nodes,
and updates the set by removing at least one element during each iteration. It is clear that in at
most #Ch steps, Ch = ∅, which is a condition for the loop to stop.

P2. Dominating set property: Lines 6, 8, and 11 show that at the end, each node becomes either
a cluster head or a cluster member. On the other hand, Lines 1, 2, 9, and 6 show that only
neighbors of the cluster head are added in the same cluster to be cluster members. It then
follows that when the algorithm halts, if a node is not a cluster head, then it is connected to the
cluster head in the same cluster.

P3. Partition property: Line 13 shows that no node (cluster member or cluster head) belongs to
more than one cluster. Hence, the formed clusters are mutually exclusive. On the other hand,
Lines 6, 8, and 11 show that the algorithm halts when each node has either been a cluster member
or (exclusively) a cluster head. This shows that in the end, each node belongs in a unique cluster.
Hence, cluster nodes constitute a partition of the ground network nodes.

4. Issues and Relaxation

In this section, we discuss two main issues and address them to improve the performance of
the algorithm.

4.1. Energy Inefficiency

The proposed algorithm is greedy in terms of the way cluster members are assigned to cluster
heads. The assignment of all neighbor nodes (at a distance less that or equal to a threshold) to cluster
heads does not necessarily lead to the best association between cluster members and cluster heads.
This may lead to the case where nodes are assigned to cluster heads that are not closest to them.
This would result in higher energy/cost for data aggregation on cluster heads. This issue is depicted
in Figure 7a.

Figure 7a shows an inefficient clustering where Node 3 has been allocated as the cluster member
of Node 0 instead of Node 4, which is the closest cluster head. Figure 7b reveals that through
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relaxation, nodes re-choose their corresponding clusters depending on their closest elected cluster
heads, thus leading Node 3 to become a cluster member of Node 4. The solution to the energy
inefficiency issue above consists of applying the relaxation algorithm below to improve the UAKM
and UADC algorithms.

(a) (b)

Figure 7. Relaxation: energy inefficiency. (a) Inefficient clustering; (b) efficient clustering.

Input:

→ The graph of type H(Ha,Hg).
→ the initial clustering (using Algorithm 1): each node and its initial cluster head denoted by

n and nch0, respectively.

Output:

← A more efficient clustering.

Denote nch the new cluster head of node n. Assume C is the set of all cluster heads and N is the
set of all cluster members (all theH nodes excluding cluster heads).

4.2. Orphan Nodes

The presence of orphan nodes leading to isolated cluster heads is another issue of the proposed
greedy algorithm that can reduce the utility of the hybrid network as it can lead to the UAV being
tasked to collect data on a cluster-head with very reduced data. This is illustrated by Figure 8a, which
reveals a sensor network with three clusters: the first cluster with Node 0 as the cluster head and
Nodes 1, 2, and 5 as cluster members, the second with Node 4 as the cluster head and Nodes 6 and 7
as cluster members, and the last cluster, which has the orphan Node 3 as the isolated cluster head.
By applying a distance-aware node redistribution process, the sensor network will be restructured into
a two-cluster network similar to the one depicted by Figure 8b with two clusters: the first cluster with
Node 0 as the cluster head and Nodes 1, 2, and 5 as cluster members and the second cluster with Node
4 as cluster head and Nodes 3, 7, and 6 as cluster members.

Figure 8a reveals a clustering where Node 3 is an orphan node in a cluster consisting of only one
cluster head with no cluster member, while Figure 8b reveals a situation where the orphan cluster head
is assigned to the optimal cluster whose cluster head is nearest to the orphan node, thus becoming
one of its cluster members. The solution to the orphan node inefficiency issue related to the above
consists of applying the cluster restructuring algorithm below to improve the UAKM and UADC
algorithms. Note that while this algorithm is based on the same principles as the distance-aware node
redistribution, cluster restructuring may require balancing the benefits due to energy efficiency and
the data muling utility in order to decide on whether to move an orphan node into another cluster to
become a cluster member or leave the orphan node in its current cluster.
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(a) (b)

Figure 8. Relaxation: orphan nodes. (a) Inefficient network; (b) efficient network.

Input:

→ The graph of type H(Ha,Hg).
→ the initial clustering (using Algorithm 1): each node and its initial cluster head denoted by

n and nch0, respectively.

Output:

← A more efficient clustering.

Denote nch as the new cluster head of node n and ut(n) a Boolean value indicating if it is more
beneficial to restructure the network. The re-clustering may be required when the cost of sending data
to nch is smaller than the cost of visiting the node with a UAV.

Assume C is the set of all cluster heads and N is the set of all cluster members (all theH nodes
excluding cluster heads), see Algorithm 2.

Algorithm 2: Distance-aware cluster restructuring.
. Loop to allocate each node a cluster head

for n ∈ N do
nch ←− nch0

. Loop to compute the closest cluster head to node n
for c ∈ C do

if d(n, c) < d(n, nch) and ut(n) = 1 and (c, n) ∈ Pg then
nch ←− c

end
end

end

4.3. The Update Step

As suggested above, both the UAKM and UADC algorithms can be updated into a two-step
algorithm that applies the basic algorithm first (UAKM or UADC) and thereafter balances the network
using the distance-aware relaxation algorithm above. We adapt the k-means update step to achieve
energy efficiency by using the fact that the knowledge of the cluster heads can help redistribute cluster
members according the closeness to cluster heads, as shown in Figure 7b. The same applies to the
UADC algorithm, which is complemented by a relaxation step to balance the energy consumption as
suggested above.
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Remark 1.

• The distance-aware relaxation algorithm proposed above may lead to energy consumption improvement.
• The restructuring of the terrestrial sensor network is another relaxation technique that follows the same

distance-aware strategy for a different purpose, but it can also lead to energy consumption improvement.

5. Results and Discussion

In this section, we report on the experimental results obtained from running the proposed
algorithms in different settings. The algorithms (both UADC and relaxed UADC) are analyzed and
compared to the DCC and k-means algorithms for benchmarking purposes. We considered two
network topologies: (i) a random network and (ii) the city of Cape Town network used as a smart city
use-case.

5.1. Smart City Use-Case

We considered the public safety network topology consisting of Cape Town (South Africa) police
stations as collection points of the terrestrial/ground sensor network. This network was used as a smart
city use-case aiming to provide citizen safety and city surveillance through a combination of aerial and
terrestrial traffic control. The Cape Town police stations are labeled in terms of integers in the interval
[1, 49], and their GPS coordinates were used as their positions (see Figure 9a). The corresponding
positions on a map are shown in Figure 9b. The Radio Mobile software [32] was used to create the
hybrid network by having the terrestrial/ground communication network (see Figure 10a) generated
using a two-step process consisting of (i) generation by the mobile radio of a terrestrial network that
considers only connections whose link margin is greater than 50 dB in the white space spectrum
frequency and (ii) generation by the mobile radio of an aerial network consisting of UAV paths (see
Figure 10b) that considers only connections/links with a link margin between 30 and 50 dB in the
same white space band.

Label   Station             Longitude  Latitude
1.      Bellville           33°54'06"S 018°37'12"E 
2.      Nyanga              33°59'20"S 018°34'54"E 
3.      SAPS-Int Airport    33°56'37"S 018°29'18"E 
4.      Bellville South     33°54'55"S 018°38'40"E 
5.      Philippi            34°00'02"S 018°32'16"E 
6.      Matland             33°55'46"S 018°28'52"E 
7.      Parow               33°54'16"S 018°35'39"E 
8.      Lansdowne           33°59'26"S 018°30'10"E 
9.      Rondebosch          33°57'46"S 018°27'59"E 
10. Kuilsrivier         33°55'56"S 018°40'50"E 
11. Wynberg             34°00'15"S 018°27'46"E 
12. Sea Point           33°54'20"S 018°23'51"E 
13. Bishop Lavis        33°56'46"S 018°34'15"E 
14. Cape Town Central   33°55'40"S 018°25'16"E 
15. Table Bay Harbour   33°54'36"S 018°25'24"E 
16. Delft               33°58'29"S 018°38'24"E 
17. Mowbray             33°57'00"S 018°28'12"E 
18. Ravensmead          33°55'19"S 018°35'45"E 
19. Goodwood            33°54'33"S 018°33'35"E 
20. Elsies River        33°55'28"S 018°33'46"E 
21. Port of Entry       33°55'15"S 018°26'18"E 
22. Kensington          33°54'34"S 018°30'33"E 
23. Athlone             33°57'41"S 018°30'20"E 
24. Woodstock           33°55'43"S 018°26'48"E 
25. Pinelands           33°55'36"S 018°29'56"E 
26. Belhar              33°56'49"S 018°38'55"E 
27. Manenberg           33°58'18"S 018°33'13"E 
28. Claremont           33°59'04"S 018°28'15"E 
29. Guguletu            33°58'29"S 018°33'43"E 
30. Durbanville         33°50'01"S 018°38'49"E 
31. Brackenfell         33°52'18"S 018°40'51"E 
32. Langa               33°56'39"S 018°31'27"E 
33. Mitchells Plain     34°02'51"S 018°37'19"E 
34. Khayelitsha         34°01'29"S 018°39'48"E 
35. Mfuleni             34°00'11"S 018°40'43"E 
36. Lingelthu West      34°02'35"S 018°39'28"E 
37. Dieprivier          34°01'54"S 018°27'47"E 
38. Kleinvlei           33°59'18"S 018°43'00"E 
39. Harare              34°03'06"S 018°40'01"E 
40. Grassy Park         34°02'55"S 018°29'35"E 
41. Steenberg           34°03'56"S 018°28'28"E 
42. Kirstenhof          34°04'19"S 018°27'11"E 
43. Camps Bay           33°57'22"S 018°22'29"E
44. Milnerton           33°52'32"S 018°30'01"E 
45. Parklands           33°48'55"S 018°30'04"E
46. Kraaifontein        33°51'24"S 018°43'30"E 
47. Philippi East       34°00'32"S 018°36'27"E 
48. Strandfontein       34°04'19"S 018°34'29"E 
49. Lentegeur           34°02'11"S 018°36'29"E

(a) (b)

Figure 9. Case study. (a) GPS positions; (b) positions on the map.
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(a) (b)

Figure 10. Processed networks. (a) Communication network considered; (b) UAV path network considered.

5.2. Hybrid Clustering: α = 10 and β 6= 0 and γ 6= 0

We conducted the first experiment to study the impact of the radius and number of clusters on the
performance of a hybrid clustering model where both layers were considered: airborne and terrestrial
network by setting the clustering parameters to α = 10 and β 6= 0 and γ 6= 0. The results presented in
Figure 11a show that the coverage cost (total coverage energy) reduced with the increase of the radius
following a logarithmic function that led to a convergence value that did not necessarily correspond to
the optimal point.

On the other hand, the results presented in Figure 11b reveal a different trend where the coverage
cost (total coverage energy) increases linearly with the increase of the number of clusters. These results
are in line with the one presented in Figure 11a, since a lower radius will logically lead to a higher
number of clusters and subsequent higher cost, while a higher radius will logically lead to the
algorithm finding a lower number of clusters and subsequent lower coverage cost resulting from
a high transportation cost. The best clustering would then be the one related to the radius, which
minimizes the number of clusters and hence leads to the minimum transportation cost. In Figure 11a,
such an optimal radius is 13, and it corresponds to four clusters and a transportation cost of close to
25 joules.

(a) (b)

Figure 11. Impact of parameters on performance. (a) Cost versus radius; (b) coverage cost versus the
number of clusters.

5.3. Terrestrial Clustering: α = 10 and β = 0 and γ = 0

We conducted a second experiment to evaluate the impact of the UAV presence on the hybrid
clustering process by setting the parameters α = 10 and β = 0 and γ = 0, which represent a setting
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where only the energy consumed for transmission and reception in the ground/terrestrial network is
considered, discounting the data muling energy consumed by the UAV.

The results presented in Figure 12a reveal a different trend compared to the hybrid network
setting in Figure 11a where:

1. The coverage cost function increases with the increase in the radius size following an exponential
function leading to a convergence value where the cost becomes constant.

2. The clustering process leads to much smaller coverage cost values (less than 1.0 joule) as compared
to the general case where the coverage cost values ranged between 20 and 370 joules.

(a) (b)

Figure 12. Impact of UAV on clustering. (a) Radius-cost; (b) communication network.

Similarly, Figure 12b shows a different trend compared to the hybrid clustering in Figure 11b,
where the coverage cost decreases with the increase in the number of clusters, but not necessarily
following a strict linear trend. The correlation between the values in Figures 11b and 12b is negative
and smaller.

5.4. The Impact of the Cluster Head Selection Parameter on Performance

We conducted a set of experiments to evaluate the impact of the cluster head selection policy on
performance by setting the parameters ψ = 100 and varying λ from 0 to 1 as follows

• λ = 0 expressing a distance awareness policy.
• λ = 0.25 expressing a balanced policy with a more focused distance awareness trend.
• λ = 0.5 expressing a fair, balanced policy between density and distance awareness.
• λ = 0.75 expressing a balanced policy with a more focused density awareness trend.
• λ = 1 expressing the density awareness policy.

The goal was to assess how the three different policies would impact the overall coverage cost.
The results presented in Figure 13 revealed that:

• Distance awareness decreases the total coverage cost more slowly than density awareness: at any
given radius, the distance awareness policy cost is higher than the density awareness policy cost,
as revealed by the red curve corresponding to λ = 0.

• Any balanced policy 0 < λ < 1 leads to the same and lower energy cost as the density awareness
policy λ = 1.
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Figure 13. Impact of the cluster-head selection policy.

5.5. UADC versus DCC Performance Comparison

We conducted another experiment to compare the performance of the DCC algorithm (using
only density awareness: λ 6= 0 and ψ = 0) to the UADC algorithm (using both density and distance
awareness: λ 6= 0 and ψ 6= 0) using a variety of network topologies. The following five settings/cases
(see Figure 14) were considered:

• Case 1: The UAV’s paths constitute a proper sub-network of the terrestrial communication network.
• Case 2: The terrestrial communication network is a proper sub-network of the UAVs’ network.

This has been achieved by interchanging the networks chosen for the experiment in Figure 14a.
• Case 3: The two networks (terrestrial and aerial) are the same. Here, the assumed network is

shown by Figure 10a.
• Case 4: In this experiment, positions were kept the same, and for both types of networks,

the connections were generated randomly.
• Case 5: In this experiment, both the positions and links of both networks were generated randomly.

The total number of considered nodes was still 48, and the positions were generated by randomly
selecting the coordinates from a normal distribution with mean = 500 and a standard deviation of
300 (N (500, 300)).

Figure 15 reveals the total difference in coverage cost between the UADC and DCC algorithms as
a function of the radius. These results reveal that:

• With the exception of Case 5, UADC leads to higher coverage cost compared to DCC as a result of
the data muling cost due to the energy consumption of the UAV.

• The case where the terrestrial communication network is a proper sub-network of the aerial
network (Case 2) leads to lower coverage cost compared to the reverse case (Case 1) where the
aerial network is a sub-network of the terrestrial network.

• The lowest UADC cost is achieved when the aerial network and the terrestrial networks are the
same (Case 3).

• The case where both networks have the same positions, but randomly-generated connections
(Case 4) leads to higher coverage cost compared to the case where both networks are the same
(Case 3) for both the UADC and DCC algorithms.
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• The case where positions and links are randomly generated for both networks (Case 5) is the
only case where the UADC algorithm outperforms the DCC algorithm for some of the higher
radius sizes.

(a) (b)

(c) (d)

(e)

Figure 14. Algorithms comparison on different topologies. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4;
(e) Case 5. UADC, UAV-Aware DCC.

The proposed algorithm evolves. It shows that when the UAVs’ paths constitute a sub-network
of the communication network, the adoption of the DCC’s policy was best for all the algorithm’s
steps (see Figure 15a). However, considering the converse case (Figure 15b), the UAV-aware policy
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outperformed the adopted DCC in only two cases, but the lowest energy corresponded to the adoption
of the DCC. For the case in Figure 15d, we observe more cases where the UAV-aware policy was better
than adopting the DCC, but still, the minimum energy corresponds to the DCC adoption. Randomly
generating the nodes positions, Figure 15e shows that the UAV-aware policy was the one corresponding
to the lowest energy and hence outperformed the adoption of the DCC.

(a) (b) (c)

(d) (e)

Figure 15. Algorithms difference based on different topologies. (a) Case 1; (b) Case 2; (c) Case 3;
(d) Case 4; (e) Case 5.

5.6. The Impact of Relaxation on Performance

In this subsection, we show the impact of the relaxation algorithm (see Algorithm 3) on
performance by revealing the difference of the total coverage cost between the UADC algorithm
without and with relaxation for the same five different cases described above.

Algorithm 3: Distance-aware node redistribution.
. Loop to allocate each node a cluster head

for n ∈ N do
nch ←− nch0

. Loop to compute the closest cluster head to node n
for c ∈ C do

if d(n, c) < d(n, nch) and (c, n) ∈ Pg then
nch ←− c

end
end

end

The results presented in Figure 15 for all five cases reveal positive values for all radii. This reveals
that the proposed distance-aware relaxation (and similarly, the distance-aware restructuring) had a
positive impact on the performance achieved by the UADC algorithm. Furthermore, the figures reveal
an increase of the coverage cost difference with the radius. The results also reveal a variation of such
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an increase with the cases where it is more pronounced for some cases compared to others, as shown
by the slope and values of the different cost difference functions.

5.7. Reliability of the Family of k-Means Algorithms

In this subsection, we evaluate the connectedness of the network configuration, which
expresses the reliability of the k-means and UAKM algorithms in terms of intra-cluster connectivity.
The connectedness is a key property that determines the efficiency of the data muling process handled
by the UAV in the hybrid network scenario since the sensor readings are collected by the moving
UAV only when visiting cluster heads. Therefore, a highly-disconnected network will lead to high
missing data. Note that a poorly-connected and less reliable network configuration will reveal lower
intra-cluster connectivity, while a more reliable and highly-connected network configuration will
result in higher intra-cluster connectivity. The results are shown in Figure 16a,b and in Table 2 in
terms of average disconnectedness. Figure 16a and Table 2 reveal the results for the city of Cape
Town network depicted by Figure 10a, while Figure 16b shows the results of a random network.
The average disconnectedness was computed as the percentage of (orphan) nodes that have been
assigned to clusters by the k-means algorithm, but that were not connected to related cluster heads.
A hundred runs were performed for every run and every value k of the cluster with the number
k of clusters ranging from one to the total number of nodes of the network. Figure 16b shows the
average disconnectedness for a random 100-node network where the coordinates of the 100 nodes’
positions were randomly chosen from a standard normal distribution of size 1000, and the links were
also randomly generated to get a connected graph.

(a) (b)

Figure 16. K-means algorithm. (a) Average disconnectedness: Cape Town network; (b) average
disconnectedness: random network.

On the other hand, Table 2 reports on the disconnectedness results of the UAKM algorithm where
the value k was set to four to reflect the optimal number of clusters. For every cluster, the colored and
bold nodes in Table 2 are the ones that are disconnected from their corresponding cluster heads.

Table 2. Average disconnectedness: UAKM algorithm.

Cluster Head Cluster Members Disconnectedness
33 38, 47, 37, 35, 34, 32 66.6
3 25, 45, 15, 17, 44, 30, 29, 0, 6, 9 80.0
2 42, 24, 26, 27, 20, 21, 22, 23, 28, 43, 1, 5, 4, 7, 8, 11, 13, 12, 14, 16, 19, 18, 31 52.2

36 46, 10, 39, 40, 41 80.0

The results presented in Figure 16 for the k-means algorithm show that the expected cluster’s
disconnectedness was significantly high. They also show that it was close to zero only when all
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cluster heads were orphan nodes. This could lead to excessive energy consumption resulting
from the UAV visiting each and every node of the network for data muling. Figure 16b shows
that the disconnectedness level of the random network was higher than the Cape Town network
disconnectedness. Furthermore, the results presented in Table 2 for the UAKM algorithm also show
significant disconnectedness in each of the four clusters. This confirms that the k-means algorithms
were significantly less reliable than the proposed UADC algorithm.

6. Conclusions

6.1. Summary

In this paper, a model for optimal sensor network design has been provided where a multi-sink
ground-based terrestrial sensor network is expanded by an airborne network using a UAV to ferry
the sensor data from the sinks of the terrestrial sensor network to the gateway where the data have
to be processed. The coverage problem has been mathematically formulated as an optimization
problem aiming at finding the optimal number of clusters to achieve an energy-efficient hybrid
terrestrial/airborne sensor network using an UAV as the mobile gateway. A clustering model has been
proposed and discussed to address the defined problem. It has been shown that the energy spent by
the UAV data muling has a big impact on the change in the energy consumed by the whole process of
data transport. The efficiency of the proposed model has been compared with DCC and the k-means
algorithms, and the results showed that it is more reliable.

6.2. Future Work

This work has been proposed as part of the Internet-of-Things in Motion, a project that targets
both data muling/ferrying using a team of UAVs working in a coalesced manner such as in [33,34],
or independently based on a competitive model as suggested in [35], or a collaborative model as
proposed by [36,37]. The integration of the proposed networking engineering model to enhance
service differentiation in complex sensor networking scenarios with mixed devices as suggested in [38]
by balancing sensor roles and UAV proximity is another avenue for future work. The model is also
currently being integrated into the smart parking model presented in [39] with service differentiation
for ground sensor networks as suggested earlier. The work proposed in this paper can also be used in
the future to complement the work done in [40] as network engineering that considers a hierarchical
topology as opposed to the flat topology suggested earlier with the expectation of reducing OPEX
and CAPEX. Supporting food security through drought mitigation as suggested in [41,42] is another
technique that, in future research work, can benefit from the network engineering principles proposed
in this paper by using UAVs as airborne cameras and data mules capable of ferrying agricultural
data from fields to processing places where machine learning algorithms are applied to improve
precision agriculture.

Distance-based relaxation was used in this paper as a way of mitigating issues related to the energy
inefficiency and orphan node issues of the heuristic clustering algorithm. The redistribution of cluster
members to achieve a more balanced network is another relaxation technique that can be applied to
the two clustering algorithms studied in this paper for energy efficiency and the avoidance of orphan
nodes (cluster members with no cluster or cluster heads with no cluster members). A combination of
distance awareness and cluster members’ redistribution is a third technique that can also be applied to
the two clustering algorithms. The design and implementation of these techniques is another avenue
for future research work.
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