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HIV/AIDS disease continues to spread alarmingly despite the huge amounts of resources invested in
fighting it. There is a need to integrate the series of control measures available to ensure a consistent
reduction in the incidence of the disease pending the discovery of its cure. We present a deterministic model
for controlling the spread of the disease using change in sexual habits and antiretroviral (ARV) therapy
as control measures. We formulate a fixed time optimal control problem subject to the model dynamics
with the goal of finding the optimal combination of the two control measures that will minimize the cost
of the control efforts as well as the incidence of the disease. We estimate the model state initial conditions
and parameter values from the demographic and HIV/AIDS data of South Africa. We use Pontryagin’s
maximum principle to derive the optimality system and solve the system numerically. Compared with
the practice in most resource-limited settings where ARV treatment is given only to patients with full-
blown AIDS, our simulation results suggest that starting the treatment as soon as the patients progress to
the pre-AIDS stage of the disease coupled with appreciable change in the susceptible individuals’ sexual
habits reduces both the incidence and prevalence of the disease faster. In fact, the results predict that
the implementation of the proposed strategy would drive new cases of the disease towards eradication in
10 years.

Keywords: antiretroviral treatment; basic reproduction number; disease incidence; disease prevalence;
optimal control; Pontryagin’s maximum principle; optimality system

1. Introduction

Mathematical representation and analysis of infectious diseases have been central to infectious
disease epidemiology. Now, mathematical models are being integrated with rigorous statistical
methods to estimate the key model parameters and test hypotheses using available data [11,13]. In
the absence of reliable data, Mathematics is used to formulate hypotheses, inform data-collection
strategies, and determine sample sizes. Optimal control theory is one area of Mathematics that is
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used extensively in the control of the spread of infectious diseases [9,16,22,31,32]. It is a powerful
mathematical tool that can be used to make decisions involving complex situations. Particularly,
optimal control theory can be used in the control of the spread of most diseases for which there
is either vaccination or treatment.

For example, Sethi and Staats [26] formulated some simple deterministic epidemic models for
optimal control problems with the level of medicare programme effort and the level of inoculation
programme effort as the control variables. They obtained the needed characterization of the optimal
policies for the control of the epidemic over time using Pontryagin’s maximum principle (PMP).
Similarly, Gaff and Schaefer [7] applied optimal control theory to a series of epidemiological
models in their attempt to find the most effective control strategy to minimize the number of
individuals who become infected in the course of an epidemic using both treatment and vaccination
as control measures.

Joshi et al. [16] used two examples to illustrate the concept of optimal control in two different
disease models. In the first example, they showed how optimal control theory can be applied to find
an optimal vaccination strategy that will minimize the size of the infectious population as well as
the cost of vaccination. In the second example, they considered a model describing the interaction
between the virus and the immune cell population in an individual under drug treatment, and they
illustrated how optimal control theory can be used to determine a drug treatment strategy that
minimizes the side effects of the drug together with the viral population at any point in time.

The work of Kirschner et al. [18] used the optimal control approach to determine the optimal
strategy for the administration of reverse transcriptase inhibitors for HIV-positive individuals
that minimizes the drug toxicity and their viral load while maximizing helper T-cell counts. In
a related study, Fister and Donnelly [5] used optimal control theory to determine the condition
for the elimination of tumour cells in individuals under treatment. Recently, Blayneh et al. [1]
studied a deterministic model for the transmission dynamics of West Nile virus in the mosquito–
bird–human zoonotic cycle using mosquito reduction strategies and human protection strategies
as control measures. The numerical simulations of their resulting optimal control problem suggest
that mosquito reduction strategies should be emphasized ahead of human protection measures in
order to reduce the disease burden.

In this paper, we consider a deterministic for the spread of HIV/AIDS with a removed class that
is made up of individuals who have sufficiently modified their sexual habits, thus making them
literarily ‘immune’ to HIV infection by sexual contact. This differentiates the model from most
of the existing models (see [14,17,23,25]). We found the inclusion of this compartment justifiable
because it is true that an appreciable number of people are now changing their sexual habits suf-
ficiently due to the awareness of the widespread nature of the disease in society, the monumental
deaths resulting from the disease, increasing knowledge of the agony and psychological trauma
experienced by the infected individuals, and better enlightenment due to intense HIV/AIDS educa-
tional campaigns. Note that our proposed change in sexual habits does not imply that the removed
individuals would no longer engage in sexual activities, rather this class of individuals would
remain faithful to their sexual partners, reduce the number of the sexual partners to the barest
minimum and avoid extra-marital affairs for the rest of their lives. We formulate our model as a
fixed time optimal control problem with a view to finding the optimal combination of the control
measures that will reduce the spread of the disease within a specified time period, since most
governments usually set time frames for the accomplishment of the stated policy or objective.

This paper is organized as follows: In Section 2, we describe our proposed model. In Section 3,
we establish the local and global stability of the model disease-free equilibrium. In Section 4, we
estimate the model state initial conditions and parameter values. In Section 5, we formulate an
optimal control problem subject to the model dynamics, characterize the optimal controls, and
constitute its optimality system using PMP. In Section 6, we solve the resulting optimality system
numerically and discuss our results.
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2. Model equations

We consider a sexually active population N(t), divided into six compartments: S(t), H(t), P(t),
A(t), T(t), and R(t). S(t) represents the number of susceptible individuals; H(t) represents the
number of HIV-positive individuals in the asymptomatic stage of HIV infection; P(t) represents the
number of HIV-positive individuals in the pre-AIDS stage but not receiving antiretroviral (ARV)
treatment; A(t) represents the number of individuals with full-blown AIDS but not receiving ARV
treatment; T(t) represents the number of individuals who are receiving ARV treatment; and R(t),
the removed class, represents the number of individuals who have changed their sexual habits
sufficiently such that they are, literarily, ‘immune’ to HIV infection by sexual contact. Note that
the individuals in the R class are people who take up safe sexual habits and maintain the habits
for the rest of their lives. The significance of the removed the R class is that it emphasizes the
importance of prevention for a disease, such as HIV, that has no cure. Increasing the members in
this class is one of the keys to controlling the spread of the disease.

A schematic diagram for the spread of the disease is shown in Figure 1.
From Figure 1, the population dynamics is given by the following equations:

Ṡ = � − β1SH

N
− β2PS

N
− dS − u1S,

Ḣ = β1HS

N
+ β2PS

N
− k1H − dH,

Ṗ = k1H − k2P − u2P − dP,

Ȧ = k2P − u3A − dA − δ1A,

Ṫ = u2P + u3A − dT − δ2T ,

Ṙ = u1S − dR,

(1)

where N(t) denotes total population,

N(t) = S(t) + H(t) + P(t) + A(t) + T(t) + R(t), (2)

and N(t) satisfies the following equation:

Ṅ = � − Nd − δ1A − δ2T .

The parameters for the model are defined in Table 1.

Figure 1. A schematic diagram for the spread of HIV.
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Table 1. Parameters used in the model.

Parameter Description

� Recruitment rate into the S class
d Natural death rate
β1 Transmission rate for contact with the H class
β2 Transmission rate for contact with the P class (β1 < β2)
k1 Progression rate from the H class into the P class
k2 Progression rate from the P class into the A class (k1 < k2)
u1 Proportion of susceptible individuals who changed their sexual habits per unit time
u2 Proportion of the P class receiving ARV treatment per unit time
u3 Proportion of the A class receiving ARV treatment per unit time
δ1 Disease-induced death rate for AIDS individuals
δ2 Disease-induced death rate for the T class (δ2 < δ1)

Note that limt→∞ N(t) ≤ �/d. However, under the dynamics described by Equation (1), the
region � defined by

� =
{
(S, H, P, A, T , R) ∈ R

6
+|S + H + P + A + T + R ≤ �

d

}

is positively invariant.

Lemma 1 The cone R
6+ is positively invariant for the model (1) (i.e. the model does not predict

negative values for the state variables at any future time).

Proof Let t1 = sup{t > 0|S ≥ 0, H ≥ 0, P ≥ 0, A ≥ 0, T ≥ 0, R ≥ 0, ∈ [0, t]}. From Equation
(1), we have

dS

dt
= � − (λ(t) + d + u1(t))S, where λ(t) = β1H + β2P

N
.

This is same as

dS

dt
+ (λ(t) + d + u1(t))S = �,

and this implies that

d

dt

(
S(t) exp

{
dt +

∫ t

0
(λ(τ ) + u1(τ )) dτ

})
= � exp

{
dt +

∫ t

0
(λ(τ ) + u1(τ )) dτ

}
.

Thus,

S(t1) exp

{
dt1 +

∫ t1

0
(λ(τ ) + u1(τ )) dτ

}
− S(0)

=
∫ t1

0
� exp

{
dψ +

∫ ψ

0
(λ(ε) + u1(ε)) d(ε)

}
dψ .
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Hence,

S(t1) = S(0) exp

{
−

(
dt1 +

∫ t1

0
(λ(τ ) + u1(τ )) dτ

)}

+ exp

{
−

(
dt1 +

∫ t1

0
(λ(τ ) + u1(τ )) dτ

)}

×
∫ t1

0
� exp

{
dψ +

∫ ψ

0
(λ(ε) + u1(ε))d(ε)

}
dψ

≥ 0. (3)

Similarly, we can show that H(t) ≥ 0, P(t) ≥ 0, A(t) ≥ 0, T(t) ≥ 0, and R(t) ≥ 0. This completes
the proof. �

The above lemma is important because it guarantees that the model variables are continuously
biologically meaningful, since population size cannot be negative.

Lemma 2 � is a compact attracting set (i.e. the � limit set of any orbit starting in R
6+ lies in �).

Proof Using the non-negativity of the model state variables as established in the preceding
lemma and

Ṅ = � − dN − δ1A − δ2T

for initial conditions in R
6+ and t ≥ 0, we have Ṅ ≤ � − dN . This implies that

d

dt
(Nedt) ≤ �edt =⇒ N(t)edt − N(0) ≤ �

d
(edt − 1) ≤ �

d
edt .

So, for all t ≥ 0,

N(t) ≤ N(0)e−dt + �

d
. (4)

If (S∗, H∗, P∗, A∗, T∗, R∗) is an � limit point of an orbit in R
6+, then there is a subsequence

ti → ∞ such that

lim
i→∞(S(ti), H(ti), P(ti), A(ti), T(ti), R(ti)) = (S∗, H∗, P∗, A∗, T∗, R∗).

Hence,

lim
i→∞ N(ti) = N∗ = S∗ + H∗ + P∗ + A∗ + T∗ + R∗.

From Equation (4) (by evaluation at t = ti and passing to the limit i → ∞), it follows that N∗ ≤
�/d and hence that (S∗, H∗, P∗, A∗, T∗, R∗) ∈ �. �

Thus, for any initial starting point (S0, H0, P0, A0, T0, R0) ∈ R
6+, the trajectory lies in �.

Therefore, the system is both mathematically and epidemiologically well posed.
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3. Stability analysis

The system (1) has a disease-free equilibrium solution

E0 =
(

�

(d + u1)
, 0, 0, 0, 0,

�u1

d(d + u1)

)
,

and the model basic reproduction number, R0, is as given below:

R0 = β1d

(d + u1)(d + k1)
+ β2k1d

(d + u1)(d + k1)(d + u2 + k2)
.

Note that the basic reproduction number, R0, is the expected number of secondary infections
arising from a single individual during his or her entire infectious period in a population of
susceptible individuals [12]. R0 is obtained using the next- generation matrix approach described
in [4].

Theorem 1 The disease-free equilibrium is locally asymptotically stable if R0 < 1.

Proof The Jacobian matrix of the system (1) is

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 − (d + u1) −a22 −a33 a2 a2 a2

−a11 a22 − (k1 + d) a33 −a2 −a2 −a2

0 k1 −(k2 + u2 + d) 0 0 0
0 0 k2 −(d + u3 + δ1) 0 0
0 0 u2 u3 −(d + δ2) 0
u1 0 0 0 0 −d

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

a1 =
(

β1H

N
+ β2P

N

)
, a2 = a1

S

N
, a11 = a1

(
S

N
− 1

)
,

a22 = β1S

N

(
1 − H

N

)
, a33 = β2S

N

(
1 − P

N

)
.

�

Evaluating the Jacobian matrix J at the disease-free equilibrium gives

J0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(d + u1) − β1d

d + u1
− β2d

d + u1
0 0 0

0
β1d

d + u1
− (k1 + d)

β2d

d + u1
0 0 0

0 k1 −(k2 + u2 + d) 0 0 0
0 0 k2 −(d + u3 + δ1) 0 0
0 0 u2 u3 −(d + δ2) 0
0 0 0 0 0 −d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of J0 are

λ1 = −d, λ2 = −(d + u1), λ3 = −(d + δ2), λ4 = −(d + u3 + δ1),
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and we obtained λ5 and λ6 from the characteristic polynomial given below:

f (λ) = λ2 −
(

β1d

d + u1
− (k1 + d) − (k2 + u2 + d)

)
λ

+
(

(k1 + d)(k2 + u2 + d) − β1d(k1 + u2 + d)

d + u1
− β2dk1

d + u1

)
= 0. (5)

Taking a = 1, b = (k1 + d) + (k2 + u2 + d) − β1d/d + u1, and

c = (k1 + d)(k2 + u2 + d) − β1d(k1 + u2 + d)

d + u1
− β2dk1

d + u1
,

we have

λ5,6 = −b

2
±

√
b2

4
− c.

Thus, we only need to show that b and c are positive in order for both λ5 and λ6 to be negative.
However, R0 < 1 implies that

1 >
β1d

(d + u1)(d + k1)
+ β2k1d

(d + u1)(d + k1)(d + u2 + k2)

>
β1d

(d + u1)(d + k1)

>
β1d

(d + u1)(2d + k1 + k2 + u2)
. (6)

Note that

b = (k1 + d) + (k2 + u2 + d) − β1d

d + u1

= (2d + k1 + k2 + u2) − β1d

d + u1

= (2d + k1 + k2 + u2)

(
1 − β1d

(d + u1)(2d + k1 + k2 + u2)

)

> 0 if R0 < 1 (7)

and

c = (k1 + d)(k2 + u2 + d) − β1d(k1 + u2 + d)

d + u1
− β2dk1

d + u1

= (k1 + d)(k2 + u2 + d)

(
1 − β1d

(d + u1)(k1 + d)
− β2dk1

(d + u1)(k1 + d)(k2 + u2 + d)

)

= (k1 + d)(k2 + u2 + d)(1 − R0)

> 0 if R0 < 1. (8)

Since c > 0 and b > 0, λ5 < 0 and λ6 < 0 if R0 < 1. Therefore, the disease-free equilibrium is
locally asymptotically stable if R0 < 1.

Theorem 2 The disease-free equilibrium is globally asymptotically stable if R0 < 1.
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Proof We introduce the Lyapunov candidate function

V(t) = H + θP θ > 0.

Differentiating V(t) with respect to time yields

V̇ = Ḣ + θ Ṗ. (9)

Substituting the model equations into Equation (9), we get

V̇ = β1HS

N
+ β2PS

N
− (k1 + d)H + θ(k1H − (k2 + u2 + d)P). (10)

With S = S̄ = �/(d + u1) and R = R̄ = �u1/(d(d + u1)), we have

V̇ ≤ β1dH

d + u1
+ β1dP

d + u1
− (k1 + d)H + θk1H − θ(k2 + u2 + d)P. (11)

Hence,

V̇ ≤
(

β1d

d + u1
+ θk1 − (k1 + d)

)
H +

(
β2d

d + u1
− θ(k2 + u2 + d)

)
P.

Choosing θ = β2d/((d + u1)(k2 + u2 + d)), we then find that

V̇ ≤
(

β1d

(d + u1)(k1 + d)
+ β2dk1

(d + u1)(k2 + d)(k2 + u2 + d)
− 1

)
H.

= (R0 − 1)H ≤ 0. (12)

It is important to note that V̇ = 0 only when H = P = 0. However, substituting H = P = 0 into
Equation (1) shows that S → �/(d + u1), A → 0, T → 0, and R → �u1/(d(d + u1)) as t → ∞.
Applying LaSalle’s invariance principle, every solution of the model (1), with initial conditions in
�, converges to E0 [19,27]. Hence, the disease-free equilibrium is globally asymptotically stable
in � if R0 < 1. �

4. Estimation of the model parameters and initial conditions

Each country has its own HIV/AIDS data. Here, we focus on South Africa, but the same analysis
can be applied to other countries.

4.1. Initial conditions

The base year used in our simulations was 2006. The number of sexually active individuals (age
15–49 years) in SouthAfrica was approximately 25.92 million in 2006. The number of HIV/AIDS-
positive individuals in 2006 was 4.756 million.The number of individuals receivingARV treatment
was 0.511 million, and the number of AIDS-sick individuals not receiving ARV treatment was
0.2 million [3]. Thus, we took A(0) = 0.2 million, T(0) = 0.511 million, and H(0) + P(0) +
A(0) + T(0) = 4.756 million. We assumed that H(0) = 2P(0), so that H(0) = 2.697 million and
P(0) = 1.348 million. Since N(0) = 25.92 million, we also had S(0) = 25.92 − 4.756 = 21.163
million.
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4.2. Parameter values

Constant recruitment rate (�). This was estimated as the net births that occurred 15–20 years ago
plus the present net migration. The net births were calculated using the average of births in South
Africa between 1990 and 2000 since this gives a good rough estimate of the group of individuals
who will become sexually active after the year 2005. The birth value obtained was adjusted with
the infant mortality rate over the same period (Table 2). According to United Nations [30], the
crude births in South Africa for 1990–1995 and 1995–2000 were 27.5 and 25.2 per thousand
population, respectively, while the infant mortalities were 50.4 and 56.8 per thousand live births,
respectively. Thus, we got an average of 26.3 per thousand population for the crude births and 53.6
for the infant mortality per thousand live births. We used the number of people in South Africa in
1990, which was 36.747 million, to estimate the births during 1990–2000. Also, the net annual
migration into South Africa between 2000 and 2010 was 140, 000. Therefore, we computed the
constant recruitment rate (�) as follows:

� = Pop. × crude birth rate × infant survival rate + migration

= 36.474 × 0.026 × (1 − 0.054) + 0.14 million

= 1.0 million. (13)

Natural death rate (d). This was estimated using the life expectancy for a South African
at birth who was 51 years old in 2006 [28]. Based on the assumption that if the population
were to be normally distributed, 1 in every 51 persons will die every year. Thus, we estimated
d = 1/51 = 0.0196.

Progression rates (k1, k2). Following [10], we assumed that it takes 7 years for a newly infected
person to progress to the pre-AIDS stage and 3 more years to develop full-blownAIDS. Therefore,
we obtained k1 = In2/7/2 = 0.198 and k2 = In2/3/2 = 0.4621.

Disease-induced death rates (δ1, δ2). Based on their analyses of findings from several studies
conducted mostly in Africa to examine the survival period of HIV patients from seroconversion
to death before ARV treatment becomes available, Ghys et al. [8] recommended that an average
survival period of 11 years be used in modelling national epidemics. Thus, we computed δ1 =
1/11 = 0.0909. There is overwhelming evidence thatARV therapy substantially extends the life of
HIV/AIDS patients [8,9]. Thus, we assumed that ARV treatment will extend the life of patients for
an additional 4 years. Thus, the survival period for HIV-infected individuals under ARV treatment
was estimated as 15 years. We computed δ2 = 1/15 = 0.0667.

Transmission rates (β1, β2). It is known that the infection rate (β1) of individuals from the H
class is smaller than the infection rate (β2) of individuals from the P class [10]. We assumed

Table 2. Parameter values obtained using data from South Africa.

Parameter Units Value Reference

� Population/year 1.04 [3] and estimate
d yr−1 0.0196 [28]
β1 yr−1 0.11 Estimate
β2 yr−1 β2 = 5, β1 = 0.55 [10] and estimate
k1 yr−1 0.198 [10] and estimate
k2 yr−1 0.4621 [10] and estimate
u1 yr−1 0 ≤ u1 ≤ u1 max ≤ 1 Variable
u2 yr−1 0 ≤ u2 ≤ u2 max ≤ 1 Variable
u3 yr−1 0 ≤ u3 ≤ u3 max ≤ 1 Variable
δ1 yr−1 0.0909 Estimate
δ2 yr−1 0.0667 Estimate
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that β1 = (1/5)β2. According to Dorrington et al. [3], the prevalence of HIV/AIDS among adults
in South Africa for the year 2006 was 18.3%. In order to determine β2, we used the Berkeley
Madonna software for parameter fitting. We solved the system (1) with the initial conditions and
the parameters (except β2) as determined above and determined β2, which yields π = 18.3%,
namely β2 = 0.55.

5. Optimal control problem formulation

Our objective functional is defined by

J = min
u1,u2,u3

∫ tf

0

(w1

2
u2

1 + w2

2
u2

2 + w3

2
u2

3 + w4S + w5H + w6P + w7A
)

dt (14)

subject to the system of Equations (1) with appropriate state initial conditions, and tf is the final
time, while the control set U is defined as

U = {(u1, u2, u3)|u1Lebesgue measurable, 0 ≤ ui ≤ ui max < 1, i = 1, 2, 3}, (15)

and the weight constants w1, w2, w3, w4, w5, w6, and w7 are the relative weights and help to balance
each term in the integrand so that any of the terms do not dominate. Here, it is important to note
that w1, w2, and w3 are the relative measures of the cost or effort required to implement each of
the associated controls, while w4, w5, w6, and w7 are the relative measures of the importance of
reducing the associated classes on the spread of the disease and its burden.

The lower bounds for u1, u2, and u3 correspond to no change in sexual habits, no ARV treatment
for the P class, and no ARV treatment for the A class, respectively, while the upper bound for each
of the controls (u1 max, u2 max, and u3 max) will depend on the budget allocated for the execution of
each of the control measures. For instance, we shall hypothetically set u1 max = 0.2, u2 max = 0.5,
and u3 max = 0.5 in our subsequent simulations. We wish to determine the optimal combination of
controls u1, u2, and u3 that will be adequate to minimize the cost of the education/enlightenment
campaign together with the cost of ARV treatment as well as to reduce the incidence of the
disease over a fixed time period. Note that S was included in the integrand to emphasize the need
for reducing the susceptible individuals in addition to the infective individuals, particularly for
a disease without cure. Moreover, S contributes to the incidence of the disease together with H
and P. We also included A in the integrand to indirectly reduce AIDS-induced deaths.

5.1. Existence of an optimal control pair

Here, we examine the sufficient conditions for the existence of a solution to the optimal control
problem.

Theorem 3 There exists an optimal control set (u∗
1, u∗

2, u∗
3) with a corresponding solution

(S∗, H∗, P∗, A∗, T∗, R∗) to the model system (1) that minimizes J(u1, u2, u3) over U.

Proof The existence of the optimal control is guaranteed by the compactness of the control
and the state space and the convexity in the problem based on Theorem 4.1 of Chapter III and its
corresponding corollary in [6]. The following non-trivial requirements from Fleming and Rishel’s
theorem are stated and verified:

(1) The set of all solutions to Equation (1) and its associated initial conditions together with the
corresponding control functions in U is non-empty.
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(2) The state system can be written as a linear function of the control variables with coefficients
dependent on time and state variables.

(3) The integrand L in Equation (14) is convex on U and additionally satisfies
L(t, S, H , P, A, T , R, u1, u2, u3) ≥ c1|(u1, u2, u3)|α − c2, where c1, c2 > 0 and α > 1.

We refer to Theorem 3.1 proposed by Picard–Lindelof in [2]. Based on this theorem, if the solutions
to the state equations are a priori bounded and if the state equations are continuous and Lipschitz
in the state variables, then there exists a unique solution corresponding to every admissible control
set in U. Using the fact that for all (S, H, P, A, T , R) ∈ �, all the model states are bounded below
and above, the solutions to the state equations are bounded. In addition, the boundedness of the
partial derivatives with respect to the state variables in the system can be directly shown, and this
shows that the system is Lipschitz with respect to the state variables. Thus, condition 1 holds.
As we can observe from the state equations (1), the state equations are linearly dependent on the
controls u1, u2, and u3. Thus, condition 2 also holds. To establish condition 3, we observe that
the integrand L in our objective functional is convex since it is quadratic in the controls. Then,
we only need to prove the bound on L. This is shown as follows:

L = 1

2
(w1u2

1 + w2u2
2 + w3u2

3) + w4S + w5H + w6P + w7A

≥ 1

2
(w1u2

1 + w2u2
2 + w3u2

3) since wi > 0 i = 1, . . . , 7

≥ 1

2
(w1u2

1 + w2u2
2 + w3u2

3) − w1 since w1u2
1 − w1 ≤ 0

≥ min

(
1

2
w1,

1

2
w2,

1

2
w3

)
(u2

1 + u2
2 + u2

3) − w1

≥ W‖(u1, u2, u3)‖2 − w1, where W = min

(
1

2
w1,

1

2
w2,

1

2
w3

)
. (16)

The above then establishes a bound on L. Thus, we have a unique solution of the optimality
system for small time intervals due to the opposite time orientations of the state equations and the
adjoint equations. Moreover, the uniqueness of the solution of the optimality system guarantees
the uniqueness of the optimal control if it exists. �

5.2. Characterization of the optimal controls

We characterize the optimal controls u∗
1, u∗

2, and u∗
3, which gives the optimal levels for the various

control measures and the corresponding states (S∗, H∗, P∗, A∗, T∗, R∗). The necessary conditions
for the optimal controls are obtained using PMP [24].

Theorem 4 (Necessary conditions) Let (u∗
1, u∗

2, u∗
3) ∈ U be an optimal control with the cor-

responding states S∗, H∗, P∗, A∗, T∗, and R∗. Then, there exist the adjoint variables λi for
i = 1, . . . , 6, which satisfy

λ′
1 = −w4 + λ1(u1 + d) + (λ1 − λ2)

(
β1H + β2P

N

)
− (λ1 − λ2)

(
(β1H + β2P)S

N2

)
− λ6u1,

λ′
2 = −w5 + (λ1 − λ2)

(
β1S

N

)
− (λ1 − λ2)

(
β1SH

N2

)
− λ3k1,
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λ′
3 = −w6 + (λ1 − λ2)

(
β1S

N

)
− (λ1 − λ2)

(
β1SP

N2

)
− λ4k2 − λ5u2,

λ′
4 = −w7 + λ4(u3 + d + δ1) − λ5u3,

λ′
5 = λ5(d + δ2),

λ′
6 = λ6d, (17)

and the transversality conditions

λi(tf ) = 0, for i = 1, . . . , 6, (18)

with the optimal controls defined as follows:

u∗
1 = min

{
max

(
0,

S(λ1 − λ6)

w1

)
, u1 max

}
,

u∗
2 = min

{
max

(
0,

P(λ3 − λ5)

w2

)
, u1 max

}
,

u∗
3 = min

{
max

(
0,

A(λ4 − λ5)

w3

)
, u1 max

}
.

(19)

Proof Using PMP, we obtain Equation (17) from

λ′
1 = −∂H

∂S
, λ′

2 = −∂H

∂H
, λ′

3 = −∂H

∂P
, (20)

λ′
4 = −∂H

∂A
, λ′

5 = −∂H

∂T
, λ′

6 = −∂H

∂N
, (21)

where the Hamiltonian H is given by

H = w1

2
u2

1 + w2

2
u2

2 + w3

2
u2

3 + w4S + w5H + w6P + w7A

+ λ1

(
� − β1SH

N
− β2PS

N
− dS − u1S

)

+ λ2

(
β1HS

N
+ β2PS

N
− k1H − dH − u2P

)

+ λ3(k1H − k2P − u2P − dP)

+ λ4(k2P − u3A − dA − δ1A)

+ λ5(u2P + u3A − dT − δ2T)

+ λ6(u1S − dR). (22)

The transversality conditions have the form (18), since all the states are free at the terminal
time.
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The Hamiltonian is maximized with respect to the controls at the optimal control u∗ =
(u∗

1, u∗
2, u∗

3), thus we differentiate H with respect to u1, u2, and u3 on U, respectively, to obtain

∂H

∂u1
= w1u1 − λ1S + λ6S = 0 at u1 = u∗

1,

∂H

∂u2
= w2u2 − λ3P + λ5P = 0 at u2 = u∗

2,

∂H

∂u3
= w3u3 − λ4A + λ5A = 0 at u3 = u∗

3.

(23)

Hence, solving for u∗
1, u∗

2, and u∗
3 on the interior sets gives

u∗
1 = S(λ1 − λ6)

w1
,

u∗
2 = P(λ3 − λ5)

w2
,

u∗
3 = A(λ4 − λ5)

w3
.

(24)

We can now impose the bounds 0 ≤ u1 ≤ u1 max, 0 ≤ u2 ≤ u1 max, and 0 ≤ u3 ≤ u1 max on the
controls to get

u∗
1 = min

{
max

(
0,

(λ1 − λ6)S

w1

)
, u1 max

}
,

u∗
2 = min

{
max

(
0,

P(λ3 − λ5)

w2

)
, u2 max

}
,

u∗
3 = min

{
max

(
0,

A(λ4 − λ5)

w3

)
, u3 max

}
.

(25)

�

It is important to note that the characterization of the above controls can be written in a simpler
piecewise form given below:

u∗
1 =

{
0 when λ1 − λ6 < 0,

min
{

(λ1−λ6)S
w1

, u1 max

}
when λ1 − λ6 > 0,

(26)

u∗
2 =

⎧⎨
⎩

0 when λ3 − λ5 < 0,

min

{
P(λ3 − λ5)

w2
, u2 max

}
when λ3 − λ5 > 0,

(27)

u∗
3 =

⎧⎨
⎩

0 when λ4 − λ5 < 0,

min

{
A(λ4 − λ5)

w3
, u3 max

}
when λ4 − λ5 > 0.

(28)

We can now solve the optimality system that consists of the state system (1) with its associated
initial conditions and the adjoint system (17) with its transversality conditions coupled with the
control characterizations (26)–(28).
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6. Numerical results and discussion

We numerically solved the resulting optimality system – a two-point boundary value problem –
using a fourth-order iterative Runge–Kutta scheme. This method solves the state equations with an
initial guess for u1, u2, and u3 forward in time, after which it solves the adjoint equations backward
in time, and then the controls are updated using Equations (26)–(28). This computational procedure
is done iteratively until a convergence is attained. Details on the forward- and backward-sweep
procedure are given in [20]. We simulated our model with the data described below.

Population initial conditions

Variable S(0) H(0) P(0) A(0) T(0) R(0)

Value 21.16 2.7 1.35 0.51 0.2 0.0

Parameter values

Parameter � β1 β2 d k1 k2 δ1 δ2

Value 1.04 0.11 0.55 0.0196 0.198 0.4621 0.0909 0.0667

We investigated the dynamics of the disease compartments for varying combinations of the
weight constants w1, w2, w3, w4, w5, w6, and w7, with the assumption that the resources available
can only accommodate the following maximum levels of the controls: u1 max = 0.2, u2 max = 0.5,
and u3 max = 0.5. In the first scenario, we set w1 = 1.0, w2 = 1000, w3 = 10, w4 = 1, w5 = 10,
w6 = 10, and w7 = 50. This scenario corresponds to the present situation in most developing
countries where ARV treatment is only given to the AIDS-sick individuals, while the pre-AIDS
individuals have to wait until they develop full-blownAIDS before they can be given the treatment.
This is often the case in situations where branded ARV drugs (usually very expensive) are mostly
used for the treatment and the medical personnel and facilities required for the administration

Figure 2. Population of the different disease classes with u2 ≈ 0 and u3 = 0.5.
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Figure 3. Population of the disease-free classes (S, R) with u2 ≈ 0 and u3 = 0.5.

of the treatment are grossly inadequate, thus prompting the government to make the treatment
available to only the patients who need it the most. The population profiles of the different disease
compartments and the disease-free compartments for this case are shown in Figures 2 and 3,
respectively.

In the second scenario, we alternated the values of the weights w2 and W3 and fixed the other
weights. Thus, we set w2 = 10 and w3 = 1000. This scenario corresponds to the situation where
HIV-infected individuals are given ARV treatment as soon as they progress to the pre-AIDS stage
without waiting for the onset of AIDS. This is presently not the case in many resource-limited
countries. This would be the situation in societies where generic versions (considerably cheaper)
of ARV drugs are used as substitutes for the branded ones, while there are adequate medical
personnel and facilities to enable a wide coverage of ARV treatment. In this instance, the cost of

Figure 4. Population of the different disease classes with u2 = 0.5 and u3 ≈ 0.
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initiating ARV treatment at the pre-AIDS stage is significantly reduced. This strategy obviously
prolongs the lifespan of HIV/AIDS patients and delays the onset of AIDS. However, the AIDS
cases in this scenario are usually very serious and a lot more expensive to manage due to the
patients’ development of resistance to most of the first-line and second-line ARV drugs, thus
leaving the doctors no options other than patients’ hospitalization and use of very expensive ARV
drugs.

The population profiles of the different disease compartments and the disease-free compart-
ments for this case are shown in Figures 4 and 5, respectively.

Now, we consider the prevalence and incidence of the disease for the two scenarios. Figures 6
and 7 show the prevalence and incidence for each of the two cases, respectively.

From the above results, we can observe that the administration of ARV treatment to HIV-
infected individuals before they become AIDS sick reduces both the prevalence and the incidence

Figure 5. Population of the disease-free classes (S, R) with u2 = 0.5 and u3 ≈ 0.

Figure 6. The disease prevalence for each of the two scenarios.
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Figure 7. The disease incidence for each of the two scenarios.

Figure 8. Control u1 for the two scenarios.

of the disease faster than in the case where we wait until they become AIDS sick before we give
them the treatment (Figures 8–10). The expenses that will be incurred by starting ARV treatment
earlier will be compensated for by the remarkable reduction in the prevalence and incidence in the
later years. Thus, it will be cheaper in the long run to commence ARV treatment at the pre-AIDS
stage for the infected population.

Remark 1 The two scenarios simulated were specifically chosen to demonstrate that the case
where ARV treatment is given to patients after they have developed full-blown AIDS, as practised
in most resource-limited settings. This may not be helpful in reducing the spread of the disease.
Rather, an alternative approach of starting the treatment as soon as the patients progress to the
pre-AIDS stage of the disease would be better.
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Figure 9. Control u2 for the two scenarios.

Figure 10. Control u3 for the two scenarios.

7. Conclusion

We presented a deterministic model for controlling the sexual spread of HIV/AIDS disease. We
established that the model disease-free equilibrium is locally and globally asymptotically stable,
if the basic reproduction number is less than unity. We formulated an optimal control problem
subject to the model dynamics with change in the susceptible individuals’ sexual habits due to
education/enlightenment campaigns and the administration of ARV treatment to the pre-AIDS
and theAIDS-sick individuals as controls. Our aim is to find an optimal strategy that will minimize
the cost of implementing the combined control programmes as well as the incidence of the disease.

We proved the existence and uniqueness of the optimal control and we characterized the controls
using PMP. The resulting optimality system was solved numerically; the results show that the
optimal way to mitigate the spread of the disease is for susceptible individuals to consistently
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practise safe sex as much as possible, while ARV treatment should be initiated for patients as
soon as they progress to the pre-AIDS stage of the disease. This strategy may be expensive at
the outset, but it is optimally cost effective in the long run and it portends more benefits for the
HIV/AIDS individuals and the society at large.
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