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Ž .For any group H, let � H be the set of all isomorphism classes of groups K
such that K � � � H � �. For a finitely generated group H having finite commu-

� � Ž .tator subgroup H, H , we define a group structure on � H in terms of embed-
dings of K into H, for groups K of which the isomorphism classes belong to
Ž .� H . If H is nilpotent, then the group we obtain coincides with the genus group
Ž .GG H defined by Hilton and Mislin. We obtain some new results on Hilton�Mislin

genus groups as well as generalizations of known results. � 2001 Academic Press

1. INTRODUCTION

We are interested in certain classes of groups, which we now define. Let
XX be the class of all finitely generated groups that have finite commutator0

Ž � �.subgroups. Let NN as in 2 be the subclass of all nilpotent groups in XX .0 0
Ž . Ž .For any group G, the non-cancellation set, � G as in the abstract , is the

set of all isomorphism classes of groups H such that H � � � G � �. For
Ž .certain XX -groups G, the non-cancellation sets � G have been studied in0

� �10 , for instance. For a finitely generated nilpotent group N, the Mislin
Ž .genus, GG N , is defined to be the set of all isomorphism classes of finitely

generated nilpotent groups M such that for every prime p, the groups M
� �and N have isomorphic p-localizations; see 7 . For NN -groups, N, Hilton0

Ž . � �and Mislin defined an abelian group structure on the set GG N in 2 .
Various calculations of such Hilton�Mislin genus groups can be found in

� �the literature, for example, in the article by Hilton and Scevenels 3 . In
� �11 it is shown that for NN -groups N and M, there is an epimorphism0
Ž . Ž .GG N � GG N � M if N is infinite. This is an affirmative answer to a

� � � �question in 2 . In particular, in 11 we deduce some results on triviality of
the genus. Related to such genus studies, we observe some interesting
non-cancellation phenomena and non-unique direct sum decompositions
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� �of groups in NN . Warfield 8, Theorem 3.5 has shown that for an NN -group,0 0
Ž . Ž .N, we have GG N � � N . The purpose of this article is to generalize the

Hilton�Mislin group structure to the non-cancellation sets of XX -groups.0
Using the group structure on the non-cancellation set, we prove some

� �results, similar to those in 11 , on morphisms between non-cancellation
groups. These results imply, inter alia, some theorems on triviality of the

� �non-cancellation set of a XX -group. Again, as in 11 we can deduce some0
results on Hilton�Mislin genus groups of NN -groups.0

In Section 2 we prove some basic results on XX -groups, including a0
certain pull-back construction for such a group. In Section 3 we have some
results on presentations of finite �-modules. In Section 4 it is shown that

Ž .for every XX -group G, the members of � G can be represented by certain0
subgroups of G of finite index in G, and we make a detailed study of such
subgroups. The group structure is treated in Section 5. In Section 6 we use

� �the methods of 11 to study certain homomorphisms between non-cancel-
lation sets. We generalize some further results on Hilton�Mislin genera of

� �NN -groups, including some new ones appearing in 11 .0

2. BASICS OF XX -GROUPS0

We note some of the basic properties of XX -groups. Throughout this0
section, G shall denote a XX -group.0

The centre of the group G will be denoted by Z . The set of allG
elements of finite order in G forms a finite normal subgroup, the torsion
subgroup, which we shall denote by T . The torsionfree quotient, G�T ,G G
of G is a finite rank free abelian group. A group H belongs to XX if and0
only if H is an extension of a finite group by a finite rank free abelian
group.

The class XX is closed with respect to taking subgroups and forming0
finite direct products. In particular, if G � XX then G � � � XX , and0 0
furthermore if we have a group H such that H � � � G � �, then
H � XX .0

For every G � XX we define a subgroup F as follows. Let n be the0 G 1
exponent of the torsion subgroup T , let n be the exponent of the groupG 2

Ž .Aut T , and let n be the exponent of the torsion subgroup of the centreG 3
Ž .of G. We define the natural number n G � n n n and the subgroup1 2 3

² n :F � x : x � G ,G

Ž . Žwhere n � n G . Then F is a normal subgroup in fact, a fully invariantG
.subgroup of G.
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PROPOSITION 2.1. Let G � XX and let m � n n , for n and n as0 1 2 1 2
abo�e, and let

² m :E � x : x � G .G

Then E � Z and for the canonical epimorphism � : G � G�T , we ha�eG G G
Ž . � m 4� E � g T : g � G .G G

Proof. The second part of the proposition is simple�note that G�TG
is abelian. We now prove that E � Z .G G

Consider any g, x � G. We shall prove that g m xg�m � x. Let � : G � G
be the inner automorphism a � gag�1. Since the commutator subgroup
� � Ž .G, G is finite, there exists b � T such that � x � bx. By induction oneG

Ž .can prove the following identity q � � :

q�1
q i� x � � b x .Ž . Ž .Ł

i�0

The inductive step is as follows:

r�1 r
r	1 r i i� x � � � x � � � b x � � b � xŽ . Ž .Ł Ł½ 5

i�0 i�1

r r
i i� � b bx � � b x .Ł Ł

i�1 i�0

n2Ž .Now we note that � t � t for each t � T . Consequently,G

n1n �1m�1 2
i i� b � � b � 1,Ž . Ž .Ł Ł

i�0 i�0

since n is the exponent of T . Thus it follows that g m xg�m � � m x � x.1 G
This proves that E � Z .G G

The following proposition now follows readily. We omit the proof.

Ž .PROPOSITION 2.2. Let G � XX and let n � n G . Then:0

Ž .a the canonical epimorphism G � G�T embeds F into G�T ,G G G

Ž . � � k � �b G : F � n T , where k is the rank of the free abelian groupG G
G�T .G
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Let G be any XX -group. Consider the following diagram, in which every0
homomorphism is a canonical epimorphism onto a quotient group.

� �

G G�TG

� �� � �

� Ž .G�F G� T FG G G� �

1Ž .

Note that F is torsionfree, and � embeds F into G�T . Also, �G G G
embeds T into G�F . The square is commutative.G G

Ž .THEOREM 2.3. Let G be any XX -group, and let n � n G . Let H � G0
� �such that G : H is relati�ely prime to n. Let � � � � i where i: H � G is

the inclusion and � : G � G�F is the canonical epimorphism. Then,G

Ž .a F 
 ker � and the induced homomorphism ��: H�F � G�FH H G
is an isomorphism,

Ž .b T � T .H G

Ž . � �Proof. a We note that ker � � F � H. Since G : H is relativelyG
prime to n, it follows that if we have x � G for which x n � H, then
x � H. Thus F � H � F , and so F 
 ker �. On the other hand, clearlyG H H
F � F . Thus F � ker �, so that �� is a monomorphism.H G H

We now prove that � is surjective. Consider any y � G. Then y n � FG
and for some m � � which is relatively prime to n, y m � H. But then
there are a, b � � such that am 	 bn � 1. Thus y � y am y bn with y am � H

bn Ž am.and y � F , and so yF � � y . This completes the proof.G G

Ž .b Consider any x � T . Then for some m � � which is relativelyG
prime to the order to x, x m � H. But this implies that also x � H. Thus
T 
 H, and so T 
 T . Therefore T � T .G G H G H

The following result is crucial for the proof of the existence of certain
embeddings in Section 4. The reader who is not familiar with the categori-
cal notion of pull-back is referred to the book by Hilton and Stammbach
� �4 .

Ž .THEOREM 2.4. Let G be any XX -group. Then the diagram 1 abo�e is a0
pull-back square in the category of groups.

�Ž . Ž . Ž .4Proof. Let P � x, a � G�F � G�T : � � x � �� a . Then P is aG G
subgroup of G�F � G�T . Let 	 : P � G�F and 	 : P � G�T beG G 1 G 2 G
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the restrictions of the relevant projections of G�F � G�T onto each ofG G
its direct factors. Then the following square is a pull-back square.

	 2 �

P G�TG

� �	 � �1

� Ž .G�F G� T FG G G� �

2Ž .

Ž . Ž .Since diagram 2 is a pull-back square and diagram 1 is commutative,
Ž .there exists a unique homomorphism � : G � P such that 	 �� � �1

and 	 �� � � . In order to complete the proof we must show that � is an2
isomorphism.

We denote the identity elements of G, G�F , and G�T by e, e , andG G 1
e , respectively. Now suppose that g � ker �. Then,2

� g � 	 � g � 	 e � e ,Ž . Ž . Ž .2 2 2

and it follows that g � T . On the other hand,G

� g � 	 � g � 	 e � e ,Ž . Ž . Ž .1 1 1

and since � embeds T into G�F , it follows that g � e. Thus � is aG G
monomorphism. We now prove that � is surjective.

Ž .Consider any x, a � P. Since � is an epimorphism, we can find some
Ž . �1 Ž . �1 Ž .b � G such that � b � a. Then x � b � ker � �. Let t � x � b , so

Ž . Ž .that � b � xt. In particular we note that t � � T , and we can pickG
Ž . �1 Ž .s � T such that � s � t. Now let g � bs � G. We prove that � g �G

Ž .x, a .

�1�1 �1	 � g � � g � � bs � � b � s � xt t � xŽ . Ž . Ž . Ž . Ž . Ž .1

and

	 � g � � g � � bs�1 � � b � s�1 � a,Ž . Ž . Ž . Ž . Ž .2

Ž .since � b � a and s � T . This completes the proof.G

We note the following result on subgroups of XX -groups.0

PROPOSITION 2.5. Let G be any infinite XX -group, and let m be any0
� �natural number. Then there is a subgroup H of G such that G : H � m.

Proof. The proposition would certainly hold under the additional as-
sumption that the XX -group G is abelian. Now let M be any subgroup of0

� �the free abelian group G�T such that G�T : M � m. Let 	 : G �G G
�1Ž .G�T be the projection. Then the subgroup 	 M of G has index mG

in G.
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A very helpful result that gives a condition under which we are allowed
to cancel the infinite cyclic group as a direct factor is the following lemma
of Hirshon.

� �LEMMA 2.6 6, Lemma 1 . Suppose that G and H are any groups such
that G � � � H � � � �. Then G � H � �.

3. PRESENTATIONS OF FINITE �-MODULES

Consider a non-trivial finite abelian group B and let k be an integer
Ž . Žwhich is not less than the Prufer rank, rank B , of B. For a finite abelian¨

group B, the Prufer rank is simply the least of the cardinalities of¨
. kgenerating subsets of B. For the free abelian group � , we denote the set

k Ž .of epimorphisms � � B by E B . The Nielsen equivalence relation �k
Ž . Ž .on E B is defined as follows. For f , f � E B , f � f if and only ifk 1 2 k 2 1

there is an automorphism � : �k � �k such that f � f � � . This relation2 1
can easily be seen to be an equivalence relation. The set of equivalence

�Ž . �Ž .classes is denoted by E B . In order to describe E B we introduce thek k
Ž .following symbol. For a finite abelian group B, let 
 B be the greatest

Ž .common divisor of the orders of the invariant factors of B. Note that 
 B
� Ž .can be defined equivalently to be the integer min m � � : rank mB �

Ž .4rank B �here B is considered to be an additi�e group.

PROPOSITION 3.1. Let B be any non-tri�ial finite abelian group of rank k,
Ž . Ž .and let d � 
 B . Suppose that we ha�e epimorphisms g, h � E B and ank

k k Ž .endomorphism � : � � � such that g � h��. Then the cokernel, coker � ,
� Ž . �of � is a finite group and coker � is relati�ely prime to d.

Proof. There exists an epimorphism � : B � �k . For elementsd
Ž . kx , x , . . . , x of � , reduction modulo d of coordinates yields a homo-1 2 k
morphism �: �k � �k ,d

� : x , x , . . . , x � x , x , . . . , x .Ž . Ž .1 2 k 1 2 k

This homomorphism is such that there exist homomorphisms g � and h�
making the following diagram commutative.

�
k k�

� �

�

g � � h� �

� �k �� �� �d

� g � h�
k k�

� �d d�
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Then g � and h� are isomorphisms since g � and h� are epimorphisms and
k Ž .� is finite and consequently hopfian . Therefore � is an isomorphism.d

Thus the determinant det � is a unit of the ring � . But det � is thed
residu class of the integer det �. Thus det � is relatively prime to d.

� � � �Finally, the absolute value det � of det � is exactly equal to coker � .

The following result which we state without proof is essentially the
�Ž . � �description of the set E B as, for instance, in the paper by Webb 9 .k

THEOREM 3.2. Let B be any non-tri�ial finite abelian group and let k be
Ž .an integer which is not less than the rank, rank B , of B. There is a bijection

�Ž . � � 4between the set E B and the group � � 1, �1 , where d is the integerk d
defined as follows:


 B if k � rank B ,Ž . Ž .
d � ½ 1 if k � rank B .Ž .

k k Ž .For monomorphisms � : � � � and a fixed epimorphism g � E B , thek
� � �Ž .element g �� of E B is uniquely determined by the image of the integerk

Ž . � � 4det � in the group � � 1, �1 .d

4. SUBGROUPS OF FINITE INDEX IN A XX -GROUP0

Ž .THEOREM 4.1. Let G be any XX -group, and let n � n G . Suppose that0
� �H � G such that G : H is finite and is relati�ely prime to n. Then H � � �

G � �.

Proof. Certainly the subgroup T of H contains all the torsion ele-G
ments of H, and the quotient group H � H�T is a subgroup of the free1 G

Ž .abelian group G � G�T . The group operation in G and H will be1 G 1 1
Ž . � �denoted by ‘‘	’’ addition . Since G : H is finite, it follows that H is of1

Ž . � � � �the same finite rank as G . Furthermore, G : H � G : H . We first1 1 1
define an isomorphism � : H � �k � G � �k having the property that1 1

� �k � nG � �k .Ž . Ž .1

Ž � � .By the stacked basis theorem see 5, Theorem 5.1.1 for instance , there
� 4 � 4exists a basis � , � , . . . , � of G and a basis u , u , . . . , u of H ,1 2 k 1 1 2 k 1

together with a sequence m , m , . . . , m of integers such that for each1 2 k
� 4 k � �i � 1, 2, . . . , k we have u � m � . We note that Ł m � G : H , and,i i i i�1 i

in particular, then n is relatively prime to each of the integers m . Thus fori
each i we can find r , s � � such that r m 	 s n � 1. Now leti i i i i
� 4 ke , e , . . . , e be the standard �-basis of � . We define � by letting for1 2 k
each i

� u � m � � s e and � e � n� 	 r e .Ž . Ž .i i i i i i i i i
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� �Since r m 	 s n � 1, it follows that � induces an isomorphism betweeni i i
subgroups of H � �k and G � �k:1 1

² : ² :u , e � � , e .i i i i

Thus � is an isomorphism and has the desired property.
� 4Let us choose, for each i � 1, 2, . . . , k , an element g such thati

g T � � , and define a function � : �k � G � �k by the formulai G i

k k k
nai� : a e � g , a r e .Ý Ł Ýi i i i i iž /i�1i�1 i�1

Then � is a homomorphism. We define  : H � G � �k as the composi-
tion

1�q i��� kH � H � H � H � H � G � � ,1

where � is the diagonal homomorphism, q: H � H is the canonical1
homomorphism, i: H � G is the inclusion, and � : H � �k is defined by1

k k

� : c u � s c e .Ý Ýi i i i i
i�1 i�1

We obtain a well-defined function �: H � �k � G � �k through the
formula

� : h , z �  h � z .Ž . Ž . Ž .

The function � is a homomorphism since  and � are homomorphisms
Ž k . kand � � belongs to the centre of G � � . It is not hard to see that �

induces an isomorphism between the torsion subgroups. Furthermore, �
induces a homomorphism H � �k � G � �k, which coincides with the1 1
isomorphism � . Therefore � is an isomorphism. By repeated application
of Lemma 2.6 it follows that there is an isomorphism H � � � G � �.

THEOREM 4.2. Let G be any XX -group, and let H be any group such that0
H � � � G � �. Then H is isomorphic to a subgroup L of G of finite index

� � Ž .in G such that G : L is relati�ely prime to n � n G .

Proof. First we note that G�F � H�F . In fact there is an isomor-G H
Ž .phism � : H�F � G�F which induces an isomorphism � : H� F T1 H G 0 H H

Ž .� G� F T . Since H�T is a free �-module and G�T is a �-module,G G H G
there exists a homomorphism � : H�T � G�T such that the following2 H G
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square, in which the two vertical arrows are the canonical epimorphisms, is
commutative.

�2 �

H�T G�TH G

� �

�Ž . Ž .H� F T G� F TH H G G�0

Note that H�T and G�T are free abelian groups of the same finiteH G
Ž .rank as the rank of the � -module G� F T . Therefore it follows byn G G

Proposition 3.1 that the cokernel of � is of finite order relatively prime2
to n.

Ž .Now consider the following diagram 3 in which the unbroken arrows
form a commutative diagram. The vertical arrows are the obvious epimor-
phisms.

�

H H�TH

�

�

� �3 2

� �

G�TG G

� �

H� F TH�F Ž .H HH

�

�� 01 ��� �

G� F TG�F Ž .G GG

3Ž .

Ž .Since the front face is a pull-back square, there exists a unique homo-
Ž .morphism � : H � G which is such that diagram 3 is commutative. It3

� �readily follows that � is a monomorphism and that G : Im � �3 3
� �G�T : Im � .G 2

Ž .THEOREM 4.3. Let G be any XX -group and let n � n G . Let H and L be0
� �subgroups of G of finite index. If G : H is relati�ely prime to n and

� � � �G : L � � G : H mod n, then H � L.

Proof. The inclusions of H and L into G induce maps fitting into the
following commutative diagram.

�� ���
�H�T G�T L�TH G L

� � �gf

�
�Ž . Ž . Ž .H� F T G� F T L� F TH H G G L L� �
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ŽLet k be the rank of the free abelian group H�T which is the same asH
. k kthe rank of L�T , and fix any isomorphisms f : � � H�T and g : �L 0 H 0

� L�T .L
By comparing the indices of the subgroups Im �� and Im �� of G�TG

Ž .these coincide with, respectively, the indices of H and L in G , it follows
from Theorem 3.2 that �� f � f � �� g � g . Thus there is an isomorphism0 0
� : �k � �k such that �� f � f � �� g � g � � . Now let � � g � � � f�1.0 0 0 0

Ž .Note that � and � are isomorphisms, being induced by respectively
isomorphisms � : H�F � G�F and � : L�F � G�F , which are in-0 H G 0 L G
duced by the inclusions of H and L into G. Thus we have a commutative
diagram as follows.

f �
�Ž .H�T H� F T H�FH H H H

� � ��1�1 � ��� ��� 0 0

�
�Ž .L�T L� F T L�FL L L Lg

In the diagram above, every vertical arrow is an isomorphism. Taking
pull-backs of the relevant triads in the diagram above yields an isomor-
phism H � L.

Ž .THEOREM 4.4. Let G be any XX -group and let n � n G . Let H be a0
� �subgroup of G of finite index. If G : H is relati�ely prime to n, then there

� � � �exists an embedding � : G � H such that G : H � H : Im � � �1 mod n.

Proof. Let K be any subgroup of H of finite index relatively prime to
� �� � � � � �� �n, such that H : K G : H � 1 mod n. Then G : K � G : H H : K �

1 mod n. Therefore by Theorem 4.3, K � G, and the conclusion of our
theorem follows.

5. GROUP STRUCTURE ON THE NON-CANCELLATION SET

Let X be the set of all integers which are relatively prime to n. From
Theorems 4.1, 4.2, and 4.3 it follows that we have a well-defined surjective

Ž . Ž . � �function �: X � � G , defined by the rule � x � H where H is a
� � � �subgroup of G of index x , and � denotes isomorphism class. In fact this

function is shown to factorize through the ‘‘reduction mod n’’-function

� � 4� : X � � � 1, �1 .n

� � 4 Ž .Let � : � � 1, �1 � � G be the unique function such that � �� � �.n
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Ž . �1� � � �THEOREM 5.1. a The fibre � G of � o�er G is a subgroup of
� � 4� � 1, �1 .n

Ž . � � Ž . �1� � �1� �b For any H � � G , � H is a coset of � G .

Ž . �1� �Proof. a From Theorem 4.4 it follows that if u � � G then
�1 �1� � �1� �u � � G . Thus � G is closed with respect to inversion of its

elements. Given s, t � X for which we have embeddings � : G � G and
� Ž .� � Ž .� � Ž .�� : G � G such that G : � G � s and G : � G � t then G : � �� G

�1� � � � 4� st. This completes the proof that � G � � � 1, �1 .n

Ž . Ž . Ž .b Suppose that r, s, t � X and � s � � t . Now let L be a sub-
� �group of G such that G : L � s. Then there is also an embedding

� Ž .�� : L � G such that G : � L � t. If K is a subgroup of L with
� � � � Ž . � Ž .�L : K � r, then K � � rs . But then G : � K � rt, so that also
� � Ž . Ž . Ž . Ž . Ž .K � � rt . Thus we have shown that � s � � t implies � rs � � rt .

Ž .The b part of the theorem follows from the latter fact.

From Theorem 5.1 it follows that there is a bijection

� �1� �� 4� : � � 1, �1 � � G � � G ,Ž .Ž . Ž .n

such that for the canonical epimorphism of semigroups

� � �1� �� 4 � 4� : � � 1, �1 � � � 1, �1 � � G ,Ž . Ž .n n

Ž .we have � � ���. We use � to equip � G with a group structure.

Ž .THEOREM 5.2. Let G be any XX -group and let n � n G . Then the0
� � 4 Ž . Ž .function � : � � 1, �1 � � G induces a group structure on � G , whichn

coincides with the Hilton�Mislin genus group if G is nilpotent.

Computations of such non-cancellation groups and homotopical applica-
tions will appear elsewhere.

6. EPIMORPHISMS BETWEEN NON-CANCELLATION
GROUPS

� �As in 11 , the following proposition is quite useful. The elementary
proof is omitted.

PROPOSITION 6.1. Suppose that we ha�e groups A, B, and C together with
a homomorphism � : A � C and a surjecti�e group homomorphism  : A �

Ž .B. If � : B � C is a function between sets such that � � � � , then � is a
homomorphism. If , moreo�er, � is surjecti�e, then � is also surjecti�e.
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Ž .For XX -groups G and H and for groups K belonging to � G , the rule0
K � K � H induces a well-defined function

� : � G � � G � H .Ž . Ž .

� �Similar to 11 , we have the next result.

Ž � �.THEOREM 6.2 cf. 11, Theorem 3 . Let G and H be any XX -groups, and0
Ž . Ž .suppose that G is infinite. Then the function � : � G � � G � H is a

surjecti�e homomorphism of groups.

Ž . Ž .Proof. Let m � n G � H . Then m is a multiple of q � n G . Thus
� Ž . � Ž .there are epimorphisms � : � � � G � H and � : � � � G �the2 m 1 m

latter homomorphism factorizes through the obvious epimorphism �� �m
�� . Let x be any positive integer which is relatively prime to m, and let xq

be its residue class modulo m. Choose a subgroup K of G such thatx
� �G : K � x. Such a K does exist by Theorem 2.5 since G is infinite.x x

Ž . � � � � � �Then � x � K . Since G � H : K � H � G : K � x, it follows1 x x x
Ž . � �that � x � K � H . Thus � �� � � , and the theorem follows by2 x 1 2

Proposition 6.1.

Ž � �.COROLLARY 6.3 cf. 11, Corollary 4 . Let N and M be any XX -groups. If0
Ž . Ž .N is infinite and � N is tri�ial, then � N � M is tri�ial.

Now let us consider a XX -group G together with a finite characteristic0
Ž .subgroup F of G. We now construct a certain function �: � G �

Ž .� G�F .
It is not hard to see that if K is any group such that K � � � G � �,

then F is a characteristic subgroup of K � �. More precisely, such a
Ž .group K has a unique subgroup F� such that for every isomorphism

Ž . Žh: G � � � K � �, we have � F � F�. Thus by a five-lemma argu-
. Ž .ment it follows that K� F� � � � G�F � �. We show that if for a

Ž . Ž .group K in � G we let K � K�F�, then we obtain a function �: � G
Ž .� � G�F . We show now that � is well defined.

Ž .Suppose that we have groups K , K � � G and an isomorphism1 2
h: K � K . Then h induces an isomorphism F � F , where F and F1 2 1 2 1 2
are the subgroups of K and K , respectively, corresponding to F.1 2
Therefore, h induces an isomorphism K �F � K �F . This proves that �1 1 2 2

Ž .is a well-defined function. So indeed we have a function �: � G �
Ž .� G�F .

� �The next theorem is modelled on a result of Hilton 1, Theorem 2.1 .

THEOREM 6.4. Let F be a finite characteristic subgroup of the infinite
Ž . Ž .XX -group G. Then the function �: � G � � G�F is a surjecti�e group0

homomorphism.
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Ž . Ž .Proof. Let m be the lowest common multiple of n G and n G�F .
� Ž . � Ž .Then there are epimorphisms � : � � � G and � : � � � G�F .1 m 2 m

Let x be any positive integer which is relatively prime to m, and let x be
its residue class modulo m. Let K be any subgroup of G such thatx
� � Ž . � �G : K � x. Such a K does exist by Theorem 2.5. Then � x � K .x x 1 x

� � � � Ž . � �Since G�F : K �F � G : K � x, we have � x � K �F . Thus � ��x x 2 x 1
� � , and the theorem follows by Proposition 6.1.2
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