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Abstract Thus far, there does not appear to be an agreed (or adequate) definition of
homogeneous dark energy (DE). This paper seeks to define a valid, adequate homo-
geneity condition for DE. Firstly, it is shown that as long as wx �= −1, DE must
have perturbations. It is then argued, independent of wx , that a correct definition of
homogeneous DE is one whose density perturbation vanishes in comoving gauge: and
hence, in the DE rest frame. Using phenomenological DE, the consequence of this
approach is then investigated in the observed galaxy power spectrum—with the power
spectrum being normalized on small scales, at the present epoch z = 0. It is found
that for high magnification bias, relativistic corrections in the galaxy power spectrum
are able to distinguish the concordance model from both a homogeneous DE and a
clustering DE—on super-horizon scales.

Keywords General relativity · Dark energy · Perturbation · Homogeneity · Matter ·
Power spectrum

1 Introduction

Dark energy (DE) isdark, but the underlying physics of DE is evendarker. Understand-
ing the nature of DE remains a puzzle in general relativity. A long standing question is
that: is DE actually static vacuum energy �, i.e. like in the standard concordance model
(�CDM); or a dynamic field, e.g. like in the quintessence [1–21] models (QCDM)?
If DE is described by � then it can not have perturbations (or evolve) at all. Although
�CDM is the best-fit model to the current data, other alternatives have been consid-
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ered in the literature, e.g. a homogeneous dynamical DE. However, if DE is dynamical
then it can have perturbations. How then do we define a valid homogeneous dynamical
DE?

There does not appear to be an agreed or adequate definition of homogeneous
(dynamical) DE. For example, if the DE physical sound speed is csx = 1, then DE
cannot cluster on sub-Hubble scales. Thus it is sometimes concluded that DE is approx-
imately homogeneous (see e.g. [22–40]). The caveat to this assumption is that it only
ensures a ‘scale-dependent’ homogeneity, in the sense that it makes DE homogeneous
only on sub-Hubble scales, but on super-Hubble scales DE becomes significantly
inhomogeneous. This is because, csx = 1 implies that the DE density perturbations
propagate with the speed of light; hence DE fails to cluster, and is perturbatively
insignificant. However, on (Hubble) horizon scales the perturbation behaviour is dif-
ferent and the homogeneity assumption breaks down, i.e. the implicit assumption of
no clustering in DE on super-horizon scales, given that csx = 1, is inconsistent.

Moreover, an assumption often used for DE homogeneity is the requirement that all
its perturbations vanish [1–10], i.e. by setting the DE density perturbation and velocity
potential to (absolute) zero [1]:

δx = 0 = Vx , (1)

where the associated evolution equations are therefore discarded. However, it has
been pointed out that a fluctuating, inhomogeneous component is the only valid way
of introducing an additional energy component (i.e. DE): a smooth (non-fluctuating),
time-varying component is unphysical—it violates the equivalence principle [11].
Moreover, it is known that Eq. (1) leads to a violation of the self-consistency of
the equations of general relativity, by causing a contradiction in the equations. For
example, it has been shown that Eq. (1) leads to a false boost in the matter power spec-
trum [1,6], and in the integrated Sachs-Wolfe effect [8,11] (in the cosmic microwave
background)—on horizon scales. (Also, recently it has been shown in [41] that neglect-
ing the DE perturbations can lead to misleading estimation of the matter growth index,
giving up to ∼3 % deviation: which is a significant amount, as we enter an era of preci-
sion cosmology.) Nevertheless, none of the previous works has shown explicitly what
the inconsistency resulting from Eq. (1) is, nor has given any suggestions on how to
solve or circumvent this problem.

In this work we show analytically the inconsistency resulting from Eq. (1). We
propose an alternative way, via the intrinsic entropy perturbation, to define a suitable
condition for DE homogeneity—which corrects Eq. (1) to avoid the violation of the
consistency of the equations of general relativity, and also eliminates csx from the
equations (like in �CDM). It should be noted that the aim of the paper is not to fit the
given homogeneous DE to the data (which might have been one other avenue to show
the observational significance of the homogeneous DE), but to provide a suitable way
to define a valid, adequate DE homogeneity condition—which currently seems to be
non-existent. Furthermore, for illustration purpose, the effects of general relativistic
corrections (and magnification bias) in the galaxy power spectrum is demonstrated.

We begin by outlining the basic background equations in Sect. 2; we give the per-
turbations equations in Sect. 3. In Sect. 4 we discuss the intrinsic entropy perturbation;
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and in Sect. 5 we look at DE homogeneity in general relativity: discussing the ‘unphys-
ical’ smooth DE and a ‘true’ homogeneous DE—illustrating their effects in the galaxy
and matter power spectra. We conclude in Sect. 6.

2 The background equations

The standard acceleration equation (see e.g. [42]) is:

H ′ = −1

2
H 2(1 + 3w), w ≡

∑

A

�AwA, (2)

where H = a′/a is the comoving Hubble parameter, prime denotes derivative with
respect to conformal time, with a being the scale factor; �A = ρ̄A/ρ̄ is the energy
density parameter (with over bars denoting background) of species A, which evolves
according to the equation

�′
A = −3H (wA − w)�A, (3)

with ρ̄A being the background energy density of species A, and ρ̄ is the total energy
density of all the species. Similarly, wA = p̄A/ρ̄A is the equation of state parameter
of species A, which evolves by

w′
A = −3H (1 + wA)(c2

aA − wA), (4)

where c2
aA = p̄′

A/ρ̄′
A is the adiabatic sound speed associated with species A, and p̄A

is the background pressure.

3 The general perturbations equations

Here we adopt the Newtonian metric, given by

ds2 = a2
[
− (1 + 2�) dη2 + (1 − 2�) dx2

]
, (5)

where η is the conformal time, and � is the (Newtonian) gravitational potential.
Note that by the choice of the metric (5) we assume zero (or negligible) anisotropic
stress: this assumption is crucial for the subsequent derivations. The relativistic Poisson
equation is given by

∇2� = 3

2
H 2

∑

A

�A�A, (6)

where the comoving density perturbation �A is given by

�A ≡ δA + ρ̄′
A

ρ̄A
VA = δA − 3H (1 + wA)VA, (7)
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where δA = δρA/ρ̄A and δρA is the energy density perturbation. The gravitational
potential is driven by the total momentum density, given by

�′ + H � = −3

2
H 2(1 + w)V, (8)

where the 4-velocities are given by [43]

uμ
A = a−1

(
1 − �, ∂ i VA

)
, uμ = a−1

(
1 − �, ∂ i V

)
, (9)

with uμ being the total 4-velocity and V is the total velocity potential, given by

V = 1

1 + w

∑

A

�A (1 + wA) VA. (10)

We consider all species as perfect fluids. Thus for the species A, the perturbed
energy-momentum tensor is

δTμν
A = (δρA + δpA) ūμ

Aū
ν
A + δpAḡ

μν + p̄Aδgμν

+ (ρ̄A + p̄A)
[
δuμ

Aū
ν
A + ūμ

Aδuν
A

]
, (11)

where δpA, δuμ
A and δgμν are the perturbations in the pressure, 4-velocity and the

metric tensor, respectively. The conservation of energy and momentum implies that

∇μ

∑

A

δTμν
A = 0 = ∇μδTμν

A , (12)

where the second equality follows from the assumption that the individual fluid species
do not interact directly with one another: they only interact (indirectly) gravitationally
via the Poisson equation (6).

Thus given Eq. (12) the velocity potential VA and the comoving overdensity �A

(7) evolve by

V ′
A + H VA = −� − c2

s A

1 + wA
�A, (13)

�′
A − 3H wA�A = H �̂A − (1 + wA)∇2VA, (14)

where we have defined the parameter �̂A by

H �̂A ≡ 9

2
H 2(1 + wA)

∑

B �=A

�B(1 + wB)(VA − VB). (15)

The index B runs through the entire species, for a given (fixed) value of A.
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4 The intrinsic entropy perturbation

The entropy of a given (thermodynamic) system or fluid, measures the degree of
‘disorderliness’ of that fluid; hence is a perturbed quantity. The intrinsic (or inherent)
entropy perturbation δsA of A, may be given by [44–48]

p̄A δsA ≡ p̄′
A

(
δpA
p̄′
A

− δρA

ρ̄′
A

)
, (16)

i.e. the entropy perturbation quantifies the part of the (effective) pressure perturbation
that is not simply related to the (effective) energy density perturbation. Then the
physical sound speed c2

s A of species A, is defined in the rest frame (“rf”) of A—given
by

c2
s A ≡ δpA

δρA

∣∣∣∣
rf

≥ 0, (17)

where we note that this is essentially the speed of propagation of the pressure per-
turbation δpA relative to the density perturbation δρA—when A is at rest. Then
by changing from some arbitrary frame xμ into the rest frame xμ|rf , given by
xμ → xμ|rf = xμ+ξμ, this leads to a gauge transformation of the energy-momentum
tensor:

Tμ
A ν → Tμ

A ν

∣∣
rf = Tμ

A ν − Lξ T̄
μ
A ν, (18)

where the Lie derivative Lξ , with respect to the transformation 4-vector ξμ, is given
by

Lξ T̄
μ
A ν = ξα∂α T̄

μ
A ν + T̄μ

A α∂νξ
α − T̄ α

A ν∂αξμ, (19)

with |ξμ| 	 1. Thus the (0 − 0)th and the (i − j)th components of the transforma-
tion (18) yield, respectively

δρA|rf = δρA − ξ0ρ̄′
A, δpA|rf = δpA − ξ0 p̄′

A, (20)

and the (i − 0)th or (0 − j)th component yields

VA|rf = VA + ξ0, (21)

with the velocity potential VA being given in the Newtonian gauge—where it is auto-
matically gauge-invariant. (One advantage of using the conformal Newtonian metric
is that the resulting gravitational perturbations are automatically gauge-invariant.)
However, when A is at rest, we have

T 0
A j

∣∣∣
rf

= 0 = T i
A0

∣∣∣
rf

, (22)

where it follows that VA|rf = 0, and thus ξ0 = −VA. Putting this in Eq. (20), we then
obtain by using Eq. (17) that

δpA = c2
aAδρA + (c2

s A − c2
aA)ρ̄AΔA, (23)
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where �A is given by Eq. (7). Whence we obtain the intrinsic entropy perturbation (16),
given by

p̄A δsA = (c2
s A − c2

aA)ρ̄A�A, (24)

where �A is gauge-invariant, and consequently so is δsA.
Moreover, given Eqs. (7) and (20)–(22), we get

δρA|rf = ρ̄A�A. (25)

This implies that the comoving density perturbation of any species corresponds to
the density perturbation of that species in its rest frame. Moreover, given Eq. (25),
we have Eq. (24): p̄AδsA = (c2

s A − c2
aA) δρA|rf —which therefore implies that the

‘intrinsic entropy’ of any species corresponds to the ‘entropy perturbation in the rest
frame’ of the species.

5 General relativity and dark energy homogeneity

In this section, we analytically discuss the inconsistency in the equations of general
relativity—resulting from Eq. (1), we illuminate what the inconsistency really is:
(analytically) describing its source/origin. We then propose a suitable way to define a
valid, adequate condition for DE homogeneity in general relativity.

It is known that the equations of general relativity form a complete and consis-
tent system. Thus an implication of this is that the gravitational potential evolution
equation (8) should always reduce to the Poisson equation (6). To confirm this, it is
only sufficient to show that the Poisson equation at any time solves the associated
gravitational potential evolution equation.

Hence by taking the time derivative of Eq. (6), and using Eqs. (2), (3), (7)–(15), we
get

∇2�′ = −H ∇2� − 3

2
H 2

∑

A

�A(1 + wA)∇2VA, (26)

where by applying the inverse Laplacian to both sides, we get Eq. (8)—as required.
This way, the system of equations remains complete and consistent. Nevertheless, note
that Eq. (26) is obtained mainly as a result of the fact that

∑

A

�A�̂A = 0, (27)

where given Eq. (15), it is easy to establish Eq. (27).
Equation (27) is essentially the statement of a ‘consistency condition’ for the sys-

tem of equations of general relativity. This condition should always hold given any
correct set up—within general relativity. (Note that Eq. (27) immediately holds true for
�CDM. However, as will be shown subsequently, there are situations for dynamical
DE where this condition would (i) hold true, and (ii) not hold true.)

However, if in any adopted framework we have that this condition does not hold,
i.e.

∑
A �A�̂A �= 0, then this will result in a contradiction: where we are unable to
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recover the standard gravitational potential evolution equation (8); effectively we will
rather have a transformation, given by

�′ → �′ + H �̂, (28)

where �′ is given by Eq. (8), and

H �̂ ≡ 3

2
H 3∇−2

∑

A

�A�̂A. (29)

Thus Eqs. (28) and (29) analytically express the ‘unwanted’ inconsistency (or contra-
diction) that will arise in the physical equations of general relativity, when Eq. (27) fails
to hold. It should be noted that the parameter H �̂A is physical, and will contribute
to the comoving density perturbation via Eq. (14).

In the following subsections, we give the particular evolution equations and present
a new definition for a ‘true’ homogeneous DE.

5.1 The particular perturbations equations

We assume (henceforth) the late Universe—dominated by DE and matter (“m”),
i.e. baryons and cold dark matter. Thus the relativistic Poisson equation is

∇2� = 3

2
H 2 [�m�m + �x�x ] , (30)

where we take care to use the correct overdensities �m,x , in order to avoid ‘unphysical
artefacts’ (see e.g. [49]) in the results.

The gravitational potential evolves by

�′ + H � = −3

2
H 2 [�mVm + �x (1 + wx )Vx ] , (31)

and the matter perturbations evolve according to

V ′
m + H Vm = −�, (32)

�′
m − 9

2
H 2�x (1 + wx )(Vm − Vx ) = −∇2Vm . (33)

Similarly, the DE perturbations evolve by

V ′
x + H Vx = −� − c2

sx

1 + wx
�x , (34)

�′
x − 3H wx�x = 9

2

2

H 2�m(1 + wx )(Vx − Vm)

− (1 + wx )∇2Vx , (35)
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where Eqs. (30)–(35) follow from Eqs. (6)–(15).
Thus Eq. (1) implies that �x = 0 = �′

x , and Eq. (35) yields: −(9/2)H 2�m(1 +
wx )Vm = 0, which implies that either (i) wx = −1, or (ii) Vm = 0. But it is already
taken that wx �= −1, and Vm cannot be zero (in the given gauge). Hence this leads to a
contradiction. Usually in the literature, the �′

x equation is merely disregarded (while
keeping wx �= −1 and Vm �= 0)—this is the source of inconsistency in the general
relativistic equations, which has rightly been reported in the literature (see e.g. [1,6]).

Hence given that wx �= −1, and since by Eq. (1) the �′
x equation (and hence, �̂x )

is discarded, we have

∑

A=m,x

�A�̂A = 9

2

2

H 2�m�x (1 + wx )Vm = H �m�̂m, (36)

which eventually leads to Eq. (28); thereby defying Eq. (27). Obviously by Eq. (36)
(and preceding explanations), unless wx = −1, Eq. (1) leads to a contradiction—and
hence a violation of the self-consistency of the equations of general relativity. Thus
Eq. (1) is wrong, and the resulting ‘smooth’ DE is ‘unphysical’. However, Eq. (36)
reveals why the �CDM satisfies general relativity despite the fact that all the DE
perturbations therein become zero: wx = −1 in �CDM. Basically, provided wx �=
−1, DE must cluster.

However (for completeness), if we consider a (generic) clustering DE, i.e. with
Vx �= 0 and �x �= 0 �= δx , we get �m�̂m + �x�̂x = 0. It is a straightforward thing
to show that, by taking the time derivative of Eq. (30) and applying the appropriate
equations, we obtain Eq. (31). Hence, a clustering DE rightly upholds the consis-
tency of the system of equations of general relativity. But as previously mentioned,
H �̂m (for example) is physical and will contribute to the matter density perturbation
�m via Eq. (33). Generally, for the clustering DE, the growth of H �̂m on super-
horizon scales will be restrained by the relative velocity potential, Vm − Vx , while
for the (unphysical) smooth DE this term grows almost linearly, driven by Vm [see
Eq. (36)].

We illustrate these behaviours at the present epoch in Fig. 1, using QCDM. These
behaviours explain the matter power spectrum reported in [1], where it is shown that a
smooth QCDM specified by Eq. (1), leads to a false (unphysical) amplification of the
linear matter power spectrum on super-horizon scales. Note that, although the effect
of Eq. (1) may not appear to be significant on sub-horizon scales, it is nevertheless
crucial to use the correct and consistent general relativistic equations for (generally)
valid analyses.

Henceforth, we reserve the name ‘smooth’ for the unphysical DE, defined by Eq. (1).

5.2 True homogeneous dark energy

A physical, consistent homogeneous DE should be one such that it maintains the
consistency of the equations of general relativity, by upholding Eq. (27), irrespective
of the nature of its equation of state parameter wx .
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Fig. 1 Plots at z = 0. Top the DE and the matter velocity potentials, Vx (k) (solid line) and Vm (k) (dashed
line), respectively; and their difference Vm (k) − Vx (k) (dotted line). Bottom the parameter H �̂m (k), for:
clustering QCDM (solid line), and unphysical smooth QCDM (dashed line). The vertical line denotes the
(Hubble) horizon

Given that the entropy (perturbation) of any fluid measures the degree of disorder-
liness in the fluid, then homogeneity or inhomogeneity of the fluid may suitably be
defined with respect to its entropy. Particularly, that the (net) intrinsic entropy pertur-
bation of the fluid vanishes. By the vanishing of the intrinsic entropy perturbation, it
implies that the net internal distortion [i.e. the total change in the inherent distortions—
quantified by the brackets in Eq. (16)] of the fluid becomes zero. This way, the fluid
may be thought to be constituted by an even distribution of equi-amplitude distortions;
hence the fluid is homogeneous (or uniform).

Therefore, here ‘homogeneity’ refers to ‘uniformity’, so that a ‘true’ homogeneous
DE is not one entirely devoid of perturbations, but one made up of uniformly distrib-
uted (equi-amplitude) perturbations. Thus when the DE intrinsic entropy perturbation
vanishes, i.e. δsx = 0, Eq. (24) yields
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(c2
sx − c2

ax )�x = 0, (37)

where either (1) c2
ax = c2

sx , or (2) �x = 0. It is important to note that the definition (37)
is independent of the choice of the spacetime gauge. It may also be pointed out that,
if initially by a priori assumptions c2

ax = c2
sx , then automatically δsx = 0; however

the converse is not necessarily true: if initially by a priori assumptions δsx = 0 then
it may or may not mean that c2

ax = c2
sx , since it can also mean that �x = 0 instead.

In what that follows, we investigate the two cases (1) and (2), given above.

Case 1: c2
ax = c2

sx

If the adiabatic sound speed is equal to the physical sound speed, i.e. c2
ax = c2

sx , then
Eq. (4) implies that

c2
ax = wx − w′

x

3H (1 + wx )
= c2

sx ≥ 0, (38)

where this means 3H wx ≥ w′
x/(1 + wx ), and either:

(i) wx > −1 and w′
x < 0, or

(ii) wx < −1 and w′
x > 0.

Thus, unless wx ≥ 0, wx cannot be an absolute constant. It may only be asymp-
totic to a fix value, such that w′

x �= 0, otherwise csx becomes imaginary—and
small perturbations become unstable. Hence, the given homogeneous DE does not
admit wx = constant < 0 (i.e. negative constants). Moreover, conditions (i) and (ii)
above, imply that wx can not oscillate: it may only be either monotonically decreasing
(w′

x < 0) or monotonically increasing (w′
x > 0). Thus, Case 1 (38) essentially ‘fixes’

the DE background evolutions.
To illustrate Case 1 (38), we consider the well known Chevallier-Polarski-Linder

(CPL) parametrization [50,51]:

wx (a) = w0 + wa(1 − a), (39)

where the scale factor a = (1 + z)−1, with z being the redshift; w0 and wa are (free)
constants. We consider two scenarios of wx : a generic clustering DE (CPL) and a
homogeneous DE (homCPL), given by

CPL : wx ≥ −1, w′
x ≥ 0, �x �= 0, (40)

homCPL : wx > −1, w′
x < 0, �x �= 0, (41)

where we choose w0 = −0.8 and wa = −0.2 for CPL; w0 = −0.8 and wa = 0.6
for homCPL, i.e. here we consider only the scenario (i) of Case 1 (38). We show the
behaviour of wx in Fig. 2 (top panel), for both the CPL (40) and the homCPL (41),
respectively.
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Fig. 2 Top panel the evolution
of the equation of state
parameter wx , for the CPL (40)
(solid black) and the
homCPL (41) (dashed black).
Bottom panel (at z = 0): the
radial (i.e. μ = 1) galaxy power
spectrum Pobs

g (solid lines) with
galaxy bias b = 1, magnification
bias Q = 1; and the matter
power spectrum—given by
q2Pm (dashed lines); q = √

2.1

Throughout this work, we initialize evolutions at the decoupling epoch, given by
1 + zd = 103. We normalize all the power spectra on small scales, at z = 0: i.e. by
choosing the same matter density parameter �m0 = 0.24 and Hubble constant H0 =
73 kms−1Mpc−1 for all cases. Thus all of the power spectra match each other at z = 0,
on small scales. (The advantage of this is that any clustering or GR effects become
isolated on large scales.) We used adiabatic initial conditions (see “Appendix 1”) for
the perturbations.

We show in Fig. 2 (bottom panel), the radial galaxy power spectrum Pobs
g (see

“Appendix 2”) with galaxy bias [52–57] b = 1 and magnification bias [54]Q = 1; and
the matter power spectrum Pm : at the present epoch, i.e. z = 0. By our normalization,
we see that Pobs

g can be approximated on sub-Horizon scales by q2Pm , with q = √
2.1.

Moreover, although DE clusters in the CPL, we see that it rather leads to higher power
on horizon scales in both Pobs

g and Pm , i.e. relative to the homCPL for equal values

of c2
sx (see [12,13,22,48,58–77], for the effects of c2

sx ). This may be owing to the
behaviour of wx for homCPL, which suggests that DE sets in relatively earlier for
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the homCPL—hence causing the matter perturbations to have less time to cluster,
thereby resulting in relatively lower power spectra. Obviously, Case 1 (38) implies
that for equal values of c2

sx , the difference between a homogeneous DE and a clustering
DE is mainly governed by the background, with little to do with the perturbations.
However, one may expect that this difference strongly pertains perturbations, and
that a homogeneous DE results in higher power spectra on large scales, relative to a
clustering DE—given that the perturbative effect of the homogeneous DE should be
negligible (or even absent).

We also observe the dependence of homCPL on c2
sx , i.e. in the power spectra, with

smaller values of c2
sx resulting in more power suppression—since in which case the

DE perturbations are able to cluster earlier and on smaller scales; thus suppressing
most of the matter growth. However, we see the effect of the general relativistic (GR)
corrections [52–57,78–92] in Pobs

g : they lead to a sizeable power boost (relative to
Pm) on horizon scales. Moreover, we observe that the GR corrections also result in
significant differentiation of the given DE scenarios.

Nevertheless, for self-consistent models, e.g. the QCDM (specified by a scalar field
ϕ) which evolve along a potential given (generically) by U (ϕ) �= constant, we have

c2
ax = 1 + 2a2U|ϕ

3H ϕ̄′ �= c2
sx = 1, (42)

where U|ϕ ≡ ∂U (ϕ)/∂ϕ̄, with c2
ax and c2

sx being as defined in Sects. 2 and 4, respec-
tively. Thus by Eq. (42), c2

ax �= c2
sx , which then disallows Case 1 (38). Therefore, wx

may oscillate (see, e.g. [4,16,93]) or take any behaviour. However, one may choose
to fix U (ϕ) = constant, thereby satisfying Case 1 (38) (in principle). Practically
though, this choice leads to wx violating Case 1 (38), i.e. by becoming wx = −1 for
0 ≤ z � 100, in which case the perturbations equations become unsolvable numeri-
cally. Thus Case 1 (38) is ‘impractical’ for the QCDM.

In general, Case 1 (38) is unsatisfactory, given that it still depends on the behaviour
or choice of c2

sx ≥ 0.

Case 2: �x = 0

On the other hand, if the DE comoving density perturbation vanishes, i.e. �x =
δx − 3H (1 + wx )Vx = 0, then it implies that the correction to Eq. (1) is suitably
given by

δx = 3H (1 + wx )Vx , Vx �= 0, (43)

where consequently, �′
x = 0. Thus Eq. (43) implies that the homogeneous DE should

not have any density perturbations �x in comoving gauge, but may posses the frac-
tional density fluctuations δx which generate peculiar velocities with potentials Vx .

Note that given Eq. (25), Case 2 (43) implies that a homogeneous DE has zero
density perturbation in its rest frame, i.e. δρx |rf = ρ̄x�x = 0. This is the physi-
cal statement of Case 2 (43), which is a crucial statement—as it suggests that DE
homogeneity or inhomogeneity should be defined relative to the DE rest frame, i.e. by
whether or not its density perturbations vanish in its rest frame.
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In fact, Case 2 (43) readily holds for the QCDM when δsx = 0 [i.e. from Eq. (16)];
in which case we have

c2
axδρϕ = δpϕ = δρϕ + 3H (1 + wx )(c

2
ax − 1)ρ̄ϕVx , (44)

where by collecting terms with δρϕ to one side and dividing through by (c2
ax −1)ρ̄ϕ , we

get δx = 3H (1 +wx )Vx . We have used Eq. (42); ϕ̄′2 = a2(1 +wx )ρ̄ϕ , wx = p̄ϕ/ρ̄ϕ

with the perturbations Vx = −δϕ/ϕ̄′, δx = δρϕ/ρ̄ϕ and

δpϕ = δρϕ − 2U|ϕδϕ, (45)

δρϕ = a−2ϕ̄′ (δϕ′ − ϕ̄′�′) +U|ϕδϕ. (46)

Besides, by considering the definition of the intrinsic entropy perturbation specifically
for QCDM given by � [17], which relates to the entropy perturbation of Sect. 4 by
� = wx δsx/(c2

sx − c2
ax ) = �x—where the second equality follows from Eq. (24),

then it automatically follows that �x = 0 when we set � = 0 (which is given therein as
the adiabaticity condition for quintessence). Thus a clustering quintessence will have
�x �= 0 and a homogeneous quintessence will have �x = 0: both scenarios having
the same (background) equation of state parameter wx = (ϕ̄′2 −2a2U )/(ϕ̄′2 +2a2U ),
which varies (in general) by −1 ≤ wx ≤ 1.

It should be pointed out that the discussion on Eqs. (44)–(46) is not implying that
QCDM models are generically in the form of Case 2 (43), nor are we claiming that
there is any other particular DE model (or class of models) that naturally exists in
such form. Instead, Case 2 (43) is rather a proposition for a ‘general’ homogeneity
condition which may be applied to any (dynamical) DE model. (Notice that Case 2
(43) was arrived at—mainly via Eq. (37)—without assuming any DE models). Hence
the QCDM models are only used as a reference or an example of a particular, well
known DE model that Case 2 (43) may easily be applied to. Moreover, Case 2 (43)
applies to the CPL parametrization—which approximates (canonical) scalar-field DE
models.

In general, Case 2 (43) suggests that DE may be homogeneous only when the
observer is comoving with the source, irrespective of the DE background specifi-
cations. Thus a homogeneous DE may have perturbations, but only such that these
perturbations combine to cancel out in comoving gauge (and hence, in the DE rest
frame). Moreover, the matter power spectrum physically makes sense only when com-
puted in comoving gauge, since otherwise, it becomes gauge-dependent and varies with
the observers on large scales (see e.g. [78,94]). Thus Case 2 (43), being defined in
comoving gauge, can lead to (physical) observable implications in the power spec-
trum. Moreover, the effect of Case 2 (43) on the matter perturbations will be imposed
directly, rather than indirectly via the background evolutions—as in Case 1 (38). This
way, the imprint of the given homogeneous DE will bear directly on the growth of
structure.

An important advantage of Case 2 (43) over Case 1 (38) is that, unlike Case 1 (38),
Case 2 (43) permits an arbitrary background behaviour for the given DE: wx may take
any nature (constant or otherwise). This is important for models with either oscillatory
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Fig. 3 Plots at z = 0: the radial
(i.e. μ = 1) galaxy power
spectrum Pobs

g (solid lines) with
galaxy bias b = 1 and
magnification bias Q = 1; and
the matter power
spectrum—given by q2Pm
(dashed lines) with q = √

2.1.
The vertical line denotes the
horizon at the given redshift

or constant wx . A further advantage of Case 2 (43) is that it eliminates the dependence
of the perturbations on c2

sx [via Eq. (34)], given that �x = 0 or δx = 3H (1 +wx )Vx .
Hence the given homogeneous DE is completely independent of the choice or nature
of c2

sx (just like in �CDM). This further removes the risk that accompanies a bad
choice or wrong modelling of c2

sx . Moreover, it also reduces the parameter space that
needs to be constrained.

To illustrate Case 2 (43), we use only the generalized phenomenological model
(39) (ignoring the particular scenario of the QCDM). Hereafter we denote cluster-
ing DE by XCDM—given by Eq. (40), and denote the associated homogeneous DE
by homXCDM—which has the same background parameters as XCDM, but with
its perturbations being specified by Case 2 (43). We use csx = 1 for all numerical
computations (i.e. for XCDM).

We show in Fig. 3 the galaxy power spectrum Pobs
g with b = 1 and Q = 1, and

the associated matter power spectrum Pm : for XCDM and homXCDM, at z = 0. We
see that on sub-horizon scales, Pobs

g can be approximated by q2Pm , where q = √
2.1.

Moreover, unlike the results by Case 1 (38) (see Fig. 2), where the clustering DE
results in large-scale boost in the power spectra relative to the homogeneous DE, here
we see that although c2

sx = 1 for the XCDM, we get large-scale power suppression
in both Pobs

g and Pm relative to those for homXCDM (and �CDM)—i.e. the power
spectra for XCDM are lower than those for homXCDM, on horizon scales. This
implies that on horizon scales, the effect of c2

sx in XCDM is less significant and hence
the DE perturbations are able to cluster enough to suppress the growth of the matter
perturbations. On the other hand, the DE density perturbations vanish on all scales
for homXCDM (in comoving gauge); thus the matter perturbations are able to grow
more. Consequently, we get the relative boost in the power spectra in homXCDM.

Moreover, we see that the �CDM gives a sizeable deviation in Pobs
g relative to

homXCDM, on super-horizon scales. [Note however that in reality, this statement
depends on: (1) the cosmic variance on these scales, and (2) the error bars achievable by
a given survey experiment. But for the purpose of this work, we leave out (throughout
this work) any exact experimental aspects.] This deviation illuminates the sensitivity
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of GR corrections to changes in wx ; this sensitivity will be crucial in discriminating
the �CDM from a dynamical homogeneous DE model—with the future large scale
surveys. We also observe that, Pm of homXCDM is identical to that of �CDM on all
scales. This reveals that, the linear matter power spectrum is incapable of distinguishing
a dynamical homogeneous DE [given by Case 2 (43)] from �CDM, on large scales—
when their power spectra are normalized on small scales (at the given epoch).

In the intensity mapping of neutral hydrogen (HI), usually the individual radio
sources are not counted: only the diffuse 21 cm line emission of a number of sources
is detected [79]. Then given that the volume distortion in the observed density per-
turbation mainly leads to the ‘amplification’ of the number of sources, it is therefore
taken that the volume distortion does not contribute in HI intensity mapping: hence,
the magnification bias is often set to Q = 1, which results in the volume distortion
being cancelled out in the observed density perturbation. (Pure galaxy number count
surveys—in which mainly individual galaxies are counted—correspond to Q = 0:
thus eliminating the cosmic magnification of the galaxies.)

In Fig. 4 we illustrate the effect of the magnification biasQ. We show the ratios of the
radial (i.e. with μ = 1) galaxy power spectrum Pobs

g at the epoch z = 0.1, with galaxy
bias b = 1: for Q = −1, 0.5, 0.9, 1. In the top panel, we give the ratios for XCDM
relative to �CDM. Obviously, we see that the ratio of the two models varies with
different values of the magnification bias—which is not surprising since the relation
between the magnification bias and the power spectrum is non-trivial (see Eqs.(52)–
(54)). If, for example, Q had a simple scaling relation to Pobs

g , i.e. if Q appeared

in Pobs
g merely as a multiplicative factor, then the ratio between the given models

will remain the same for all values of Q. Moreover, the matter density perturbation
and velocity potential, and the gravitational potential (hence, the GR corrections) in
XCDM will inherently differ from those in �CDM: owing to the difference in the DE
perturbations, and the DE equation of state parameter. At low z, the matter overdensity
will be larger in �CDM than in XCDM on horizon scales. Consequently, for a given
Q, the amplitude of Pobs

g is larger in �CDM than in XCDM—thus the ratio of the
two models is less than unity (on horizon scales), as seen in the plots.

We see that the given models start to differentiate from each other on horizon scales,
whereas on scales well within the horizon they match each other—which is mainly
owing to our normalization (at z = 0). Furthermore, we observe that Pobs

g in XCDM is
consistently suppressed relative to that of �CDM as the magnification bias increases:
from Q = −1 to Q = 1. This implies that the value of the magnification bias can be
crucial in differentiating a clustering DE from the cosmological constant (at the given
z), given that the ratio between the models is sensitive to the values of Q. Moreover,
note that for a given value of Q, the large-scale amplitude of the power spectrum will
be higher in �CDM than in XCDM (as previously explained): � has no perturbations
to suppress the matter perturbations; moreover, the equation of state parameter of �

is weaker than wx (for dynamical DE)—noting that the bigger the equation of state
parameter, the stronger the DE.

Figure 4 (middle panel) also shows the ratio of Pobs
g , for homXCDM relative to that

of �CDM: for the given values of Q. The results are similar to those between XCDM
and �CDM (in the top panel), except that the amplitude of the ratios in the middle
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Fig. 4 The plots of the ratios of
Pobs

g (with μ = 1) at z = 0.1,
with galaxy bias b = 1. The
panels show the ratios for:
XCDM relative to �CDM (top),
homXCDM relative to �CDM
(middle) and XCDM relative to
homXCDM (bottom). The lines
denote: Q = −1 (solid),
Q = 0.5 (dashed), Q = 0.9
(dot-dashed) and Q = 1
(dotted). The vertical line
denotes the horizon at the given
redshift

panel are relatively higher—for a given value of Q. This is mainly a clustering effect
of DE: unlike in homXCDM, the large-scale clustering of DE in XCDM leads to the
suppression of the matter perturbations (and thus, GR corrections)—for the same wx ;
hence resulting in a relatively lower galaxy power prediction in the XCDM, on the
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Fig. 5 The plots of the ratios of
Pobs

g (with μ = 1) at z = 1,
with galaxy bias b = 1. Line
notations are as in Fig. 4

given scales. Moreover, just as in the top panel, the ratios of Pobs
g for homXCDM

relative to �CDM also suggest that the value of Q can be crucial in differentiating a
homogeneous DE from the cosmological constant.

The bottom panel of Fig. 4 shows the ratios of Pobs
g : for XCDM relative to

homXCDM. Similarly, we see that as Q increases, XCDM becomes consistently
suppressed relative to homXCDM, i.e. the bigger the value of the magnification bias,
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the wider the difference between the clustering DE and the homogeneous DE (and
vice versa). This suggests that future surveys that depend on cosmic magnification—
e.g. the HI intensity mapping (see e.g. [1,79,87], which correspond to Q = 1)—will
be useful in distinguishing or identifying a homogeneous DE from a clustering DE in
the large scale analysis, particularly on horizon scales. Moreover, we observe that the
ratios (in the three panels) grow with decreasing Q, suggesting that at a particular z,
GR effects become enhanced as cosmic magnification bias decreases.

Note that, as previously mentioned, the various ratios in the top and the middle
panels (Fig. 4), respectively, inherently contain the effect of the respective equation
of state parameters of the given models—i.e. for a value of Q, the difference between
successive ratios is not only owing to the effect of the perturbations, but also owing to
the background difference of the models (via wx ). However, in the bottom panel, the
ratios are resulting mainly from the difference in the perturbations of the models—in
the comoving gauge. The imprint of wx is effectively factored out, given that we use
the same wx for both XCDM and homXCDM; thus revealing mainly the consequence
of the Case 2 (43).

In Fig. 5, we repeat the plots of Fig. 4, but here at z = 1. We observe that, generally
(at the given z), on scales near the horizon the ratios maintain a consistent decrease
with increasing Q. However, in the top and the middle panels, respectively, the ratios
grow on super-horizon scales: with the ratio for Q = −1 being the lowest, and that for
Q = 1 being the highest. This may be attributed to the magnification effect (i.e. terms
proportional toQ, in Pobs

g ): which increases on large scales at z � 1, being boosted by
stronger wx > −1. (The clustering effect of DE generally diminishes with increasing
z—hence at high z the DE effect is mainly governed by the (background) equation of
state parameter.) Thus Pobs

g becomes enhanced for increasing Q. However, in the bot-
tom panel the effect of wx is factored out, and only the effect of Q is seen. Moreover,
Figs. 4 and 5 generally show that for a given magnification bias, the ratios are higher
on super-horizon scales at z = 1 than at z = 0.1; hence implying higher GR effects
at z � 1.

In general, unlike Case 1 (38) which further depends on the perturbation modes
being well within the horizon and c2

sx � 1, Case 2 (43) is a definitive condition for
DE homogeneity: once it is chosen, no other requirements are needed. Moreover,
apart from solving the problem posed by Eq. (1) and the elimination of c2

sx from
the equations, Case 2 (43) can also conveniently admit particularly wx = −1 while
still allowing the DE perturbations. Thus Case 2 (43) is more robust, and is hereby
considered as the right DE homogeneity condition.

6 Conclusion

We have shown analytically that the DE homogeneity assumption δx = 0 = Vx (with
the evolution equations being discarded) violates the self-consistency of the equations
of general relativity. We showed in Newtonian gauge that, unless the equation of
state parameter of the given homogeneous DE is strictly wx = −1, this assumption
introduces a contradiction in the equations of general relativity. In essence, provided
wx �= −1, DE must have perturbations.
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We have proposed a correct homogeneity condition for DE, which is valid irre-
spective of the nature of the DE equation of state parameter or spacetime gauge—by
supposing that the DE intrinsic entropy perturbation vanishes: which leads to the van-
ishing of the DE overdensity in comoving gauge (and hence, in the DE rest frame).
Thus we correct the wrong homogeneity assumption (δx = 0 = Vx ) by the follow-
ing: δx = 3H (1 + wx )Vx , with Vx �= 0. A homogeneous DE hence, is given not as
one devoid of perturbations, but rather as one with vanishing density perturbations in
comoving gauge—i.e. one with zero density perturbations in its rest frame. Such kind
of DE is not impractical.

Using a phenomenological DE model, we investigated the consequence of our
approach in the observed galaxy power spectrum. By normalizing the models at the
present epoch on small scales, we found that: a clustering DE, a homogeneous (dynam-
ical) DE and the cosmological constant, are each distinguishable from the others in
the observed galaxy power spectrum, on horizon scales—suitably for high cosmic
magnification bias.

Moreover, the results show that for a given magnification bias, GR effects in the
galaxy power spectrum become enhanced with increasing redshift.
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Appendix 1: Adiabatic initial conditions

All evolutions in this work are initialized at the photon decoupling epoch, z = zd .
We use adiabatic initial conditions, which follow from the vanishing of the relative
entropy perturbation [1,17,44–47], given at zd by

δx = (1 + wx ) δm . (47)

By using that at zd , we have
Vx = Vm, (48)

then we obtain, i.e. given (47), that

�x = (1 + wx )�m . (49)

These equations together with the Einstein de Sitter initial condition �′(zd) = 0, lead
to the initial perturbations

�m(k) = −2k2

3 (1 + �xwx )H 2 �d(k), (50)

Vm(k) = −2

3 (1 + �xwx )H
�d(k), (51)

where we take �d = �(zd) as given by [1].
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Appendix 2: The galaxy power spectrum

In order to adequately account for the correct galaxy distribution on large scales,
we use the observed galaxy density perturbation [1,52,54,55,78,81] to compute that
galaxy power spectrum Pobs

g , which is approximated in the flat-sky limit (in Fourier
space) by [43,54]

Pobs
g

Pm
=

(
b + f μ2

)2 + 2
(
b + f μ2

) A

x2 + A 2

x4 + μ2 B
2

x2 , (52)

where Pm is the matter power spectrum [1,43]; μ is the cosine of the angle between
the line of sight and the wavevector k, with k = |k| being the wavenumber; x ≡ k/H
is a dimensionless parameter, and

A = x2
[

4Q − be − 1 + H ′

H 2 + 2
(1 − Q)

rH
+ �′

H �

]
�

�m

+ (3 − be) f, (53)

B = −
[
be − 2Q − H ′

H 2 − 2
(1 − Q)

rH

]
f, (54)

where f ≡ k2Vm/(ΔH �m) (see also [43]). Note that in �CDM, this f reduces to the
standard linear growth rate of matter energy density perturbation. We have neglected
all integral terms, and assumed constant comoving galaxy number density—thus the
galaxy evolution bias be = 0; r is the comoving distance at the observed z.
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