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Abstract
In this paper, we define meta-Cayley graphs on dihedral groups. We fully determine
the automorphism groups of the constructed graphs in question. Further, we prove
that some of the graphs that we have constructed do not admit subgroups which act
regularly on their vertex set; thus proving that they cannot be represented as Cayley
graphs on groups.
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1 Introduction

Through computational observations, it has been conjectured by Ivanov and Praeger
[6] that

lim
n→∞

cay(n)

vtr(n)
= 1,

where vtr(n) and cay(n) denote the number of isomorphism types of vertex-transitive
and Cayley graphs on groups, respectively, with order at most n ≥ 1. In other words,
it is conjectured that the majority of vertex-transitive graphs are Cayley on groups.
That is, the majority of vertex-transitive graphs can be represented by a group and a
Cayley set. Much earlier, in [8] Marušič asked for which positive integers n does there
exist a vertex-transitive graph on n vertices which is not Cayley on groups. This means
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that there are indications that vertex-transitive graphs that are non-Cayley on groups
are a rarity in occurrence. The determination of vertex-transitive graphs that are non-
Cayley on groups has thus raised a lot of attention. There has been notable success in
the construction of such graphs; see, for instance, [1,2,5,7,9,10,16,18]. Henceforth, we
will refer to vertex-transitive graphs which are non-Cayley on groups by the acronym
VTNCGs introduced by Watkins [18].

A graph Γ = (V , E) is a set of vertices V and an irreflexive and symmetric
relation E on V whose elements are called the edges of the graph and denoted [x, y],
if e = [x, y] ∈ E . For e = [x, y] ∈ E , it is said that vertices x and y are adjacent.
A sequence of vertices x0, x1, . . . , xk such that each xi and xi+1 are adjacent and all
vertices besides xk are distinct, is called a path. If x0 = xk then the path is called a
cycle. An automorphism g of a graph Γ = (V , E) is a permutation of the vertex set
V such that eg ∈ E whenever e ∈ E . The set of automorphisms of a graph Γ form
a group under composition and is denoted AutΓ . A graph Γ is vertex-transitive if
AutΓ acts transitively on V . Let G be a group and S a subset of G such that 1G /∈ S
and s−1 ∈ S whenever s ∈ S. Such a set S is called a Cayley set. Then the Cayley
graph on the group G with respect to S, Cay(G, S), is the graph with the vertex set G
such that [x, y] is an edge if and only if y = xs for some s in S. For a fixed element
g ∈ G, it is easy to see that the map λg : G −→ G defined by λg(a) = ga for any
a ∈ G defines an automorphism of the graph Cay(G, S). Moreover, it is easy to see
that the set of left translations ΛG := {λg : g ∈ G} acts transitively on Cay(G, S) so
that Cayley graphs on groups are vertex-transitive.

A groupoid (A, ∗) is a set A endowed with a binary operation ∗ : A× A → A. It is
oftenwritten A instead of (A, ∗). In the finite case, a left[right] loop is a groupoidwhich
admits left[right] cancellation and has an identity. If it is both left and right cancellative
and has an identity, then it is called a loop. The notion of Cayley graphs which are
defined on groups has been generalised to groupoids in [12] as follows. A subset S
of a groupoid A is said to be Cayley if a /∈ aS for any a ∈ A and a ∈ (as)S for any
a ∈ A and s ∈ S. The corresponding Cayley graph on the groupoid Γ = Cay(A, S)

has vertex set V (Γ ) = A and edge set E(Γ ) = {[a, as] : a ∈ A, s ∈ S}.
A subset S of a groupoid A is said to be quasi-associative if for every x, y ∈ A we

have that

x(yS) = (xy)S.

The concept of quasi-associative subsets was introduced by Gauyacq [4] who termed
them right associative. As elsewhere [12–15], we will continue to call them quasi-
associative. Cayley graphs on loops with quasi-associative Cayley subsets are termed
quasi-Cayley. In this general setting, it is easy to see that left translations are automor-
phisms of Cay(A, S) whenever A is a left loop and S is quasi-associative. Moreover,
just as in groups, the set ΛA := {λa : a ∈ A} acts regularly on A; except that the set
is not necessarily a group under composition.

In [13], it has been shown that every vertex-transitive graph is isomorphic to a
Cayley graph on a left loop with respect to a quasi-associative Cayley set. In view of
this, Marušič’s question translates to finding Cayley graphs on left loops with respect
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to quasi-associative Cayley sets which cannot be represented as Cayley graphs on
groups.

This paper presents vertex-transitive graphs of order n = 4m which cannot be
represented on groups.We construct loops by defining a semi-direct product on groups
A and A′ with the provision that the twisting map f : A → AutA′ is not necessarily a
group homomorphism. Instead, it is only required that themap f satisfies a ratherweak
condition to obtain loops. In addition, the crux of the matter is to determine subsets of
the product that are quasi-associative and Cayley to construct vertex-transitive graphs.
Such graphs have been calledmeta-Cayley graphs [15]. In order to prove that graphs of
this class are non-Cayley on groups, we first completely determine their automorphism
groups. We will then apply Sabidussi’s theorem [17]. Sabidussi’s theorem states that
a graph is a Cayley graph on a group if and only if the automorphism group contains
a subgroup which acts regularly on the vertex set.

The rest of the paper is organised as follows. In Sect. 2, we present loops as semi-
direct products of groups on dihedral groups and outline our approach in finding the
class of VTNCGs. Further we construct meta-Cayley graphs. In Sect. 3, we fully
determine the automorphism groups of our constructed graphs and apply Sabidussi’s
theorem.

2 Loops and Their CorrespondingMeta-Cayley Graphs

For groups A and A′ and mapping f : A → AutA′, we denote a semi-direct product
of A and A′ as A × f A, where the elements of A × f A are of the form (a, fa(a′))
with a ∈ A and a′ ∈ A′. As alluded to in the introduction, a semi-direct product on
two groups whose twisting map satisfies a weak condition to obtain a loop and not a
group were introduced in [15] in the following way.

Proposition 1 [15] Let A and A′ be groups. Let f be a mapping f : A → AutA′ such
that f (e) is the identity map on A′, where e is the identity element of A. Denote f (a)

as fa and define Q by Q = A × f A′. Then Q is a loop.

Again, as was also alluded to earlier, determining quasi-associative Cayley subsets
is at the crux of thematter. It has been observed in [15] that sets satisfying the following
are quasi-associative Cayley subsets.

Proposition 2 [15] Let A and A′ be groups and Q be as in Proposition 1. For each
x ∈ A, let Lx be a (possibly empty) subset of A′ such that

(a) e′ /∈ Le where e and e′ are the identity elements of A and A′ respectively;
(b) Lx−1 = ( f −1

x [Lx ])−1 for any x ∈ A;
(c) fa fb[Lx ] = fab[Lx ] for any a, b ∈ A.

Let U be the subset of Q defined by

U :=
⋃

x∈A

x × Lx .

Then U is a quasi-associative Cayley subset of Q.
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With Q and U as in Propositions 1 and 2 above, the resultant graph Cay(Q,U ) is
then necessarily vertex-transitive. Formally, the graphs we consider are defined in the
following way.

Definition 1 Let Q be as in Proposition 1 and U be as in Proposition 2. We call U a
meta-Cayley subset of Q and the graph Cay(Q,U ) is called a meta-Cayley graph.

In this paper, we consider the case A = Z2 and A′ = Dn . To facilitate our discus-
sion, we will represent the dihedral group Dn as Z2 ×g Zn where g : Z2 → AutZn

defined by gx (y) = (−1)x y. Hence as is customary, elements of the form (0, y) rep-
resent rotations and elements (1, y) represent reflections. The binary operation on the
dihedral group is defined as

(x, y) ⊕ (x ′, y′) = (
x + x ′, y + gx (y

′)
)
.

To define our loops, we have to deal with two twisting maps: g to define dihedral
groups on the set Z2 × Zn and f to define loops. Now, let r be an integer such that
(n, r) = 1. We define f by fx (y, z) = (y, r x z). For such an r , it is a classical result
that fx is an automorphism on Dn . Note that any automorphism will respect the first
co-ordinate since any automorphism on Dn preserves both the set of reflections and
rotations (see Miller [11]).

The groupoid is therefore fully defined as Q(n, r) = Z2 × f (Z2 ×g Zn) with
(n, r) = 1 and the binary operation by

(x, (y, z)) ⊕ (
x ′, (y′, z′)

) = (
x + x ′, (y, z) ⊕ fx

(
y′, z′

))

= (
x + x ′, (y, z) ⊕ (

y′, r x z′
))

= (
x + x ′,

(
y + y′, z + gy

(
r x z′

)))

= (
x + x ′,

(
y + y′, z + (−1)yr x z′

))

with addition modulo 2 in the first and second co-ordinates and modulo n in the
third co-ordinate. Henceforth we will not explicitly state this. For brevity, we denote
(x, (y, z)) as (x, y, z) and (x, y, z) ⊕ (x ′, y′, z′) as (x, y, z)(x ′, y′, z′).

Proposition 3 Let (n, r) = 1 and Q(n, r) = Z2 × f (Z2 ×g Zn) and define a binary
operation on Q(n, r) by (x, y, z)(x ′, y′, z′) = (x + x ′, y+ y′, z+ (−1)yr x (z′)). Then
Q(n, r) is a loop with (0, 0, 0) as the identity element.

Proof Immediate.

Even with this weak twisting map, it may happen that Q(n, r) is a group. Let us
immediately deal with this issue by determining under which conditions is Q(n, r) a
group.

Proposition 4 Let n, r be integers and Q(n, r) = Z2 × f (Z2 ×g Zn). Define a binary
operation on Q(n, r) by (x, y, z)(x ′, y′, z′) = (x + x ′, y+ y′, z+ (−1)yr x (z′)). Then
Q(n, r) is a group if and only if r2 ≡ 1 (mod n).
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Proof In view of Proposition 3, it is enough to show associativity. Now, on one hand
((x0, x1, x2)(y0, y1, y2))(z0, z1, z2) simplifies to (x0 + y0 + z0, x1 + y1 + z1, x2 +
(−1)x1r x0 y2 + (−1)x1+y1r x0+y0 z2) and on the other (x0, x1, x2)((y0, y1, y2)(z0, z1,
z2)) simplifies to (x0 + y0 + z0, x1 + y1 + z1, x2 + (−1)x1r x0(y2 + (−1)y1r y0 z2)).

So for associativity to hold, it is required that we have

x2 + (−1)x1r x0(y2) + (−1)x1+y1r x0+y0 z2 = x2 + (−1)x1r x0
(
y2 + (−1)y1r y0 z2

)

⇔ (−1)x1r x0 y2 + (−1)x1+y1r x0+y0 z2 = (−1)x1r x0 y2 + (−1)x1r x0(−1)y1r y0 z2

⇔ (−1)x1+y1r x0+y0 z2 = (−1)x1r x0(−1)y1r y0 z2.

Now, (−1)x1+y1 = (−1)x1(−1)y1 for all possible values of x1 and y1. If either x0 = 0
or y0 = 0 then it is clear that r x0+y0 = r x0r y0 . If x0 = y0 = 1 however, then for
the equation to hold we require that r1+1 = r1r1, which is true if and only if r2 ≡ 1
(mod n). Therefore, Q(n, r) is a group if and only if r2 ≡ 1 (mod n).

In view of Proposition 4 we do not consider graphs where r2 ≡ 1 (mod n). We
will therefore focus on graphs where r2 ≡ −1 (mod n), as this would also allow us
to find a general form of quasi-associative Cayley sets. We also note that r2 ≡ −1
(mod n) implies (n, r) = 1, a fact we use implicitly going forward. As mentioned,
central to the construction of the graphs is the identification of these quasi-associative
Cayley sets. In the loops Q(n, r) we consider, they are in the following form.

Lemma 1 Let r ∈ Zn such that r2 ≡ −1 (mod n). Let Q(n, r) = Z2 × f (Z2 ×g Zn)

with binary operation defined by (x, y, z)(x ′, y′, z′) = (x+x ′, y+y′, z+(−1)yr x (z′))
and let U be a subset of Q(n, r). Then U is a meta-Cayley subset of Q(n, r) if and
only if

(i) (0, 0, 0) /∈ U,
(ii) (0, 0, i) ∈ U implies (0, 0,−i) ∈ U,
(iii) (0, 1, i) ∈ U implies (0, 1,−i) ∈ U,
(iv) (1, 0, i) ∈ U implies (1, 0,−i), (1, 0, ri), (1, 0,−ri) ∈ U, and
(v) (1, 1, i) ∈ U implies (1, 1,−i), (1, 1, ri), (1, 1,−ri) ∈ U.

Proof We require sets L0 and L1 that satisfy the conditions (a), (b) and (c) of Propo-
sition 2.

(a) By (i), (0, 0, 0) /∈ U .
(b) L0−1 = f −1

0 [L−1
0 ] which implies that L0 = L−1

0 . Now (0, i)−1 = (0,−i) and
(1, i)−1 = (1, i) in Z2 ×g Zn . Therefore (0, i) ∈ L0 implies (0,−i) ∈ L0, which
means that (0, 0, i) ∈ U implies (0, 0,−i) ∈ U .
L1−1 = f −1

1 [L1]−1 which implies that L1 = f −1
1 [L1]−1. Now f −1

1 ((0, i)−1) =
f −1
1 ((0,−i)) = (0, ri). Therefore (0, i) ∈ L1 implies (0, ri), (0,−i), (0,−ri) ∈
L1. Similarly, (1, i) ∈ L1 implies (1,−ri), (1,−i), (1, ri) ∈ L1. This means
that (1, 0, i) ∈ U implies (1, 0, ri), (1, 0,−i), (1, 0,−ri) ∈ U and (1, 1, i) ∈ U
implies (1, 1, ri), (1, 1,−i), (1, 1,−ri) ∈ U .

(c) Since f0 is identity map we need only consider when a = b = 1. In which case,
we have f1 f1[Lx ] = f0[Lx ]. Therefore ( j, i) ∈ Lx implies that f1 f1( j, i) =
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( j,−i) ∈ Lx . This means that ( j, i) ∈ U implies ( j,−i) ∈ U . In particular,
(0, 1, i) ∈ U implies (0, 1,−i) ∈ U .

Now that we have identified possibilities of meta-Cayley subsets, let us discuss the
nature of the adjacency that may ensue on these graphs. To facilitate the discussion
we first partition V (Cay(Q(n, r),U )) into four natural sets as follows. Define

V00 := {(0, 0, i) : i ∈ Zn}; (1)

V10 := {(1, 0, i) : i ∈ Zn}; (2)

V11 := {(1, 1, i) : i ∈ Zn}; (3)

V01 := {(0, 1, i) : i ∈ Zn}. (4)

Now, we note that we have the following admissible adjacencies.

Lemma 2 Let Q(n, r) be as in Lemma 1 and let U be a meta-Cayley subset of Q(n, r).
Let V (Cay(Q(n, r),U )) be partitioned as in (1)–(4). In Cay(Q(n, r),U )

(a) U contains element(s) of the form (1, 0, i) if and only if

(i) every vertex in V00 is adjacent to some vertex in V10, and
(ii) every vertex in V01 is adjacent to some vertex in V11.

(b) U contains element(s) of the form (1, 1, i) if and only if

(i) every vertex in V00 is adjacent to some vertex in V11, and
(ii) every vertex in V01 is adjacent to some vertex in V10.

(c) U contains element(s) of the form (0, 1, i) if and only if

(i) every vertex in V00 is adjacent to some vertex in V01, and
(ii) every vertex in V10 is adjacent to some vertex in V11.

(d) U contains element(s) of the form (0, 0, i) if and only if every vertex is adjacent
to some vertex in the same set in the partition.

Proof Immediate.

It is not difficult to see that for disconnected vertex-transitive graphs, each com-
ponent is necessarily vertex-transitive and they are isomorphic to each other. Further,
for a disconnected VTNCG, each component is itself a connected VTNCG. For this
reason, in the pursuit of VTNCGs, we generally only consider the connected case. We
carefully choose U so that Cay(Q(n, r),U ) is connected. In view of Lemmas 1 and
2, we have the following.

Lemma 3 Let U = {(1, 0, j), (1, 0,− j), (1, 0, r j), (1, 0,−r j), (0, 1, i), (0, 1,−i)}
be a meta-Cayley subset of Q(n, r) where i and j are fixed elements in Zn, Q(n, r) is
as in Lemma 1, n is odd and (i, n) = 1. Then Cay(Q(n, r),U ) is connected.

Proof By Lemma 2, we have that every vertex in V00 is adjacent to some vertex in V10,
every vertex in V01 is adjacent to some vertex in V11, every vertex in V00 is adjacent
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Fig. 1 Cay(Q(5, 2),U )

to some vertex in V01 and every vertex in V10 is adjacent to some vertex in V11. Since
(i, n) = 1, we have that set of edges between elements of V00 and elements of V01
form a cycle. Since (i, n) = 1 and (r , n) = 1, we have that set of edges between
elements of V10 and elements of V11 form a cycle. Therefore, there exists a connecting
path between any two vertices of Cay(Q(n, r),U ).

Proposition 5 Let U be as in Lemma 3 and Q(n, r) be as in Lemma 1 with i =
j . Let U ′ = {(1, 0, 1), (1, 0,−1), (1, 0, r), (1, 0,−r), (0, 1, 1), (0, 1,−1)}. Then
Cay(Q(n, r),U ) ∼= Cay(Q(n, r),U ′).

Proof It can easily be checked that the mapping γ : (x, y, z) → (x, y, zi) is an
isomorphism from Cay(Q(n, r),U ′) to Cay(Q(n, r),U ).

In view of the above discussion, we consider graphs Cay(Q(n, r),U ) where

U = {(1, 0, 1), (1, 0,−1), (1, 0, r), (1, 0,−r), (0, 1, 1), (0, 1,−1)} ,

n is odd and r2 ≡ −1 (mod n), recalling that consequently (n, r) = 1 as well. Note
thatU has four elements of the form (1, 0, i) and two of the form (0, 1, i). Figure 1 is
the graph Cay(Q(5, 2),U ).

3 The Automorphism Groups of Cay(Q(n, r),U)

Having defined the meta-Cayley graphs Cay(Q(n, r),U ), in this section we fully
determine the automorphism groups of the graphs. At the end of the section, we will
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show that the automorphism groups of the graphs do not admit any subgroup which
acts regularly on vertex sets. For brevity, we first define notation for our graphs.

Definition 2 Let Q(n, r) = Z2 × f (Z2 ×g Zn) be a loop with binary operation
(x, y, z)(x ′, y′, z′) = (x+x ′, y+y′, z+(−1)yr x (z′))where n, r are integers such that
n is odd and r2 ≡ −1 (mod n). Let U = {(1, 0, 1), (1, 0,−1), (1, 0, r), (1, 0,−r),
(0, 1, 1), (0, 1,−1)}. We denote the vertex-transitive graph Cay(Q(n, r),U ) as
Γ (n, r).

To facilitate the determination of the automorphism groups, we partition the edge
set E in the following way. This partition respects the vertex set partition from the
previous section.

L := {[u, v] ∈ E : u ∈ V00, v ∈ V01} ; (5)

R := {[u, v] ∈ E : u ∈ V10, v ∈ V11} ; (6)

M1 := {[u, v] ∈ E : u ∈ V00 and v ∈ V10} ; (7)

M2 := {[u, v] ∈ E : u ∈ V11 and v ∈ V01} . (8)

This partition will assist us to determine the orbits of the automorphism groups of
the graphs. Further to this, we also look at the set

M := M1 ∪ M2. (9)

Lemma 4 Let L, R and M be as defined in (5)–(9). If γ ∈ AutΓ (n, r) fixes any of
L,R or M set-wise, then it fixes all three or fixes M and interchanges L and R.

Proof Suppose γ fixes R set-wise. Any edge in L is incident to four edges in M and
one edge in L at either end vertex. Let γ map some edge in L onto some edge in M .
Then, of the five edges incident at one end, two have to be mapped to edges in R,
since every edge in M is incident to two edges in R. This contradicts that R is fixed.
Therefore, if R is fixed, then L and M are also fixed. A similar argument holds if L is
fixed.

Suppose γ fixes M set-wise. Now, the edges in L and edges in R induce 2n-cycles.
Thus, if L and R are not fixed or interchanged, then we will have some edge in L
being incident to some edge in R, which does not occur. This completes the proof.

Our first consideration is finding (AutΓ )L,R,M , the set stabiliser of L, R and M . As
mentioned in the proof of Lemma 4, the edges of L and R form 2n-cycles. Since the
automorphism group of a cycle consists only of rotations and reflections, we define
the following:

ρ : (x, y, z) → (x, y + 1, z + 1); (10)

δ : (x, y, z) → (x, y,−z). (11)

Note that ρ represents rotations on the 2n−cycle of L with ρ2n = 1 and δ represents
a reflection on L with δ2 = 1. It is easily checked that ρ, δ ∈ AutΓ (n, r). We now
determine the set-stabilizer of L ,R,M .
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Lemma 5 Let L, R and M be as defined in (5)–(9). Let (AutΓ (n, r))L,R,M be the set
stabiliser of L, R, M inAutΓ (n, r), and ρ, δ be the maps defined as in (10) and (11).
Then (AutΓ (n, r))L,R,M = 〈ρ, δ〉.
Proof Any automorphism in (AutΓ (n, r))L,R,M must preserve the 2n-cycles induced
by the edges in L and R.All the automorphisms which preserve the induced 2n-cycles
are contained in 〈ρ, δ〉. Therefore (AutΓ (n, r))L,R,M = 〈ρ, δ〉.

Let us now consider automorphisms in (AutΓ (n, r))M which interchange L and
R. By Lemma 4 we will then have entirely determined (AutΓ (n, r))M . We define
another mapping

α : (x, y, z) → (x + 1, y, r z). (12)

It can easily be checked that α ∈ (AutΓ (n, r))M . We note also that α4 = 1 and
α2 = δ. The following Lemma will be important in determining (AutΓ (n, r))M .

Lemma 6 Let L, R and M be as defined in (5)–(9). Let γ ∈ (AutΓ (n, r))M that
interchanges L and R. If γ (0, y, z) = (1, y′, z′) then γ (1, y, z) = (0, y′, z′).

Proof If γ (0, y, z) = (1, y′, z′) then γ (0, y + 1, z + 1) = (1, y′ + 1, z′ + r) and
γ (0, y+ 1, z− 1) = (1, y′ + 1, z′ − r), or γ (0, y+ 1, z+ 1) = (1, y′ + 1, z′ − r) and
γ (0, y+1, z−1) = (1, y′+1, z′+r). Since γ preserves the cycles formed by the edge
sets L and R, we must consequently have that γ (0, y + i, z + i) = (1, y′ + i, z′ + ir)
or γ (0, y + i, z + i) = (1, y′ + i, z′ − ir). In which case, the 4-cycle

(0, y + 1, z)(0, y, z + 1)(1, y, z)(0, y, z − 1)

is mapped to

(1, y′ + 1, z′)(1, y′, z′ ± r)γ (1, y, z)(1, y′, z′ ± r).

Therefore, we must have γ (1, y, z) = (0, y′, z′).

Lemma 7 Let ρ, δ and α be as in (10), (11) and (12). Then (AutΓ (n, r))M = 〈ρ, α〉.
Proof Let γ ∈ (AutΓ (n, r))M interchange L and R. By Lemma 6, we can compose γ

with some power of ρ such that (1, 0, 0) and (0, 0, 0) are interchanged. We may also
compose with δ such that (0,1,1) is mapped to (1,1,r). It then follows that (0, i, i) is
mapped to (1, i, ir) and (1, i, i) is mapped to (0, i, ir). Thus, we have that γρkδh = α

for some integers k and h. Since α2 = δ, we have that (AutΓ (n, r))M = 〈ρ, α〉.
There may exist automorphisms which do not fix M . In order to fully determine

AutΓ (n, r), we need to identify these automorphisms if they exist. We will need the
following lemma.

Lemma 8 Γ (n, r) is edge-transitive if and only if (AutΓ (n, r))M is a proper subgroup
of AutΓ (n, r).
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Proof It is enough to show that Γ (n, r) is edge-transitive if (AutΓ (n, r))M is a proper
subgroup of (AutΓ (n, r)).

(AutΓ (n, r))M has two edge orbits. If AutΓ (n, r) is not edge-transitive then it
has at least two edge orbits. Therefore, AutΓ (n, r) coincides with (AutΓ (n, r))M ,
contradicting the fact that (AutΓ (n, r))M is a proper subgroup of AutΓ (n, r).

We now determine when Γ (n, r) is edge-transitive. Let C be a cycle in Γ (n, r).
As in [3], we define the following parameters:

l(C) := number of edges in C ∩ L;
r(C) := number of edges in C ∩ R;
m(C) := number of edges in C ∩ M .

Let Δ be the set of all 4-cycles in Γ (n, r), and further define

L4 :=
∑

C∈Δ

l(C); (13)

R4 :=
∑

C∈Δ

r(C); (14)

M4 :=
∑

C∈Δ

m(C). (15)

Lemma 9 Let L4, R4 and M4 be as in (13), (14) and (15). Then 4L4 = 4R4 = M4 if
(AutΓ (n, r))M �= AutΓ (n, r) .

Proof By Lemma 8,Γ (n, r) is edge-transitive. Let e be an edge involved in k 4-cycles.
By edge-transitivity, every edge is involved in k 4-cycles. Since we have 2n edges in L ,
2n edges in R and 8n edges in M , we have that L4 = 2nk, R4 = 2nk and M4 = 8nk.
Therefore, 4L4 = 4R4 = M4.

In view of Lemma 9, we will now count the number of 4-cycles in Γ (n, r). We
distinguish between different types of 4-cycles for ease of counting. We therefore
partition Δ, the set of all 4-cycles in Γ (n, r), as follows:

A1 := {C ∈ Δ : |C ∩ M1| = 4}; (16)

A2 := {C ∈ Δ : |C ∩ M2| = 4}; (17)

B1 := {C ∈ Δ : |C ∩ M1| = 2 and |C ∩ R| = 2}; (18)

B2 := {C ∈ Δ : |C ∩ M2| = 2 and |C ∩ R| = 2}; (19)

D1 := {C ∈ Δ : |C ∩ M1| = 2 and |C ∩ L| = 2}; (20)

D2 := {C ∈ Δ : |C ∩ M2| = 2 and |C ∩ L| = 2}; (21)

E := {C ∈ Δ : |C ∩ M | = 2 and |C ∩ L| = 1 and |C ∩ R| = 1}. (22)
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We also define the sets A, B and D as:

A := A1 ∪ A2; (23)

B := B1 ∪ B2; (24)

D := D1 ∪ D2, (25)

so that A, B, D and E form a partition of Δ.

Lemma 10 Let L4, R4 and M4 be as in (13), (14) and (15). Then 4R4 = 4L4 �= M4
in Γ (n, r) for any n.

Proof Let A1, A2, B1, B2, D1, D2, E, A, B and D be as in (16)–(25).
The vertex (0, 0, z) in V00 is involved in the following four 4-cycles in A1:

1. (0, 0, z)(1, 0, z − r)(0, 0, z − r − 1)(1, 0, z − 1);
2. (0, 0, z)(1, 0, z − 1)(0, 0, z − 1 + r)(1, 0, z + r);
3. (0, 0, z)(1, 0, z + 1)(0, 0, z + 1 − r)(1, 0, z − r);
4. (0, 0, z)(1, 0, z + r)(0, 0, z + r + 1)(1, 0, z + 1).

The second and fourth vertices in the above 4-cycles cover all four of the vertices
adjacent to (0, 0, z) in V10. Only if the third co-ordinate in any of the third vertices
above equals an element in {z − 2, z − 2r , z + 2, z + 2r} does there exist another
4-cycle in A1 involving (0, 0, z). We solve the following equations to find possible
instances where such exceptions exist. By considering parities, it is only these eight
equations that we need to consider:

(i) 2 = −r − 1 ⇒ −r = 3 ⇒ −1 = 9 ⇒ n = 5;
(ii) 2 = r − 1 ⇒ r = 3 ⇒ −1 = 9 ⇒ n = 5;
(iii) 2 = −r + 1 ⇒ r = −1, which is impossible;
(iv) 2 = r + 1 ⇒ r = 1, which is impossible;
(v) 2r = −r − 1 ⇒ 3r = 1 ⇒ −9 = 1 ⇒ n = 5;
(vi) 2r = r − 1 ⇒ r = −1, which is impossible;
(vii) 2r = −r + 1 ⇒ 3r = 1 ⇒ −9 = 1 ⇒ n = 5;
(viii) 2r = r + 1 ⇒ r = 1, which is impossible.

Thus the only exceptional case is when n = 5. For now, we consider only n > 5.
If each vertex in V00 is involved in four 4-cycles in A1 then we have 4n 4-cycles

in A1. However, in the 4n 4-cycles we would have counted each cycle twice since
each (0, 0, z) will appear again as the third vertex in the consideration of some other
(0, 0, z′). Thus, we have 2n 4-cycles in A1. It is clear that the order of A1 equals the
order of A2, so that the order of A is 4n.

(0, 0, z) is involved in only one cycle in B1:

1. (0, 0, z)(1, 0, z + r)(1, 1, z)(1, 0, z − r).

so that the order of B1 is n. It is easy to see that the order of B1 equals the order of
B2, so that the order of B is 2n. Similarly, the order of D is 2n.
(0, 0, z) is involved in eight 4-cycles in E :
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Table 1 R4, L4 and M4 for
n > 5

Set 4-cycles L4 R4 M4

A 4n 0 0 16n

B 2n 0 4n 4n

D 2n 4n 0 4n

E 8n 8n 8n 16n

All 16n 12n 12n 40n

1. (0, 0, z)(0, 1, z − 1)(1, 1, z)(1, 0, z + r);
2. (0, 0, z)(0, 1, z − 1)(1, 1, z)(1, 0, z − r);
3. (0, 0, z)(0, 1, z − 1)(1, 1, z − 1 + r)(1, 0, z − 1);
4. (0, 0, z)(0, 1, z − 1)(1, 1, z − 1 − r)(1, 0, z − 1);
5. (0, 0, z)(0, 1, z + 1)(1, 1, z + 1 + r)(1, 0, z + 1);
6. (0, 0, z)(0, 1, z + 1)(1, 1, z + 1 − r)(1, 0, z + 1);
7. (0, 0, z)(0, 1, z + 1)(1, 1, z)(1, 0, z + r);
8. (0, 0, z)(0, 1, z + 1)(1, 1, z)(1, 0, z − r).

Similar to cycles in A, we determine possible exceptional cases. In this case, an
exception will occur if an element of {z − 2, z − 2r , z + 2, z + 2r} equals an element
of {z− r − 1, z− 1+ r , z+ 1− r , z+ r + 1, z}. This is the same as before except that
we now need to consider when an element of {z − 2, z − 2r , z + 2, z + 2r} equals z.
Clearly, this is impossible. Thus we have that the order of E is 8n.

Table 1 summarises R4, L4 and M4 for A, B, D and E in Γ (n, r) when n > 5.
Let us now consider the case n = 5. If n = 5 then we can have r = 2 or r = 3.

However, it turns out that Γ (5, r) is the same graph whether r = 2 or r = 3. This is
because we have (1, 0, r), (1, 0,−r) ∈ U , and 2 ≡ −3 (mod 5). Thus we need only
consider when r = 2.

We observe that each |Vxy | = 5.We count the 4-cycles in A. Each vertex (x, y, i) is
adjacent to four out of five vertices in V(x+1)y . Without loss of generality, we consider
the vertex (0, 0, 0) and count the 4-cycles in A which (0, 0, 0) is involved in. Starting
at (0, 0, 0) we have four choices for the second vertex (1, 0, z1). We then have three
choices for the third vertex (0, 0, z2) sincewecannot trace back to (0, 0, 0)or (0, 0, z2).
For the fourth vertex we cannot trace back to (1, 0, 0), (1, 0, z1) or (1, 0, z2) so that
we have two choices for the fourth vertex (1, 0, z3). Therefore, taking double counting
into account, (0, 0, 0) is involved in 4×3×2

2 = 12 type A 4-cycles. The order of A is
then 12 × 10 = 120.

We now count 4-cycles in B and D. Again we consider (0, 0, 0). There are exactly
three vertices in V11 which have in common with (0, 0, 0) two incident vertices in V01.
Similarly, the same applies for V10. Therefore, (0, 0, 0) is involved in three 4-cycles
in B and three in D. By similar arguments, the order of B and D equals 20×3

2 = 30.
Considering now type E 4-cycles. There exist two paths from (0, 0, 0) to (1, 1, 0)

via V10 and two via V01, so that we have four 4-cycles in E involving both (0, 0, 0)
and (1, 1, 0). Similarly, we have two 4-cycles in E involving (0, 0, 0) and (1, 1, 1),
two involving (0, 0, 0) and (1, 1, 2), two involving (0, 0, 0) and (1, 1, 3), and two
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Table 2 R4, L4 and M4 for
n = 5

Set 4-cycles L4 R4 M4

A 120 0 0 480

B 30 0 60 60

D 30 60 0 60

E 60 60 60 120

All 240 120 120 720

involving (0, 0, 0) and (1, 1, 4). In total then, we have 12 involving (0, 0, 0), so that
we have 12 × 5 = 60 type E 4-cycles in total. We summarise in Table 2.

Therefore, 4R4 = 4L4 �= M4 for any n.

The following theorem completes our consideration of the automorphism groups.

Theorem 1 Let ρ and α be as in (10) and (12). Then AutΓ (n, r) = 〈ρ, α〉 for any n.
Proof By Lemmas 7, 9 and 10, the result follows.

Now that we have established the automorphism groups of Γ (n, r), applying the
following theorem in Sabidussi [17] proves to be a relatively simple matter.

Theorem 2 [17] A graph is a Cayley graph on a group if and only if the automorphism
group contains a subgroup which acts regularly on the vertex set.

Theorem 3 Γ (n, r) is vertex-transitive and non-Cayley on groups.

Proof It suffices to show non-Cayleyness on groups. By Theorem 2, we require a sub-
group of AutΓ (n, r) of order 4n which acts transitively on V (Γ (n, r)) for Cayleyness
on groups.

By Theorem 1, any automorphism in AutΓ (n, r) is of the form ρiα j for integers i
and j . Now, if both i and j are even, then ρiα j fixes V00, V01, V10 and V11. If i is even
and j is odd, then ρiα j fixes V00 ∪ V10 and V01 ∪ V11. If i is odd and j is even, then
ρiα j fixes V00 ∪V01 and V10 ∪V11. Therefore, any transitive subgroup of AutΓ (n, r)
must contain an element of the form ρiα j where both i and j are odd.

The required subgroup must have order 4n. Now, |〈α j 〉| = 4 for any odd j . Also,
no power of ρ is equal to any power of α except that α4 = ρ2n = 1. This means that
〈ρiα j 〉 = 〈ρi 〉 × 〈α j 〉. Therefore in our required subgroup, we need some subgroup
of 〈ρ〉, say 〈ρi 〉, such that |〈ρi 〉| = n. The only such possibility is 〈ρ2〉. However there
exists no ρi in 〈ρ2〉 with odd i , as required. Therefore, there exists no subgroup of
AutΓ (n, r) which acts regularly on V (Γ (n, r)).

4 Conclusion

It is expected that there exists many variations of U such that Cay(Q(n, r),U ) is
a VTNCG. If U = {(1, 0, 0), (0, 1, 1), (0, 1,−1)} for example, Cay(Q(n, r),U ) is
isomorphic to the generalised Petersen graphs, which are also VTNCGs if r2 ≡ −1
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(mod n) (and thus (n, r) = 1). More generally, there are indications that determining
meta-Cayley graphs on a product of loops and groups is a fruitful avenue in finding
vertex transitive graphs which are non-Cayley on groups.
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