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Space weather refers to conditions around a star, like our Sun, and its

interplanetary space that may affect space- and ground-based assets as well

as human life. Space weather can manifest as many different phenomena,

often simultaneously, and can create complex and sometimes dangerous

conditions. The study of space weather is inherently trans-disciplinary,

including subfields of solar, magnetospheric, ionospheric, and atmospheric

research communities, but benefiting from collaborations with policymakers,

industry, astrophysics, software engineering, and many more. Effective
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communication is required between scientists, the end-user community, and

government organizations to ensure that we are prepared for any adverse

space weather effects. With the rapid growth of the field in recent years,

the upcoming Solar Cycle 25 maximum, and the evolution of research-ready

technologies, we believe that spaceweather deserves a reexamination in terms

of a “risk and resiliency” framework. By utilizing open data science, cross-

disciplinary collaborations, information systems, and citizen science, we can

forge stronger partnerships between science and industry and improve our

readiness as a society to mitigate space weather impacts. The objective of this

manuscript is to raise awareness of these concepts as we approach a solar

maximum that coincides with an increasingly technology-dependent society,

and introduce a unique way of approaching space weather through the lens

of a risk and resiliency framework that can be used to further assess areas of

improvement in the field.

KEYWORDS

space weather, risk and resiliency, solar activity, solar storms, geospace, Sun and society, open

data, open science

1 Introduction

Space weather is the physical and phenomenological state
of space environments. The associated discipline aims through
observation, monitoring, analysis, and modeling to understand
and predict the state of the Sun, the interplanetary and planetary
environments, and the solar and non-solar driven perturbations
that affect them, as well as to forecast and nowcast the potential
impacts on biological and technological systems (from COST
Action 724, 20091, and in line with Temmer, 2021). As our
understanding of space weather increases, so does the realization
that answering the field’s most complex questions requires a
new scientific approach that values convergence: The merging
of innovative ideas, approaches, and technologies from a diverse
range of sectors and expertise. In this article, we reflect on the
current state of space weather research and discuss the next
steps to advance the field during the next decade and beyond,
specifically by formulating space weather in a risk and resiliency
framework.

The grand challenges in heliophysics and space weather,
especially those that involve complexity precluding uni-
disciplinary analyses, may require new frameworks to further
understand the multi-disciplinary knowledge necessary to
make significant progress. A risk and resiliency framework
(Scheffer et al., 2001; de Bruijn et al., 2017; Angeler et al., 2018,
see Figure 1) provides a solid foundation for the evolution
of our sciences beyond the next decade. Within this
framework, a system is treated as a complex entity that can
be defined by whether or not it can accommodate changes and

1 https://swe.ssa.esa.int/what-is-space-weather.

reorganize itself while maintaining its unique characteristics
(Scheffer et al., 2001). The framework is built on two important
principles: 1) Consideration of the holistic Sun-to-society system,
and 2) Quantification of the uncertainty that arises from coarse-
graining and statistical simplification (McGranaghan, 2022).
If space weather is approached through the lens of risk and
resiliency, the domain could share a common framework
with other risks such as terrestrial weather (e.g., hurricanes).
This would allow researchers to conduct trans-disciplinary
research into the convolved and compounding effects of space
weather.

Space weather currently affects four main industry domains:
ground infrastructure, high-frequency (HF) communications,
near-Earth space assets and services, and aviation. Our nearest
star creates five main space weather disturbances discussed in
this article:

1. Coronal mass ejections (CMEs; e.g., Webb and Howard, 2012)
are large-scale eruptions that carry huge quantities of plasma
and magnetic fields into interplanetary space, occasionally in
the direction of Earth. The fastest CMEs are usually the most
geoeffective.

2. Solar flares (e.g., Benz, 2017) are sudden intense bursts of
electromagnetic radiation from the solar atmosphere, and are
associated with the impulsive release of magnetic energy via
reconnection.

3. Solar energetic particle (SEP; e.g., Reames, 2013) events are
associated with CMEs and flares. They cause large fluxes of
high-energy relativistic protons and electrons to travel with the
solar wind along the interplanetary magnetic field.

4. (Coronal-hole) high-speed streams (HSSs; e.g.,
Cranmer et al., 2017) are flows of fast solar wind that originate
from open magnetic field lines in the Sun’s corona.
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FIGURE 1
Overview of the Space Weather Risk and Resiliency Framework. Adapted from https://svs.gsfc.nasa.gov/30822 (original credit: NASA).

5. (Co-rotating) stream interaction regions (SIRs; e.g.,
Richardson, 2018) occur when HSSs overtake slower solar
wind, producing regions of enhanced density and magnetic
field strength.

In Section 2 of this article we provide a background of space
weather and highlight areas of improvement in science and
forecasting. We also share possible solutions (Section 3) using
the concepts of open data and data science (Section 3.1), cross-
disciplinary science and information systems (Section 3.2), as
well as citizen science (Section 3.3). Concluding thoughts are
summarized in Section 4.

2 Space weather’s impacts on
industries

The disturbances from the Sun mentioned in the
Introduction can manifest into three main categories of
space weather effects at Earth: Geomagnetic storms and
substorms, radiation storms, and radio blackouts2. On Earth,
space weather can lead to damaging effects with varying
time scales and spatial footprints (see Eastwood et al., 2017;
Hapgood et al., 2021). So-called “Carrington-scale events”
refer to extreme space weather events that cause widespread

2 https://www.swpc.noaa.gov/noaa-scales-explanation.

infrastructure damage (Tsurutani et al., 2003; Baker et al., 2013;
Riley et al., 2018; Cliver et al., 2022; Hayakawa et al., 2022). For
industries, Carrington-scale events often present a “worst-case
scenario.”

Although there are many affected sectors of society, within
this article we will discuss space weather impacts in five industry
domains, outlined below.

2.1 High-frequency communications

During radio blackouts and radiation storms, increased
ionization in the atmosphere and ionosphere impacts high-
frequency (HF) radio communication, which relies on
ionospheric propagation for signal transmission and integrity.
Signals either become degraded from distortion and scintillation
or completely absorbed by the ionosphere (Kintner et al., 2007).
HF radio communication is used by the aviation industry, the
shipping industry, emergency responders, the amateur radio
operator (“ham”) community (Frissell et al., 2022, 2019), and
the military (Balch et al., 2004; Kelly et al., 2014). Mobile phone
networks and global navigation satellite system (GNSS) timing
services can also be affected and debilitated by solar flare radio
noise (Kintner et al., 2009; Cannon et al., 2013). During minor-
to-moderate space weather events, regional and global gaps
in HF radio bands occur, but most critical infrastructure is
designed to be resilient, i.e., capable of using multiple bands
of communication or operating under expected noise. However,
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some infrastructure is not resilient enough: Even minor radio
blackouts have caused airplanes to lose contact with ground
controllers, especially over the North Atlantic (Fiori et al., 2022).
Carrington-scale eventsmay cause degradedHF communication
performance for several days due to intense and prolonged radio
blackouts caused by severe space weather (Cannon et al., 2013;
Frissell et al., 2019).

2.2 Geomagnetically-induced currents

During geomagnetic storms, substorms, and sudden impulse
events, geomagnetically induced currents (GICs) in the ground
may damage infrastructure, particularly power transformers,
or offline certain power surge protection and fault-detection
systems (Tsurutani et al., 2003; Cannon et al., 2013). These
effects are most intense in the vicinity of the auroral ovals that
surround Earth’s magnetic poles, but have also been observed
at mid and low latitudes due to the effects of ionospheric
(Pulkkinen et al., 2012; Ngwira et al., 2013; Carter et al., 2015)
and magnetospheric (Russell et al., 1992; Shinbori et al., 2009)
current systems. Consequently, GIC power grid impacts
are widespread and have been observed in the United
Kingdom (Erinmez et al., 2002; Thomson et al., 2005), Finland
(Juusola et al., 2015), Sweden (Pulkkinen et al., 2005), Spain
(Torta et al., 2012), theUnited States andCanada (Bolduc, 2002),
South Africa (Lotz and Cilliers, 2015; Matandirotya et al., 2015),
Japan (Watari, 2015), China (Wang et al., 2015), Australia
(Marshall et al., 2011), New Zealand (Oliveira et al., 2018), and
Brazil (Trivedi et al.,2007).

2.3 Satellite infrastructure

During geomagnetic storms, the thermosphere often
expands and changes the neutral density of low-Earth-
orbit altitudes (Danilov and Laštovička, 2002; Prölss, 2011;
Oliveira et al., 2020). Satellites flying at these heights experience
increased drag, causing a deceleration in the orbital direction
and loss of altitude. Manual intervention often must be taken
to ensure the nominal orbit of the spacecraft is maintained
(Capon et al., 2019; Smith et al., 2019). A notable recent example
of this phenomenon was in February 2022, when 38 SpaceX
Starlink satellites re-entered Earth’s atmosphere after a space
weather event (Dang et al., 2022; Hapgood et al., 2022). During
geomagnetic storms and substorms, energetic electrons become
trapped in Earth’s radiation belts, causing electrostatic charging
and discharging on spacecraft, which can damage sensitive
electronic equipment (Koons et al., 1998; Wrenn et al., 2002;
Hapgood, 2004; Choi et al., 2011; Loto’aniu et al., 2015).
Alongside short-term effects, a satellite’s performance may
also degrade over time due to radiation events. Many satellite

providers use our current understanding of the climatology of
the radiation environments to determine the expected total dose
over their satellite’s lifetime and include a safety margin to ensure
resiliency. As a consequence, complete satellite losses are rare.

2.4 Humans working in the atmosphere
and in space

Earth is constantly bombarded by high-energy charged
particles either from the Sun (i.e., SEPs) or from interstellar
space (known as galactic cosmic rays or GCRs). During strong
radiation storms, SEPs can be accelerated to relativistic energies
(thus penetrating Earth’s magnetosphere) and secondary
particles can be detected even on the ground by neutron
monitors, a phenomenon known as a ground level enhancement
(GLE; e.g., Nitta et al., 2012). Due to open magnetic field
lines at Earth’s poles, particle fluxes and the resulting
background radiation environment are highest at high latitudes
(Compton, 1933; O’Brien et al., 1996; Mertens et al., 2010). This
ionizing radiation can have biological impacts on aircrew
(Dyer and Truscott, 1999; Lindborg et al., 2004). While unlikely,
during severe space weather events crew radiation dose limits
may be reached and airlines may choose to reroute high-risk
flights (Jones et al., 2005). In geospace, humans lose radiation
protection from the atmosphere, receive higher overall dose rates
(Dachev et al., 2017), and are greatly affected by radiation storms
(Berrilli et al., 2014), potentially leading to adverse health effects
over time (Cucinotta, 2014). In interplanetary space and on the
Moon, humans lose all magnetic or atmospheric shielding and
are exposed to even higher radiation levels (Reitz et al., 2012).
On Mars, due to the planet’s thinner atmosphere and weaker
magnetic field, dose rates are much higher than on Earth
(Guo et al., 2021). The space radiation environment will
present challenges to upcoming crewed lunar and martian
missions.

2.5 Single event upsets

Single event upsets (SEUs) occur when ionizing radiation
changes the internal voltages in electronics, leading to
the corruption of stored or transmitted data (Dodd and
Massengill, 2003; Oates, 2015). During radiation storms, highly
energetic particles cause increased rates of SEUs in electronics
(Campbell et al., 2002; Lohmeyer and Cahoy, 2013). SEUs affect
all electronics, regardless of altitude. During the 2003 Halloween
storms, about 10% (47 out of 450) of satellites experienced
anomalies, one scientific satellite was lost, and 10 satellites were
non-operational for over 1 day (Balch et al., 2004). Effects from
these events were observed even at Mars, the most dramatic
outcome being the loss of a radiation monitor aboard the 2001
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Mars Odyssey satellite (Zeitlin et al., 2010). SEUs also affect
avionics instruments (Taber and Normand, 1993), although
almost all commercial aircraft contain mitigation techniques
to limit disruptions3, and ground electronics, although critical
electronics have error-correcting mechanisms in most cases
(Normand, 1996).

2.6 The current state of space weather

Space weather simultaneously affects these five domains
and creates complex and challenging situations for forecasters
and industry managers. Our scientific understanding of these
industry-specific risks to space weather is growing, but there
are still gaps in knowledge. Several international efforts are
underway to identify and reduce these gaps, as well as to
explore ways to improve our readiness for harmful space weather
impacts (e.g., Schrijver et al., 2015; Opgenoorth et al., 2019;
Tsurutani et al., 2020; Lilensten et al., 2021), but are we fully
prepared for a Carrington-scale event (Riley and Love, 2017)?
The answer to this question depends on who is being asked, and
information regarding the ways in which industries respond to
space weather is not readily publicly available. As we prepare
for the next decade of space weather, including the Solar
Cycle 25 maximum, there are a multitude of avenues by which
we can improve forecasting and research to achieve clearer
scientific understanding and well-integrated inter-disciplinary
collaboration.

3 Open-data and cross-disciplinary
efforts in space weather

Adopting a new systems-science approach for space weather,
utilizing, e.g., open data and citizen science, will cultivate cross-
disciplinary collaborations that help solve challenging problems
in unique ways.

3.1 Open-data and data science

As the amount of space weather data increases, data science
projects and principles will enable new scientific discoveries via
open access and collaboration.

As the number of models, data, and model–data fusion
products increases with the growth of the space weather field,
so does our recognition that powerful new opportunities for

3 https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/
media/TC-15-62.pdf.

scientific discovery are made possible by utilizing data science
optimized for large data volumes. Data science in regards
to space weather refers to scalable architectural approaches,
techniques, software, and algorithms that alter the paradigm by
which data are collected, managed, analyzed, and communicated
(McGranaghan et al., 2017).

Data science-driven transformations in related fields such as
Earth science (Yue et al., 2016) and climate research (Carleton
and Hsiang, 2016) are a testament to the immense potential of
leveraging these new ideas, and similar efforts are beginning to
take root in space weather.

The NSF EarthCube project, Assimilative Mapping
of Geospace Observations (AMGeO4; Matsuo et al., 2021)
demonstrates the potential of implementing data science best
practices. The project deploys a collaborative data science
platform to investigate the constantly changing conditions of
high-latitude ionospheric electrodynamics. AMGeO connects
geospace observational datasets from NSF-funded facility
programs (e.g., SuperDARN, AMPERE, and SuperMAG) to
form a coherent specification of ionospheric electrodynamics.
AMGeO does this through open-source Python software and
an online interface that facilitates data acquisition and pre-
processing. The project streamlines data access, collection, and
integration, and its software is designed to be transparent,
expandable, and interoperable to encourage collaboration
and engagement within the geospace community. The newly-
formed “near-Earth space data infrastructure for e-science”
(ESPAS; Belehaki et al., 2016) is a similar project with a special
emphasis of standardized vocabulary and expandability to
improve long-term sustainability. The Python in Heliophysics
Community (PhYC5) effort promotes open data through
a knowledge base for performing heliophysics research in
Python.

Given the breadth of the space weather field—spanning from
solar physics to geology—inter-disciplinary science connecting
phenomena from the Sun to Earth may require datasets
from many organizations, instruments, and agencies. Making
observations and data open source reduces the barrier to
starting research and can help accelerate needed discoveries—the
“democratization” of science. While the needs of specific
industries may vary from country to country, these specific
perspectives help scientists understand why these regional
variations exist. Making these data available, translatable, and
accessible to a worldwide audience will help foster international
collaboration, a critical step in reacting to and developing
technology for the regional and global nature of space weather
phenomena.

4 https://amgeo.colorado.edu.

5 https://heliopython.org/.
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3.2 Cross-disciplinary science and
information systems

Understanding space weather from a broad perspective
is important for industries to communicate their needs to
scientists, and vice-versa. Common scientific understanding
improves the utility of discovery and unifies efforts.

An information system is a technology that provides the
structure to collect, store, process, and integrate data. The
Sun-to-industry information system is an important part of
creating industries resilient to space weather, and coordinating
collaboration across disciplines improves scientific knowledge.
Specifically, information currently flows mainly in one direction:
from space weather to industry, but this should not be the case.
Bidirectional communication improves scientists’ understanding
of what industries need (e.g., real-time maps of GICs used
by power grids). Communication also improves trust in
space weather models, which helps clarify risk. Additionally,
coordinating across scientific communities is an important step
in developing a “systems science” approach to space weather. In
order for the observation, forecasting, and modeling of space
weather to improve, a knowledge commons shared between
disciplines should be created. This sharing of information
will standardize the glossary and semantics of space weather,
fostering collaboration without current communication barriers,
while also preventing the duplication of effort through the
gathering and sharing of knowledge across groups. Optimizing
the information flow “fromSun tomud”means thatwe can create
more refined and polished plans for how industries prepare for
and respond to space weather.

3.3 Citizen science

Citizen science is a field that connects scientists to the
public, enabling discovery especially at disciplinary boundaries.
Successful projects in heliophysics and related fieldsmake citizen
science capable of shedding light on someof themost challenging
space weather mysteries.

Citizen science is a rapidly growing, recently formalized
field that is fueled by the concept of cognitive surplus, i.e.,
that small amounts of volunteered time by many people can
contribute to a larger scientific goal (Shirky, 2010). Projects
that incorporate citizen science have the potential to engage
and motivate broad, global audiences to drive new scientific
discoveries, while still maintaining data quality. Citizen science
also centers around creating open-data frameworks, making
data accessible to the interested public. Citizen science projects
are frequent and well-established in astronomy (e.g., Globe
at Night), and within the past solar cycle, a number of
projects have emerged to study space weather. One such
project, Aurorasaurus (MacDonald et al., 2015), utilizes manual

reports as well as aggregate Twitter sightings of aurora to
develop a more accurate nowcast prediction of the auroral
ovals. In some instances, citizen science reports map the
aurora more realistically in real time than operational models
(Case et al., 2016). The Aurorasaurus community has also
contributed to discoveries relating to the STEVE (StrongThermal
Emission Velocity Enhancement) phenomenon, using citizen
scientists’ aurora photographs (Gallardo-Lacourt et al., 2018;
MacDonald et al., 2018; Chu et al., 2020; Grandin, 2020;
Hunnekuhl and MacDonald, 2020; Semeter et al., 2020). Other
notable citizen science projects include Solar Stormwatch
(Jones et al., 2017), Solar Jet Hunter (Musset et al., 2021), and
NOAA’s CrowdMAG (Nair et al., 2014), which has proven
capable of detecting geomagnetic fields (Robinson et al., 2021).
Citizen science works in tandem with initiatives focusing on
systems science, open data, and international collaboration.
Projects also serve educational purposes, helping to create
a more well-informed public that is aware of space weather.
MUSICS (Archer et al., 2018) and Space Weather UnderGround
(Smith, 2022) are recent notable examples. In space weather,
it enables novel ways to monitor conditions on the ground in
real time, and contributes to scientific endeavors that require
the analysis of large datasets. Together with developing data
aggregates and knowledge commons, citizen science projects
may be developed to leverage the large amount of data linking
industry and science.

4 Conclusion

Adapting a risk and resiliency framework for space weather
is crucial for tackling heliophysics challenges during the next
decade and beyond. Utilizing open data and data science is
one route to shape existing data products, tools, and software
to be more easily accessible. The “democratization of science”
will only happen if we promote existing projects and develop
new efforts to converge information into a knowledge commons
that can be accessed by scientists, industries, the public, and
other end-users. Cross-disciplinary efforts will be crucial for
advancing space weather. Specifically, adopting information
systems where knowledge is shared between scientists, space
weather forecasters, and affected industries will improve our
readiness for space weather threats. Working towards this goal
will require dedicated efforts to convene scientists, community
members, and industry representatives (e.g., cross-disciplinary
workshops and industry test-bed scenarios). Finally, citizen
science takes these concepts and puts them into practice, by
employing science–public partnerships, community-building,
data sovereignty and accessibility, reciprocity efforts, and inter-
disciplinary science to advance the field of space weather.
Most importantly, citizen science projects are able to quickly
evolve to answer emerging science questions. Agency-specific
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recommendations reflecting these sentiments can be found in
the white paper of the same title submitted to the 2024–2033
Heliophysics Decadal Survey (Ledvina et al., 2022).

Over the next decade, the challenges of the next solar
cycle maximum coinciding with an increasingly technology-
dependent societywill demandnew technologies, collaborations,
and innovative research methods to bridge knowledge gaps
in science, operations, and industry responses to space
weather. Creating a risk and resiliency framework for space
weather will ensure that we can approach these problems
prepared and adapt to create resilient and responsive
systems.
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